复旦版数学分析答案全解ex6-1

合集下载

《复变函数与积分变换复旦大学修订版》全部_习题答案

《复变函数与积分变换复旦大学修订版》全部_习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1kn=-,()Im i 0n=;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-.②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcosisin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z 2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根. 解:πi 4e ⎫⎪⎪⎝⎭∴)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z . 9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)

数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)
101
(4) b•
ê§ lim
x→∞
xb eax
=
lim
x→∞
bxb−1 aeax
=
··· =
lim
x→∞
b! abeax
=0
bؕ
ê§K[b]
b
<
[b]+1§u´
|x|[b] eax
|x|b eax
<
|x|[b]+1 eax (|x|
> 1)§
þ¡®y²§‚ 4••0§Ïd§¥m 4•••0.
l
§é?¿a, b§þk lim
lim
+
=
x→0
24
24
1
6
ax − bx
ax ln a − bx ln b
a
(9) lim
= lim
= ln a − ln b = ln (a = 0, b = 0)
x→0 x
x→0
1
b
x−1
1
(10) lim
x→1
ln x
= lim
x→1
1
=1
x
(11) lim ax − xa = lim ax ln a − axa−1 = aa(ln a − 1)
(x2 − 1) sin x
(4) lim x→1 ln
1 + sin π x
2

x2 sin 1
1
1
2x sin − cos
1 cos
(1) Ï
x ©f!©1Óžéx¦ ê§
x

x x → 0ž4•Ø•3§Ïdâ
sin x
cos x
cos x

复旦大学数学系陈纪修《数学分析》 第二版 习题答案ex

复旦大学数学系陈纪修《数学分析》 第二版 习题答案ex


⎧1
⎨ ⎩
n
−1+ n +1
1 n+2

+ (−1)n
1
⎫ ⎬

2n ⎭

(1) ∀ε
(0 < ε
< 2) ,取 N
=
⎡2⎤ ⎢⎣ε ⎥⎦
,当
n
>
N
时,成立
0
<
n +1 n2 +1
<
2 n
<
ε

(2)
∀ε
(0
<
ε
<
1)
,取
N
=
⎡ lg ε ⎤
⎢ ⎣
lg
0.99
⎥ ⎦
,当
n
>
N
时,成立
lg ε
(−1)n (0.99)n < (0.99)lg0.99 = ε 。
n
(2) 3 + 2 不是有理数。若 3 + 2 是有理数,则可写成既约分数
3 + 2 = m ,于是 3 + 2 6 + 2 = m2 , 6 = m2 − 5 ,即 6 是有理数,与
n
n2
2n2 2
(1)的结论矛盾。
2. 求下列数集的最大数、最小数,或证明它们不存在:
A = {x|x ≥ 0};
>
N
,成立
xn
−a
<
ε
,所以 lim n→∞
xn
=
a

5.
设 lim n→∞
x2n
= lim n→∞
x2n+1

复旦大学数学系《数学分析》(第3版)(下册)章节题库-多变量微积分学-含参变量的积分和反常积分【圣才

复旦大学数学系《数学分析》(第3版)(下册)章节题库-多变量微积分学-含参变量的积分和反常积分【圣才


从而
于是不等式 p≤α<p+1,蕴含 I(p)≥I(α)>I(p+1),I(p+1)≥I(α+1)>I(p+2),
由此推出
因为
所以由上式可得
在此式中用 α+n 代 α(因而 p+n≤α+n<p+n+1,亦即相应地用 p+n 代 p),即 得
由此可知当 n→∞时,数列 f(α+n)(n=1,2,…)有极限 π/2.但上面已证 f(x)以 1 为周期,所以
(2)证明如下: 因为在上面步骤②中已证 I(α)是 α 的减函数,所以 I(α)>I(α+1)>I(α+2),
由此可知
(最后一步用到上面步骤①中的结果),即 I(α+1)/I(a)介于 l 和(α+2)
2 / 44
圣才电子书

/(α+1)之间,从而
十万种考研考证电子书、题库视频学习平 台
这蕴含 f(α+1)=(α+2)I(α+1)I(α+2)=(α+1)I(α)I(α+1)=f(α).
因此 f 是周期函数(周期为 1),从而若 p 为一个整数,则
1 / 44
圣才电子书
十万种考研考证电子书、题库视频学习平


②因为当 0<x<π/2 时 0<sinx<1,所以当
由 分
F(y)= 而,更有
易知 f(x,y)是 0≤x≤1,0≤y≤1 上的连续函数.从而,积
是 0≤y≤1 上的连续函数,因此,
.从
9.设:
其中 a<b 及 f(y)为可微分的函数,
8 / 44
圣才电子书

求 F''(x).
十万种考研考证电子书、题库视频学习平 台
解:当 x∈(a,b)时,由于
于是,得
(3)利用对称性知,所求的体积为

ex6-1

ex6-1

习 题 6.1⒈ 求下列不定积分:⑴ ()x x x dx3225+-⎰; ⑵ (sin e )x dx x +⎰3; ⑶ ()x a dxax +⎰;⑷ ⎰+dxx )cot 2(2;⑸ ⎰-dxx x x )tan sec csc 2(2;⑹ ()x dx 232-⎰;⑺ ()x x dx+⎰12;⑻ ⎰⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛++dx xxx 111132;⑼ ⎰⎪⎭⎫ ⎝⎛+dxx x2312; ⑽ 23523⋅-⋅⎰x xxdx;⑾ cos cos sin 2x x xdx-⎰; ⑿ ⎰⎪⎪⎭⎫⎝⎛--+dx x x221312;⒀ ()12-⎰x x x dx;⒁ cos cos sin 222x x xdx⎰.解(1)332324321210(225433xx dx xdx x dx x x x C+-=+-=+-+⎰⎰⎰⎰。

(2)(sin e )x dx x +⎰3=sin 3cos 3x x xdx e dx x e C +=-++⎰⎰。

(3)()x a dxax +⎰=11(1)1ln xaxa axdx adx xC a a a++=++≠+⎰⎰。

(4)⎰+dxx )cot 2(2=2(1csc )cot x dx x x C +=-+⎰。

(5)⎰-dxx x x )tan sec csc 2(2=22csc sec tan 2cot sec xdx x xdx x x C -=--+⎰⎰。

(6)()x dx 232-⎰=64275316(6128)4875x x x dx x x x x C-+-=-+-+⎰。

(7)()x x dx+⎰12=232111(2)23xdx x x Cxx++=+-+⎰。

(8)⎰⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫⎝⎛++dx xxx 111132=(22dx x C+++=-+⎰。

(9)⎰⎪⎭⎫ ⎝⎛+dxx x2312=⎰⎪⎭⎫⎝⎛+⋅+dxx x x91)32(24122114()ln 4ln 2ln 33ln 99xx xC =+-+-。

复旦大学数学系陈纪修数学分析(第二版)习题答案ex2-3,4

复旦大学数学系陈纪修数学分析(第二版)习题答案ex2-3,4

一解 a = 0 舍去),因此
lim
n→∞
xn
=
2。
(3)首先有 x1 =
2 > −1,设 xk > −1,则 xk+1 =
−1 > −1 ,由数学
2 + xk
25
归纳法可知 ∀n ,xn
> −1。由 xn+1
− xn
=
−1 2 + xn
− xn
=

(xn + 1)2 2 + xn
< 0 ,可知{xn}
)n
= 0。
证(1)设
lim
n→∞
an
=
+∞ ,则 ∀G
>
0, ∃N1
>
0, ∀n
>
N1
: an
>
3G
。对固定的
N1 ,
∃N > 2N1,∀n > N :
a1 + a2 + " + aN1 n
< G ,于是
2
a1 + a2 + " + an ≥ aN1+1 + aN1+2 + " + an − a1 + a2 + " + aN1 > 3G − G = G 。
n→∞ ⎝ n ⎠
⑴ lim ⎜⎛1 − 1 ⎟⎞n ;
n→∞ ⎝ n ⎠
⑵ lim ⎜⎛1 + 1 ⎟⎞n ;
n→∞ ⎝ n + 1⎠
⑶ lim ⎜⎛1 + 1 ⎟⎞n ;
n→∞ ⎝ 2n ⎠

复旦大学数学分析答案

复旦大学数学分析答案

复旦大学数学分析答案【篇一:复旦大学2009年数学分析考研真题】s=txt>一.填空题xln(1?x)=_____x?01?cosxy(1?x)(2)微分方程y=的通解是____,这是变量可分离方程x(1)lim(3)设?是锥面(0?z?1)的下侧,则???xdyd?z2ydz?d3x(?1z)d?xdy____(4)点(2,1,0)到平面3x+4y+5z=0的距离d=____ (5)设a=? ?21??,2阶矩阵b满足ba=b+2e,则b=____??12?(6)设随机变量x与y相互独立,且均服从区间?0,3?上的均匀分布,则p{max(x,y)?1}?____ 一、选择题(1)设函数y?f(x)具有二阶导数,且f(x)?0,f(x)?0,?x为自变量x在x,处的增量,?y与dy分别为f(x)在点x处对应的增量与微分,若?x?0,则()(a)0?dx??y (b)0??y?dy (c)?y?dy?0 (d)dy??y?0 (2)设f(x,y)为连续函数,则(a)(c)??d??f(rcos?,rsin?)rdr等于()1nxf(x,y)dy(b)0f(x,y)dy f(x,y)dx0yf(x,y)dx(d)0(3)若级数?an?1??收敛,则级数()(a)?an?1?n收敛(b)?(?1)a收敛nnn?1??(c)?anan?1收敛(d)?n?1an?an?1收敛 2n?1(4)设f(x,y)和?(x,y)均为可微函数,且?y(x,y)?0,已知(x0,y0)是f(x,y)在约束条件?(x,y)?0下的一个极值点,下列选项正确的是()(a)若fx(x0,y0)?0,则fy(x0,y0)?0(b)若fx(x0,y0)?0,则fy(x0,y0)?0 (c)若fx(x0,y0)?0,则fy(x0,y0)?0 (d)若fx(x0,y0)?0,则fy(x0,y0)?0(5)设?1,?2,?,?s都是n维向量,a是m?n矩阵,则()成立(A)若?1,?2,?,?s线性相关,则a?1,a?2,?a?s线性相关(B)若?1,?2,?,?s线性相关,则a?1,a?2,?a?s线性无关(C)若?1,?2,?,?s线性无关,则a?1,a?2,?a?s线性相关(D)若?1,?2,?,?s线性无关,则a?1,a?2,?a?s线性无关(6)设A是3阶矩阵,将a的第2列加到第1列上得b,将b的第一列的?1倍加到?110???第2列上得c,记p??010?,则()?001???(a)c?pap(b)c?pap (c)c?pap(d)c?pap(7)设a,b为随机事件,p(b)?0,p?a|b??1,则必有()(a)p?a?b??p(a)(b)p?a?b??p(b) (c)p(a?b)?p(a)(d)p(a?b)?p(b)2(8)设随机变量x服从正态分布n(?1,?1),y服从正态分布n(?2,?2),且2tt?1?1p{x??1?1}?py??2?1},则()(a)?1??2 (b)?1??2 (c)?1??2 (D)?1??2三、简答题(1)设区域d?{(x,y)|x2?y2?1,x?0},计算二重积分i?1?xy22??1?x?yd(2)设数列{xn}满足0?x1??,xn?1?sinxn(n=1,2?),求:(i)证明limxn存在,并求之x??1(ii)?xn?1?xn2计算lim?? x???xn?(3)设函数f(u)在(0,?)内具有二阶导数,且z?f满足等式?2?0 2?x?y(i)f(u)?0 验证f(u)?u(ii)若f(1)?0,f(1)?1,求函数f(u)的表达式(4)设在上半平面d?{(x,y)|y?0}内,函数f(x,y)是有连续偏导数,且对任意2的t?0都有f(tx,ty)?tf(x,y)证明:对l内的任意分段光滑的有向简单闭曲线L,都有?lyf(x,y)dx?xf(x,y)dy?0(5)已知非齐次线性方程组?x1?x2?x3?x4??1??4x1?3x2?5x3?x4??1有3个线性无关的解?ax?x?3x?bx?134?12(I)证明方程组系数矩阵A的秩 r(a)?2 (ii)求 a , b 的值及方程组的通解(6)设3阶实对称矩阵a的各行元素之和均为3,向量?1?(?1,2,?1)t,?2?(0,?1,1)t实线性方程组ax?0的两个解,(i)求a的特征值与特征向量(ii)求:正交矩阵Q与对角矩阵A,使得qaq?at?1?2,?1?x?0??1(7)随机变量x的概率密度为fx(x)??,0?x?2令y?x2,f(x,y)为二维随机变?4?0,其他??量(x,y)的分布函数(I)求Y的概率密度fy(y) (ii)f???1???,0?x?1?(8)设总体x的概率密度f(x,0)??1??,1?x?2其中?实未知参数(0???1),?0,其他?x1,x2,?,xn为来自总体x的简单随即样本,记n为样本值x1,x2,?,xn中小于1的个数,求?的最大似然估计【篇二:复旦《数学分析》答案第四章1、2节】题 4.1 微分和导数⒈半径为1cm的铁球表面要镀一层厚度为0.01cm的铜,试用求微?43?r3,每只球镀铜所需要铜的质量为2m???v?4??r?r?1.12g。

数学分析教材习题全解(复旦版)数学分析教材习题

数学分析教材习题全解(复旦版)数学分析教材习题

数学分析教材习题全解(复旦版)数学分析教材习题全解习题 12. 1 偏导数与全微分1( 求下列函数的偏导数:5426222(1); (2); z,x,6xy,yz,xln(x,y)x2z,xy,(3); (4); z,sin(xy),cos(xy)y2,,xx,,tan(5); (6)z,; z,e(cosy,xsiny),,y,,xyyz,sin,cos(7); (8); z,(1,xy)yxx,yz,ln(x,lny)z,arctan(9); (10); 1,xyy222x(x,y,z)z(11); (12); u,eu,xz1y(13); (14); u,xu,222x,y,znnu,axy,a,a(15),为常数; (16)为常数。

uax,a,ijijijji,iiii,j,1i,1,z,z54432解 (1) ,,6y,12xy。

,5x,24xy,y,x32,z2x,z2xy22(2) ,。

,,2xln(x,y),2222,y,xx,yx,y,z1,zx,y,,x,(3) ,。

2,y,xyy,z,z,,(4) , ,xcos(xy),sin(2xy)。

,y,,cos(xy),sin(2xy),y,x,z,zxx,e(xcosy,siny)(5) ,。

,e(cosy,xsiny,siny),y,x222,,,,,zxx,zxx222,,,,,sec,,sec(6) ,。

2,,,,,xyy,yyy,,,,,z1xyyxyzxxy,1xy,,coscos,coscossinsin,sinsin(7) ,,。

22yyx,,xyyxyxxyxyx1,,,zxy,z2y,1y(8) , (1)ln(1)。

,y(1,xy),,xy,xy,,,1,x,y,xy,,,z1,z1,,(9) ,。

,yy(x,lny),xx,lny,z1,z1zxy,,arctanarctan(10) 注意,,, ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


∫(x +
1 )2 dx ;
x
⑻ ∫ ⎜⎜⎝⎛
x+ 1 3 x2
+ 1⎟⎟⎠⎞⎜⎜⎝⎛
1 x
+
1⎟⎟⎠⎞dx
;
∫ ⑼
⎜⎛ 2 x ⎝
+
1 3x
⎟⎞2 dx ⎠
;

2 ⋅ 3x − 5 ⋅ 2x

3x
dx ;


cos 2x cos x − sin x
dx ;
∫ ⑿
⎜⎜⎝⎛
1
2 +x
2

3 1− x2
∫ ∫ (3) ∫ (xa + ax )dx =
xadx +
axdx = 1 xa+1 + ax + C (a ≠ 1) 。
a +1
ln a
(4) ∫ (2 + cot 2 x)dx = ∫ (1+ csc2 x)dx = x − cot x + C 。
(5) ∫ (2 csc2 x − sec x tan x)dx = 2∫ csc2 xdx −∫ sec x tan xdx = −2 cot x − sec x + C 。
x
+
sin
x)dx
=
sin
x

cos
x
+
C

(12)

⎜⎜⎝⎛
1
2 +x
2

3 1−
x2
⎟⎟⎠⎞dx
=
2∫
1
dx +x
2
− 3∫
dx = 2 arctan x − 3arcsin x + C 。
1− x2
∫ (13) ∫ (1 − x2 )
x
x dx =
3
(x4
11
− x 4 )dx =
4
x
7 4

⎟⎟⎠⎞dx ;
⒀ ∫ (1 − x 2 ) x x dx ;


cos 2x cos2 x sin 2
x
dx .
∫ ∫ ∫ ∫ 解(1) (x3 + 2x2 − 5 x)dx = x3dx + 2 x2dx − 5
xdx
=
1
x4
+
2
x3

10
3
x2
+
C

43 3
(2) ∫ (sin x + 3ex )dx = ∫ sin xdx + 3∫ exdx = − cos x + 3ex + C 。
4
程为
y
=
3
4
x3

x
+
5

4
4
171
此文只供参考,写作请独立思考,不要人云亦云,本文并不针对某个人(单位),祝您工作愉快!一是主要精 力要放在自身专业能力的提升上,二是业余时间坚持写作总结,这是一个长期的积累过程,剩下的,不用过于 浮躁,交给时间就好了。 每个人都有自己的爱,不能强迫自己去做。每个人都有自己的意志,不能被强迫。每个人都有自己的命运,而 不是自己的结。放松你的思想,满足于现状。不要控制你的情绪。去吧,依靠你的梦想。成功取决于奋斗。成 长取决于经验。幸福取决于开放。幸福取决于满足。很容易被人看不起。如果你看起来有点肤浅,你可以放心 。往下看,你会很高兴的。敞开心扉,敞开心扉。只有看透了,我们才能成熟。这很容易理解。 为了成功,你需要给生活足够的速度。这是胜利者的态度,也是胜利者的态度。为了实现这个伟大的目标,我 们必须能够忍受别人的嘲笑和独自工作的孤独。有了信念和追求,人就能忍受一切艰难困苦,适应一切环境。 美属于自信,平静属于准备,奇迹属于坚持。 真正的努力,是“不积跬步,无以至千里;不积小流,无以成江海”的积累;是“贵有恒,何必三更眠五更起 ;最无益,只怕一日曝十日寒”的自律;是“千淘万漉虽辛苦,吹尽黄沙始到金”的执着。
+ 1⎟⎟⎠⎞⎜⎜⎝⎛
1 x
+ 1⎟⎟⎠⎞dx
∫= (2 + 1 + 1 + 1 + x )dx = 2x − 6 +33 x + 2 x + 2 x3 + C 。
6 x7 3 x2
x
6x
3
169
∫ ∫ (9)
⎜⎛ 2 x ⎝
+
1 3x
⎟⎞ 2 ⎠
dx
=
⎜⎛ 4 x ⎝
+
2⋅(2)x 3
+
1 9x
标的倒数,求该曲线的方程。
解 由题意,曲线 y = f (x) 在点 (x, y) 处的切线斜率为 dy = 1 ,于是
dx x
y
=

dx x
=
ln
x
+C
,将点 (e,−1)
代入,得
C = −2 ,所以曲线的方程为
y = ln x − 2 。
3.已知曲线 y = f (x) 在任意一点 (x, f (x)) 处的切线斜率都比该点横坐标
的立方根少 1,
(1) 求出该曲线方程的所有可能形式,并在直角坐标系中画出示意
图;
(2) 若已知该曲线经过 (1,1) 点,求该曲线的方程。
解(1)由题意可得
dy = 3 x −1 ,所以
dx
∫ y =
(3
x
−1)dx
=
3
4
x3
ቤተ መጻሕፍቲ ባይዱ

x
+
C
,这
4
170
就是所求曲线方程的所有可能形式。
(2)将点 (1,1) 代入上述方程,可得 C = 5 ,所以过点 (1,1) 的曲线方
习 题 6.1
⒈ 求下列不定积分:
⑴ ∫ (x3 + 2x2 − 5 x )dx ;
⑵ ∫ (sin x + 3ex )dx ;
⑶ ∫ (xa + ax )dx ;
⑷ ∫ (2 + cot 2 x)dx ;
⑸ ∫ (2 csc2 x − sec x tan x)dx ;
⑹ ∫ (x2 − 2)3 dx ;
⎟⎞dx ⎠
=
1 ln 4
4x
+
2 (2)x ln 2 − ln 3 3

1 ln 9
1 9x
+C

(10) ∫
2 ⋅ 3x − 5 ⋅ 2x 3x
dx
=

2dx

5∫
(
2 3
)
x
dx
=
2x −
5 ⋅(2)x ln 2 − ln 3 3
+C

(11)

cos 2x cos x − sin
x
dx
=

(cos
∫ (6) ∫ (x2 − 2)3 dx = (x6 − 6x4 +12x2 − 8)dx = 1 x7 − 6 x5 + 4x3 − 8x + C 。 75
∫ (7)

(x
+
1 x
)2
dx
=
(x2 + 2 + 1 )dx = 1 x3 + 2x − 1 + C 。
x2
3
x
(8) ∫ ⎜⎜⎝⎛
x+ 1 3 x2
4
15
x4
+C。
7 15
∫ ∫ ∫ (14)

cos 2x cos2 x sin 2
x
dx
=
cos2 x − sin 2 x dx =
cos2 x sin 2 x
csc2 xdx −
sec2 xdx
= − cot x − tan x + C = −2csc 2x + C 。
⒉ 曲线 y = f (x) 经过点 (e,−1) ,且在任一点处的切线斜率为该点横坐
相关文档
最新文档