09-糖酵解
糖酵解途径

糖酵解途径(glycolytic pathway)是指细胞在胞浆中分解葡萄糖生成丙酮酸(pyruvate)的过程,此过程中伴有少量ATP的生成.在缺氧条件下丙酮酸被还原为乳酸(lactate)称为糖酵解.有氧条件下丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O.葡萄糖不能直接扩散进入细胞内,其通过两种方式转运入细胞:一种是在前一节提到的与Na+共转运方式,它是一个耗能逆浓度梯度转运,主要发生在小肠粘膜细胞、肾小管上皮细胞等部位;另一种方式是通过细胞膜上特定转运载体将葡萄糖转运入细胞内(图4-1),它是一个不耗能顺浓度梯度的转运过程.目前已知转运载体有5种,其具有组织特异性如转运载体-1(GLUT-1)主要存在于红细胞,而转运载体-4(GLUT-4)主要存在于脂肪组织和肌肉组织.糖酵解过程糖酵解分为两个阶段共10个反应,每个分子葡萄糖经第一阶段共5个反应,消耗2个分子ATP为耗能过程,第二阶段5个反应生成4个分子ATP为释能过程.1.第一阶段(1)葡萄糖的磷酸化(phosphorylation of glucose)进入细胞内的葡萄糖首先在第6位碳上被磷酸化生成6-磷酸葡萄糖(glucose 6 phophate,G-6-P),磷酸根由ATP供给,这一过程不仅活化了葡萄糖,有利于它进一步参与合成与分解代谢,同时还能使进入细胞的葡萄糖不再逸出细胞.催化此反应的酶是己糖激酶(hexokinase,HK).己糖激酶催化的反应不可逆,反应需要消耗能量ATP,Mg2+是反应的激活剂,它能催化葡萄糖、甘露糖、氨基葡萄糖、果糖进行不可逆的磷酸化反应,生成相应的6-磷酸酯,6-磷酸葡萄糖是HK的反馈抑制物,此酶是糖氧化反应过程的限速酶(rate limiting enzyme)或称关键酶(key enzyme)它有同工酶Ⅰ-Ⅳ型,Ⅰ、Ⅱ、Ⅲ型主要存在于肝外组织,其对葡萄糖Km值为10-5~10-6MⅣ型主要存在于肝脏,特称葡萄糖激酶(glucokinase,GK),对葡萄糖的Km值1~10-2M,正常血糖浓度为5mmol/L,当血糖浓度升高时,GK 活性增加,葡萄糖和胰岛素能诱导肝脏合成GK,GK能催化葡萄糖、甘露糖生成其6-磷酸酯,6-磷酸葡萄糖对此酶无抑制作用.(2)6-磷酸葡萄糖的异构反应(isomerization of glucose-6-phosphate)这是由磷酸己糖异构酶(phosphohexose isomerase)催化6-磷酸葡萄糖(醛糖aldose sugar)转变为6-磷酸果糖(fructose-6-phosphate,F-6-P)的过程,此反应是可逆的.(3)6-磷酸果糖的磷酸化(phosphorylation of fructose-6-phosphate)此反应是6磷酸果糖第一位上的C进一步磷酸化生成1,6-二磷酸果糖,磷酸根由ATP供给,催化此反应的酶是磷酸果糖激酶1(phosphofructokinase l,PFK1).PFK1催化的反应是不可逆反应,它是糖的有氧氧化过程中最重要的限速酶,它也是变构酶,柠檬酸、ATP等是变构抑制剂,ADP、AMP、Pi、1,6-二磷酸果糖等是变构激活剂,胰岛素可诱导它的生成.(4)1.6 二磷酸果糖裂解反应(cleavage of fructose 1,6 di/bis phosphate)醛缩酶(aldolase)催化1.6-二磷酸果糖生成磷酸二羟丙酮和3-磷酸甘油醛,此反应是可逆的.(5)磷酸二羟丙酮的异构反应(isomerization of dihydroxyacetonephosphate)磷酸丙糖异构酶(triose phosphate isomerase)催化磷酸二羟丙酮转变为3-磷酸甘油醛,此反应也是可逆的.到此1分子葡萄糖生成2分子3-磷酸甘油醛,通过两次磷酸化作用消耗2分子ATP.2.第二阶段:(6)3-磷酸甘油醛氧化反应(oxidation of glyceraldehyde-3-phosphate此反应由3-磷酸甘油醛脱氢酶(glyceraldehyde 3-phosphatedehydrogenase)催化3-磷酸甘油醛氧化脱氢并磷酸化生成含有1个高能磷酸键的1,3-二磷酸甘油酸,本反应脱下的氢和电子转给脱氢酶的辅酶NAD+生成NADH+H+,磷酸根来自无机磷酸.(7)1.3-二磷酸甘油酸的高能磷酸键转移反应在磷酸甘油酸激酶(phosphaglycerate kinase,PGK)催化下,1.3-二磷酸甘油酸生成3-磷酸甘油酸,同时其C1上的高能磷酸根转移给ADP 生成ATP,这种底物氧化过程中产生的能量直接将ADP磷酸化生成ATP的过程,称为底物水平磷酸化(substrate level phosphorylation).此激酶催化的反应是可逆的.(8)3-磷酸甘油酸的变位反应在磷酸甘油酸变位酶(phosphoglycerate mutase)催化下3-磷酸甘油酸C3-位上的磷酸基转变到C2位上生成2-磷酸甘油酸.此反应是可逆的.(9)2-磷酸甘油酸的脱水反应由烯醇化酶(enolase)催化,2-磷酸甘油酸脱水的同时,能量重新分配,生成含高能磷酸键的磷酸烯醇式丙酮酸(phosphoenolpyruvate PEP).本反应也是可逆的.(10)磷酸烯醇式丙酮酸的磷酸转移在丙酮酸激酶(pyruvate kinase,PK)催化下,磷酸烯醇式丙酮酸上的高能磷酸根转移至ADP生成ATP,这是又一次底物水平上的磷酸化过程.但此反应是不可逆的.丙酮酸激酶是糖的有氧氧化过程中的限速酶,具有变构酶性质,ATP是变构抑制剂,ADP是变构激活剂,Mg2+或K+可激活丙酮酸激酶的活性,胰岛素可诱导PK的生成,烯醇式丙酮酸又可自动转变成丙酮酸.总结糖的无氧酵解在细胞液阶段的过程中,一个分子的葡萄糖或糖原中的一个葡萄糖单位,可氧化分解产生2个分子的丙酮酸,丙酮酸将进入线粒体继续氧化分解,此过程中产生的两对NADH+H+,由递氢体α-磷酸甘油(肌肉和神经组织细胞)或苹果酸(心肌或肝脏细胞)传递进入线粒体,再经线粒体内氧化呼吸链的传递,最后氢与氧结合生成水,在氢的传递过程释放能量,其中一部分以ATP形式贮存.。
医学检验技术:糖的无氧酵解途径

医学检验技术:糖的无氧酵解途径1.概念:在无氧情况下,葡萄糖分解生成乳酸的过程。
它是体内糖代谢最主要的途径。
2.反应过程:糖酵解分三个阶段。
(1)第一阶段:葡萄糖1,6-果糖二磷酸。
①葡萄糖磷酸化成为葡萄糖-6-磷酸,由己糖激酶催化。
为不可逆的磷酸化反应,消耗1分子ATP。
②葡萄糖-6-磷酸转化为果糖-6-磷酸,磷酸己糖异构酶催化。
③果糖-6-磷酸磷酸化,转变为1,6-果糖二磷酸,由6磷酸果糖激酶催化,消耗1分子ATP。
是第二个不可逆的磷酸化反应。
是葡萄糖氧化过程中最重要的调节点。
(2)第二阶段:裂解阶段。
1,6-果糖二磷酸2分子磷酸丙糖(磷酸二羟丙酮和3-磷酸甘油醛)。
醛缩酶催化,二者可互变,最终1分子葡萄糖转变为2分子3-磷酸甘油醛。
(3)第三阶段:氧化还原阶段。
①3-磷酸甘油醛的氧化和NAD+的还原,由3-磷酸甘油醛脱氢酶催化,生成1,3-二磷酸甘油酸,产生一个高能磷酸键,同时生成NADH用于第七步丙酮酸的还原。
②1,3-二磷酸甘油酸的氧化和ADP的磷酸化,生成3-磷酸甘油酸和ATP。
磷酸甘油酸激酶催化。
③3-磷酸甘油酸转变为2-磷酸甘油酸。
④2-磷酸甘油酸经烯醇化酶催化脱水,生成具有一个高能磷酸键的磷酸烯醇式丙酮酸。
⑤磷酸烯醇式丙酮酸经丙酮酸激酶催化将高能磷酸键转移给ADP,生成丙酮酸和ATP,为不可逆反应。
⑥烯醇式丙酮酸与酮式丙酮酸。
⑦丙酸酸还原生成乳酸。
1分子的葡萄糖通过无氧酵解可净生成2个分子ATP,这一过程全部在胞浆中完成。
3.生理意义:(1)是机体在缺氧/无氧状态获得能量的有效措施。
(2)机体在应激状态下产生能量,满足机体生理需要的重要途径。
(3)糖酵解的某些中间产物是脂类、氨基酸等的合成前体,并与其他代谢途径相联系。
依赖糖酵解获得能量的组织细胞有:红细胞、视网膜、角膜、晶状体、睾丸等。
例题:葡萄糖转化成乳酸的过程A.糖酵解B.糖有氧氧化C.糖原合成D.糖原分解E.糖异生答案A。
清华大学生物化学课件糖酵解

Major pathways of glucose utilization
Glycolysis
• The first stage in the complete oxidation of glucose
Step 2
Aldose
Preparatory Phase Ketose
Reversible Reversible
Step 3 The commitment Preparatory Phase step
Irreversible exergonic
(PFK1)
Step 4 The “lysis” stePpreparatory Phase
• They also separated the yeast juice into two fractions: one heat-labile, nondialyzable zymase (enzymes) and the other heat-stable, dialyzable cozymase (metal ions, ATP, ADP, NAD+).
isomerization, aldol cleavage, dehydrogenation, group shift, and dehydration. • All the enzymes are found in the cytosol. • All intermediates are phosphorylated. • Only a small fraction (~5.2%) of the potential energy of the glucose molecule is released and much still remains in the final product of glycolysis, pyruvate.
09高考上海生物试卷解析

6.右图所示的细胞类型转换过程称为
A.细胞融合B.细胞生长
C.细胞分裂D.细胞分化
答案:D
7.用班氏试剂鉴别健康人的下列四种液体,出现红黄色沉淀的是
A.血清B.唾液C.胃液D.尿液
答案:A
解析:血清含葡萄糖,葡萄糖为还原性糖,遇班氏试剂成砖红色(红黄色)。唾液中含唾液淀粉酶等消化酶,胃液中含胃蛋白酶等消化酶,是蛋白质类不具有还原性;健康人尿液中不含葡萄糖。
15.某蛋白质由m条肽链、n个氨基酸组成。该蛋白质至少有氧原子的个数是
A.n-m B.n-2mC.n+m D.n+2m
答案:C
解析:每条肽链主链上的氧原子数比氨基酸多一个。由氨基酸的结构通式可知一个氨基酸至少有两个O,形成蛋白质缩合过程中要脱掉水,2n-(n-m)=n+m。
备注:营养不良引起的病例:维生素、蛋白质、缺碘、内分泌腺与激素、重金属污染。
3.新物种形成的标志是
A.具有新的生理功能B.出现新的形态结构
C.出现地理隔离D.形成生殖隔离
答案:D
解析:突变和基因重组提供生物进化的原材料;自然选择决定生物进化的方向;隔离标志着新物种的形成;只有出现生殖隔离才标志着新物种的诞生;但地理隔离不必须,例如植物多倍体的形成,就没有地理隔离。
备注:配子组合类型。
5.下列关于真核细胞结构和功能的叙述中,错误的是
A.抑制线粒体的功能会影响主动运输
B.核糖体由RNA和蛋白质构成
C.有分泌功能的细胞才有高尔基体
D.溶酶体可消化细胞器碎片
答案:C
解析:抑制线粒体呼吸会导致迅速的能量耗竭影响主动运输;核糖体由核糖体RNA和蛋白质构成;真核细胞往往有高尔基体;溶酶体是具有一组水解酶、并起消化作用的细胞器。
大学生物化学09糖代谢工

22-磷酸甘油酸 2磷酸烯醇丙酮酸
+
丙酮酸激酶
2丙酮酸
限速酶: 己糖激酶: 别构抑制剂:6-磷酸葡萄糖 丙酮酸激酶: 别构抑制剂:ATP、丙氨酸 6-磷酸果糖激酶-1 (PFK-1)
28
1、 6-磷酸果糖激酶-1 (PFK-1) • (1)ATP/AMP的调节
• (2)柠檬酸调节 • (3) 2,6二磷酸果糖调节( F-2,6-BP)
P
C
O
磷酸二羟丙酮
3-磷酸 甘油醛
CH2OH
1,3-二磷酸甘油酸
ADP ATP
醛缩酶 (aldolase) CHO
+
CH2O
P
3-磷酸甘油酸
CH
OH
3-磷酸甘油醛
P
14
2-磷酸甘油酸
磷酸烯醇式丙酮酸
ADP
CH2 O
1,6-双磷酸果糖
丙酮酸
ATP
Glu
ATP ADP
G-6-P F-6-P
⑸ 磷酸丙糖的同分异构化
Glu
ATP ADP
G-6-P F-6-P
⑽ 磷酸烯醇式丙酮酸转变成丙酮酸, 并通过底物水平磷酸化生成ATP
ATP ADP
F-1,6-2P 磷酸二 羟丙酮
NAD+ NADH+H+
3-磷酸 甘油醛
COOH C O CH2
ADP
P
K+ Mg2+
ATP
COOH C=O CH3
1,3-二磷酸甘油酸
ADP ATP
F-2,6-BP是6-磷酸果糖激酶-1 最强的变构激活剂。
30
ATP
ADP
(+)
生物物理学导论-09

为了能够合成ATP ,必须利用ATP ,这一 过程需要“加油”。产生的ATP多于消耗 的ATP ,否则就无任何意义了。
事实上,在进行第一次磷酸化之后,3-磷酸甘油醛 + (TP) 被NAD 氧化成1,3-二磷酸甘油酸(DPG) 。 磷酸化氧化3-磷酸甘油酸(3PGA)再使ADP磷酸化为 ATP,催化这一步的酶是3-磷酸甘油醛脱氢酶。
三羧酸循环上所产生的各种重要的中间产物,对 其他化合物的生物合成也有重要意义。 细胞迅速生长期间,三羧酸循环可供应多种化合 物的碳骨架,以供细胞合成之用. 在植物体内三羧酸循环中有机酸的形成,既是生 物氧化基质,也是一定生长发育时期一定器宫中 的积累物质,如柠檬果实中富含柠檬酸,苹果中 富含苹果酸等。 目前在发酵工业上也己利用微生物的三羧酸循环 代谢途径,生产有关的有机酸如柠檬酸及谷氨酸 等.
糖的有氧分解
从糖分解到乳酸或丙酮酸,仅释放有限的能。 大部分生物的糖代谢是在有氧条件下进行的, 糖的有氧分解代谢实际上是糖的无氧分解代 谢的继续、从丙酮酸生成以后,无氧酵解与 有氧氧化才开始有了分歧,因此糖的有氧氧 化,实质上是丙酮酸如何被氧化的问题,但 丙酮酸以后助氧化都是在线粒体上进行的。 葡萄糖的有氧分解代谢途径是一条完整的代 谢途径。是从葡萄糖到丙酮酸经三羧酸循环, 彻底氧化成二氧化碳与水的一系列连续反应。
3-磷酸甘油酸(3PGA)在磷酸甘油酸变位酶的 作用下,然后异构化为2-磷酸甘油酸(2PGA), 并在烯醇酶的作用下,失去一分子水时转化 成磷酸烯醇丙酮酸(PEP)。
最后,磷酸稀醇丙酮酸(PEP)在丙酮酸激酶的作用 下,将另一ADP分子磷酸化成ATP,产生丙酮酸 (Pyr)。 丙酮酸在尼克酰胺腺嘌呤二核苷酸酶NADH的催化 作用下还原成乳酸。
第09章糖代谢练习题

第九章糖代谢一、选择题(一)A型题1. 3-磷酸甘油醛脱氢酶的辅酶是()A. TPPB. CoASHC. NAD+D. FMNE. NADP+2. 能提供高能磷酸键使ADP生成ATP 的是()A. 1,6-二磷酸果糖B. 磷酸二羟丙酮C. 3-磷酸甘油醛D. 磷酸烯醇式丙酮酸E. 3-磷酸甘油酸3. 不参与糖酵解作用的酶是()A. 己糖激酶B. 6-磷酸果糖激酶1C. 丙酮酸激酶D. 磷酸烯醇式丙酮酸羧激酶E. 醛缩酶4. 关于糖酵解的正确描述是()A. 全过程是可逆的B. 在细胞浆中进行C. 生成38分子ATPD. 不消耗ATPE. 终产物是CO2和水5. 成熟红细胞的能源主要来自()A. 糖的有氧氧化途径B. 磷酸戊糖途径C. 糖原合成途径D. 糖异生途径E. 糖酵解途径6. 缺氧时为机体提供能量的是()A. 糖酵解途径B. 糖的有氧氧化途径C. 磷酸戊糖途径D. 糖异生途径E. 糖原合成途径7. 催化丙酮酸生成乙酰CoA的是()A. 丙酮酸激酶B. 丙酮酸羧化酶C. 丙酮酸脱氢酶系D. 磷酸烯醇式丙酮酸羧激酶E. 乳酸脱氢酶8. 下列催化氧化脱羧反应的酶是()A. 葡萄糖-6-磷酸酶B. 丙酮酸激酶C. α-酮戊二酸脱氢酶系D. ATP合成酶系E. 丙酮酸羧化酶9. 琥珀酰CoA生成琥珀酸的同时直接生成()A. ATPB. CTPC. GTPD. TTPE. UTP10. 在三羧酸循环中,催化GTP生成反应的酶是()A. 异柠檬酸脱氢酶B. α-酮戊二酸脱氢酶系C. 琥珀酸硫激酶D. 琥珀酸脱氢酶E. 苹果酸脱氢酶11. 三羧酸循环的关键酶是()A. 丙酮酸激酶B. 异柠檬酸脱氢酶C. 丙酮酸脱氢酶系D. 琥珀酸脱氢酶E. 苹果酸脱氢酶12. 三羧酸循环一周,有几次底物水平磷酸化()A. 1B. 2C. 3D. 4E. 513. 可直接转化为延胡索酸的是()A. 丙酮酸B. 6-磷酸葡萄糖C. 1,6-二磷酸果糖D. 琥珀酸E. 草酰乙酸14. 葡萄糖的有氧氧化过程共有()A. 4次脱氢和2次脱羧B. 6次脱氢和2次脱羧C. 4次脱氢和3次脱羧D. 6次脱氢和3次脱羧E. 5次脱氢和3次脱羧15. 葡萄糖的有氧氧化过程有几个耗能反应()A. 1B. 2C. 3D. 4E. 516. 1分子丙酮酸在线粒体内氧化生成CO2和H2O,可产生ATP的分子数是()A. 4B. 8C. 12D. 14E. 1517. 1分子3-磷酸甘油醛经过糖的有氧氧化途径彻底氧化,经底物水平磷酸化生成的ATP分子数是()A. 2B. 3C. 4D. 5E. 618. 下列物质彻底氧化生成ATP最多的是()A. 6-磷酸葡萄糖B. 1,6-二磷酸果糖C. 3-磷酸甘油醛D. 磷酸烯醇式丙酮酸E. 草酰乙酸19. 一分子乙酰CoA彻底氧化可生成的ATP数是()A. 36B. 24C. 12D. 2E. 320. 关于三羧酸循环的错误叙述是()A. 在线粒体内进行B. 反应是可逆的C. 是糖、脂肪、蛋白质的共同氧化途径D. 产生NADH和FADH2E. 有GTP生成21. 蚕豆病与缺乏下列哪种酶有关()A. 葡萄糖激酶B. 丙酮酸激酶C. 6-磷酸葡萄糖脱氢酶D. 内酯酶E. 转酮基酶22. 谷胱甘肽还原酶的辅酶是()A. NADPHB. NADHC. FMNH2D. FADH2E. CoASH23. 糖原合成的引物是()A. 原有的糖原分子B. UDP-GlcC. 葡萄糖D. UTPE. 6-磷酸葡萄糖24. 糖原合成所需的“活性葡萄糖”存在于下列哪种物质()A. UDP-GlcB. ADP-GlcC. CDP-GlcD. TDP-GlcE. 6-磷酸葡萄糖25. 需要UTP参与的是()A. 糖异生途径B. 糖的有氧氧化途径C. 糖原分解途径D. 糖原合成途径E. 磷酸戊糖途径26. 糖原分子中每增加1个葡萄糖单位消耗的高能化合物数是()A. 1B. 2C. 3D. 4E. 527. 糖原合成过程的关键酶是()A. UDP-Glc焦磷酸化酶B. 糖原合成酶C. 分支酶D. 己糖激酶E. 葡萄糖激酶28. 糖原分解第一步反应的产物是()A. 6-磷酸葡萄糖B. 1-磷酸葡萄糖C. 葡萄糖D. UDP-GlcE. 1,6-二磷酸果糖29. 糖原分解的关键酶是()A. 磷酸化酶B. 脱支酶C. 寡葡聚糖转移酶D. 分支酶E. 葡萄糖-6-磷酸酶30. 肝细胞中催化6-磷酸葡萄糖生成葡萄糖的酶是()A. 葡萄糖激酶B. 己糖激酶C. 磷酸化酶D. 葡萄糖-6-磷酸酶E. 6-磷酸葡萄糖脱氢酶31. 糖原合成与分解发生于糖原分子的()A. 还原末端B. 非还原末端C. N-末端D. C-末端E. 3'-末端32. 糖酵解、糖原合成、糖原分解等途径的共同中间产物是()A. 乳酸B. 丙酮酸C. 6-磷酸葡萄糖D. 6-磷酸果糖E. 1,6-二磷酸果糖33. 生理条件下发生糖异生的主要器官是()A. 肝B. 肺C. 肌肉D. 肾E. 脑34. 饥饿时,肝脏内下列哪条途径的酶活性最强()A. 磷酸戊糖途径B. 糖异生途径C. 脂肪合成途径D. 糖酵解途径E. 糖原合成途径35. 不属于糖异生作用的酶是()A. 葡萄糖-6-磷酸酶B. 果糖-1,6-二磷酸酶C. 丙酮酸羧化酶D. 磷酸烯醇式丙酮酸羧激酶E. 丙酮酸激酶36. 使血糖降低的激素是()A. 胰岛素B. 胰高血糖素C. 肾上腺素D. 糖皮质激素E. 生长素37. 能同时促进糖原、脂肪合成的激素是()A. 肾上腺素B. 胰岛素C. 糖皮质激素D. 胰高血糖素E. 生长素(二)B型题A. 葡萄糖激酶B. 丙酮酸激酶C. 6-磷酸果糖激酶1D. 3-磷酸甘油酸激酶E. 磷酸烯醇式丙酮酸羧激酶38. 由葡萄糖进行酵解,催化其第二步不可逆反应的酶是()39. 葡萄糖在肝脏进行糖酵解,催化其第一步反应的酶是()40. 底物是磷酸烯醇式丙酮酸的酶是()A. 36分子ATPB. 24分子ATPC. 4分子ATPD. 2分子ATPE. 3分子ATP41. 由1分子葡萄糖生成1分子1,6-二磷酸果糖消耗()42. 1分子1,6-二磷酸果糖经糖酵解生成乳酸同时生成()43. 1分子丙酮酸转化为1分子乙酰CoA 可生成()A. 糖酵解途径B. 糖的有氧氧化途径C. 磷酸戊糖途径D. 糖异生途径E. 糖原合成途径44. 体内能量的主要来源是()45. 需分支酶参与的是()46. 只在肝、肾进行的糖代谢途径是()A. α-酮戊二酸脱氢酶系B. 丙酮酸羧化酶C. 丙酮酸激酶D. 丙酮酸脱氢酶系E. 磷酸烯醇式丙酮酸羧激酶47. 生物素是其辅基的是()48. 催化反应需GTP供能的是()A. 甘油B. 1,6-二磷酸果糖C. 3-磷酸甘油醛D. 1,3-二磷酸甘油酸E. 乳酸49. 不存在于糖酵解途径的化合物是()50. 糖酵解途径中发生裂解反应的是()51. 含有高能磷酸键的是()A. 丙酮酸B. 6-磷酸葡萄糖C. 磷酸二羟丙酮D. 琥珀酸E. 草酰乙酸52. 可直接生成6-磷酸葡萄糖酸的是()53. 可直接转化为3-磷酸甘油醛的是()54. 可直接生成延胡索酸的是()A. 琥珀酰CoAB. 3-磷酸甘油C. 3-磷酸甘油醛D. 1,3-二磷酸甘油酸E. 2,3-二磷酸甘油酸55. 可直接脱氢磷酸化生成高能化合物的是()56. 将细胞浆NADH传递的电子对送入呼吸链的是()57. 属于三羧酸循环中间产物的是()A. NAD+B. NADP+C. FMND. FADE. NADPH58. 琥珀酸脱氢酶的辅基是()59. 与3-磷酸甘油醛转化为1,3-二磷酸甘油酸有关的辅酶是()60. 与6-磷酸葡萄糖转化为6-磷酸葡萄糖酸有关的辅酶是()(三)D型题61. 下列酶中,催化底物水平磷酸化反应的两个酶是()A. 己糖激酶B. 葡萄糖激酶C. 6-磷酸果糖激酶1D. 3-磷酸甘油酸激酶E. 丙酮酸激酶62. 三羧酸循环中琥珀酸转化为草酰乙酸时生成的两种还原型辅酶(基)是()A. FADH2B. FMNH2C. CoASHD. NADH + H+E. NADPH + H+63. 同是糖、脂肪、蛋白质分解最后通路的两条代谢途径是()A. 三羧酸循环B. 氧化磷酸化C. 糖酵解D. 糖原分解E. 磷酸戊糖途径64. 同是磷酸戊糖途径生成的用于体内生物合成的两种物质是()A. NADH + H+B. NADPH + H+C. 5-磷酸核糖D. 磷酸二羟丙酮E. 丙酮酸65. 由葡萄糖合成糖原要消耗()A. ATPB. CTPC. GTPD. TTPE. UTP66. 共同参与催化糖原分解的两个酶是()A. 葡萄糖激酶B. 葡萄糖-6-磷酸酶C. 己糖激酶D. 磷酸化酶E. 6-磷酸果糖激酶167. 同属于丙酮酸羧化支路并与CO2相关的两种酶是()A. 丙酮酸激酶B. 丙酮酸羧化酶C. 丙酮酸脱氢酶系D. 烯醇化酶E. 磷酸烯醇式丙酮酸羧激酶68. 丙酮酸羧化支路消耗的两种高能化合物是()A. ATPB. CTPC. GTPD. TTPE. UTP69. 催化同一化学键的改变但反应方向相反的两种酶是()A. 磷酸化酶B. 葡萄糖-6-磷酸酶C. 焦磷酸化酶D. 6-磷酸葡萄糖脱氢酶E. 糖原合成酶70. 属于糖酵解同一种酶的底物的是()A. 磷酸二羟丙酮B. 磷酸烯醇式丙酮酸C. 乳酸D. 3-磷酸甘油E. 3-磷酸甘油醛71. 丙酮酸脱氢酶系的底物和产物是()A. 丙酮酸B. 乙酰CoAC. 乳酸D. 磷酸烯醇式丙酮酸E. 磷酸二羟丙酮72. 含有硫酯键、都参与三羧酸循环的化合物是()A. 乙酰CoAB. 乙酰乙酸C. 琥珀酰CoAD. 丙二酸E. 3-磷酸甘油醛73. 下列化合物中,有2个必须在3种酶5种辅助因子作用下才能生成含高能键的产物,它们是()A. 3-磷酸甘油醛B. 2-磷酸甘油酸C. 丙酮酸D. α-酮戊二酸E. 肌酸74. 催化葡萄糖磷酸化生成6-磷酸葡萄糖的两种同工酶是()A. 醛缩酶B. 己糖激酶C. 异构酶D. 葡萄糖激酶E. 磷酸化酶75. 同属于三羧酸循环的中间产物,又能直接脱氢氧化的羧酸是()A. 丙酮酸B. β-羟丁酸C. 琥珀酸D. α-酮戊二酸E. 柠檬酸76. 可催化底物循环的两种酶是()A. 己糖激酶B. 磷酸化酶C. 醛缩酶D. 葡萄糖-6-磷酸酶E. 6-磷酸葡萄糖脱氢酶77. 在维持血糖浓度恒定时起主要作用的代谢途径是()A. 糖原合成与分解途径B. 糖有氧氧化途径C. 糖酵解途径D. 糖异生途径E. 磷酸戊糖途径78. 糖酵解中可在同一酶催化下相互转化的两种化合物是()A. 葡萄糖B. 6-磷酸葡萄糖C. 乳酸D. 丙酮酸E. 3-磷酸甘油醛79. 同作用于α-1,6-糖苷键,但作用相反的两个酶是()A. 分支酶B. 脱支酶C. 糖原合成酶D. 磷酸化酶E. 淀粉酶80. 所催化的反应有巯基参与并有高能键形成的是()A. 丙酮酸脱氢酶系B. 丙酮酸激酶C. 6-磷酸果糖激酶1D. 己糖激酶E. α-酮戊二酸脱氢酶系81. 既是糖酵解产物,又是糖异生原料的是()A. 甘油B. 乳酸C. 乙酰CoAD. 丙酮E. 丙酮酸(四)X型题82. 关于丙酮酸激酶催化的反应,正确的是()A. 底物是磷酸烯醇式丙酮酸B. 底物是2-磷酸甘油酸C. 产物有ATPD. 产物有丙酮酸E. 是不可逆反应83. 下列酶中,催化不可逆的耗能反应的是()A. 己糖激酶B. 异构酶C. 6-磷酸果糖激酶1D. 3-磷酸甘油酸激酶E. 丙酮酸激酶84. 有氧时仍靠糖酵解供能的组织是()A. 肌肉B. 成熟红细胞C. 睾丸D. 视网膜E. 皮肤85. 丙酮酸脱氢酶系的产物是()A. 乙酰CoAB. CO2C. NADH + H+D. NADPH + H+E. FADH286. 以辅酶或辅基形式参与糖代谢的Vit有()A. Vit CB. Vit B1C. Vit B2D. Vit PPE. 泛酸87. α-酮戊二酸氧化脱羧的产物是()A. 琥珀酸B. 琥珀酰CoAC. NADH + H+D. NADPH + H+E. CO288. 三羧酸循环中琥珀酸转化为草酰乙酸的中间产物是()A. 延胡索酸B. 苹果酸C. α-酮戊二酸D. 柠檬酸E. 异柠檬酸89. 参与三羧酸循环的有()A. 丙酮酸B. 乙酰CoAC. 草酰乙酸D. 异柠檬酸E. 琥珀酸90. 三羧酸循环生成NADH的反应是()A. 柠檬酸→异柠檬酸B. 异柠檬酸→α-酮戊二酸C. α-酮戊二酸→琥珀酰CoAD. 琥珀酸→延胡索酸E. 苹果酸→草酰乙酸91. 关于三羧酸循环(1次),下列说法正确的是()A. 消耗1个乙酰基B. 有4次脱氢C. 有2次脱羧D. 生成1分子FADH2E. 生成3分子NADH + H+92. 葡萄糖通过有氧氧化可产生()A. 6-磷酸葡萄糖B. 6-磷酸果糖C. 1-磷酸葡萄糖D. 3-磷酸甘油酸E. 琥珀酸93. NADPH + H+的主要功能是()A. 氧化供能B. 参与脂肪酸的合成C. 参与胆固醇的合成D. 是谷胱甘肽还原酶的辅酶E. 参与肝内生物转化94. 糖原合成必需的是()A. UTPB. 糖原磷酸化酶C. 糖原合成酶D. ATPE. 糖原引物95. 乳酸循环的意义是()A. 有利于回收乳酸B. 防止酸中毒C. 补充血糖D. 促进糖异生E. 促进氨基酸的分解代谢96. 能转化为糖的非糖物质有()A. 甘油B. 乳酸C. 丙酮酸D. 丙氨酸E. 天冬氨酸97. 关于丙酮酸羧化反应()A. 底物包括丙酮酸B. 底物包括CO2C. 产物包括草酰乙酸D. 由ATP供能E. 由丙酮酸羧化酶催化98. 从磷酸烯醇式丙酮酸开始的糖异生过程所必需的酶是()A. 丙酮酸羧化酶B. 磷酸烯醇式丙酮酸羧激酶C. 果糖-1,6-二磷酸酶D. 6-磷酸果糖激酶1E. 葡萄糖-6-磷酸酶99. 血糖可转化为()A. 糖原B. 脂肪C. 胆红素D. 核糖E. CO2和H2O100. 肾上腺素促进()A. 肝糖原合成B. 肝糖原分解C. 肌糖原分解D. 糖异生E. 糖转化成脂肪二、名词解释101. 物质代谢102. 糖酵解103. 糖的有氧氧化104. 三羧酸循环105. 糖原合成106. 糖原分解107. 糖异生108. 底物循环109. 血糖110. 肾糖阈111. 低血糖112. 高血糖113. 磷酸戊糖途径114. 耐糖现象115. 情感性糖尿116. 肾性糖尿117. 乳酸循环118. 丙酮酸羧化支路三、填空题119. 物质代谢包括____、____和____三个阶段。
09糖的生物合成

3-P-甘油醛
A
A G-6-P磷酸酯酶
B F-1.6-P磷酸酯酶
C1 丙酮酸羧化酶
B
C2 PEP羧激酶
磷酸二羟丙酮
天冬氨酸
PEP
C2
草酰乙酸
丙酮酸
-酮戊二酸 谷氨酸 穿梭系统
-酮戊二酸 谷氨酸
天冬氨酸
草酰乙酸
丙氨酸
C1 丙酮酸
3-P-甘油 乳酸
甘油
乙酰CoA
(胞液) (线粒体)
TCA循环 13
3-P-甘油醛
9.1 光合作用
光合作用是绿色植物通过叶绿体,利用光 能,把二氧化碳和水合成储存能量的有机物(葡萄 糖)并且释放出氧气的过程。
1
• 叶绿体中的色素
叶绿素
吸收红光 和蓝紫光
叶绿素a 叶绿素b
类胡萝卜素
吸收蓝紫光
胡萝卜素 叶黄素
2
3
•总反应式:
6CO2+12H2O*叶绿体 C6H12O6+6H2O+6O2* 光 •包括两个阶段: 1.光反应 2.暗反应 4
引物:结合有一个寡糖链的多肽 酶:糖原合成酶,分支酶 糖基供体:UDPG
1、糖原合成酶(glycogen synthase)
—— 催化-1,4-糖苷键合成
2、糖原分支酶 ( glycogen branching enzyme)
—— 催化-1,6-糖苷键合成
25
糖原合成酶
糖原合成酶催化的糖原合成反应不能从头开始合成第一 个糖分子,需要至少含4个葡萄糖残基的α-1,4-多聚葡萄糖作 为引物(primer),在其非还原性末端与UDPG反应,UDPG上 的葡萄糖基C1与糖原分子非还原末端C4形成α-1,4-糖苷链, 使糖原增加一个葡萄糖单位,UDPG是活泼葡萄糖基的供体, 其生成过程中消耗UTP,故糖原合成是耗能过程,糖原合成 酶只能促成α-1,4-糖苷键,因此该酶催化反应生成为α-1,4-糖 苷键相连构成的直链多糖分子。 酶催化合成糖原反应如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磷酸化的葡萄糖被限制在细胞内,因为磷酸化的糖含有带负电荷的磷
酰基,可防止糖分子再次通过质膜。这是细胞的一种保糖机制。在糖代谢 的整个过程中,直至净合成能量之前,中间代谢物都是磷酸化的。 己糖激酶以六碳糖为底物,专一性不强。除了葡萄糖可作为己糖激酶 的底物外,它也可催化甘露糖、果糖等己糖的磷酸化。己糖激酶对D-葡萄
当供给组织的氧不充分时,所有组织都可通过厌氧酵解产生乳酸,结 果造成乳酸堆积,引起血液中乳酸水平升高,称为乳酸中毒,血液的pH 有时会降至危险的酸性水平。乳酸是一种在锻炼期间和锻炼后引起肌肉酸 痛的物质。当某些微生物使奶中的糖发酵变成乳酸时,使得奶中的蛋白质
变性,引起凝乳现象,这是作奶酪所需要的。
二磷酸果糖激酶2
高葡萄糖含量
2,6-二磷酸果糖 去磷酸化的前后酶 是由二磷酸果糖激 F-6-P F-2,6-BP 酶2催化6-磷酸果 糖磷酸化而生成的, 磷酸化的前后酶 但2,6-二磷酸果糖 + 果糖二磷酸酶2 低葡萄糖含量 又可被果糖二磷酸 酶2水解成6-磷酸 胰高血糖激素 果糖。 * F-6-P有加速F-2,6-二磷酸合成的作用,还有抑 制该化合物水解的作用。 二磷酸果糖激酶2 前后酶(或双功能酶);该酶的催化调 果糖二磷酸酶2 控方式如图。F-2,6-BP主要作用是:消除 ATP对磷酸果糖激酶的抑制,加速糖酵解 的速度。
葡萄糖+2Pi+2ADP+2H+→2乙醇+2CO2+2ATP+2H2O
9.3 在绝大多数细胞中丙酮酸可以转化为乳酸
乳酸脱氢酶(LDH)催化丙酮酸还原为乳酸。一旦形成乳酸,乳酸酸是代谢的死胡同。 由于形成乳酸的同时,可以使NADH氧化成NAD+,这样酵解途径就完整了, 因为生成的NAD+又可用于甘油醛-3-磷酸脱氢酶催化的反应,就象在酒精发 酵途径所看到的那样。
9.5 巴斯德(Pasteur)效应是指氧存在下酵解速度 降低的现象
巴斯德在研究葡萄糖发酵时观察到当酵母细胞在厌氧条件下生长时, 产生的乙醇和消耗的葡萄糖要比在有氧条件下生长时多许多倍。 类似现象也出现在肌肉中,当处于缺氧条件下时,肌肉中出现乳酸
六碳糖(葡萄糖)转换为三碳糖后碳原子的归属 !
通过放射性同位素追踪实验发现:
一分子甘油醛-3-磷酸中的C-1,C-2和C-3分别来自于葡
萄糖分子中的C-4、C-5和C-6,
而另一分子的甘油醛-3-磷酸(由磷酸二羟丙酮转换来的)
的C-1,C-2和C-3则分别来自于葡萄糖分子中的C-3、C-2和 C-1,
甘油醛-3-磷酸+NAD++H2O→3-磷酸甘油酸+NADH+2H+。
7、磷酸甘油酸激酶催化1,3-二磷酸甘油酸转变为3-磷酸甘油酸, 同时生成ATP
1,3-二磷酸甘油酸在磷酸甘油酸激酶的作用下,将高能磷酰基从富含能 量的酸酐1,3-二磷酸甘油酸转给ADP形成ATP 和3-磷酸甘油酸。 从一个高能化合物(例如1,3-二磷酸甘油酸)将磷酰基转移给ADP形成 ATP的过程称为底物水平磷酸化作用,底物水平磷酸化不需要氧,是一种 形成ATP的机制。这步反应是酵解中第一次产生ATP的反应,反应可逆。
甘油酸中C-1的磷酰基转移到C-2上,形成2,3-BPG。而2,3BPG又可在2,3-BPG磷酸酶的催化下水解生成3-磷酸甘油酸, 重新进入糖酵解途径,转化为丙酮酸。
红细胞内BPG
浓度对血红蛋 白氧饱和曲线 的影响
8、磷酸甘油酸变位酶催化3-磷酸甘油酸转换为2-磷酸甘油酸
磷酸甘油酸变位酶催化3-磷酸甘油酸和2-磷酸甘油酸之间的相互转换。 变位酶是一种催化一个基团从底物分子的一个部分转移到同分子的另一部
葡萄糖
乳 酸 的 命 运 - 卡 里 循 环
丙酮酸
*肝脏
乳酸
血液 葡萄糖
丙酮酸
*肌肉
乳酸
9.4 酵解途径中存在着 3个主要的调控酶
3个主要调控 部位,分别是己糖 激酶、磷酸果糖激 酶、丙酮酸激酶 催化的反应。
见p83
磷酸果糖激酶的别构活化剂-2,6-二磷酸果糖的调控 该调控物可通过增加肝内6-磷酸果糖与酶的亲和力,从 而消除ATP对酶的抑制效应,使酶活化。 +
(b)丙酮酸可以转化为乙醇(无氧),这一过程称之酒精发酵。
(c)丙酮酸在某些环境条件下(如缺氧),它可以还原为乳酸。 柠檬酸循环是一个可以将乙酰CoA中的乙酰成分完全氧化为 CO2和水的途径。乙酰成分的彻底氧化是个产能过程,产生的大 部分能量是以NAD+和FAD的还原形式NADH和FADH2保存的。
NAD+
-NADH+ +H+
转移氢
-S-CO-CHOH-CH2 O-P -S-CO-CHOH-CH2 O-P
注
磷酸甘油醛脱氢酶反应机理图示
无机砷酸(AsO43-)可以取代无机磷酸作为甘油酸- 3-磷酸脱氢酶的底 物。砷酸可以象磷酸生成一个不稳定的类似于1,3-二磷酸甘油酸的1-砷酸-3磷酸甘油酸,该化合物一接触到水自动水解,生成3-磷酸甘油酸和无机砷 酸,这是个非酶催化过程。在砷酸存在下,反应变成了:
细胞中葡萄糖分解产生能量的共同代谢途径。事实上在所有
的细胞中都存在着糖酵解途径,对于某些细胞,糖酵解是唯 一生成ATP的途径。 糖酵解途径涉及10个酶催化反应,途径中的酶都位于细 胞质中,一分子葡萄糖通过该途径被转换成两分子丙酮酸。
糖酵解的10个反应可以分为己糖和丙糖两个阶段。己糖阶段
是从葡萄糖到果糖-1,6-二磷酸,丙糖阶段是从果糖-1,6-二磷 酸裂解转换为两个三碳的磷酸丙糖开始到糖酵解的产物丙酮 酸为止。
葡萄糖的分解代谢
葡萄糖
酵 解
2 乙醇
2 丙酮酸
2 乳酸
2乙酰CoA
柠檬酸 循环
葡萄糖
2 丙酮酸
无氧 酵解
有氧氧化
无氧酒精 发酵
2 乳酸
氧化磷酸化 2 CO2 + 2 乙醇
6 CO + 6H O
9.1 糖酵解包括10步酶催化反应
糖酵解是通过一系列酶促反应将葡萄糖降解成丙酮酸并 伴有ATP生成的过程途径。糖酵解是动物、植物以及微生物
9
糖酵解
9.1 糖酵解包括10步酶催化反应
9.2 酵母于厌氧条件下可将丙酮酸转化成乙醇
9.3 在绝大多数细胞中丙酮酸可以转化为乳酸
9.4 酵解反应中有3个调控酶
9.5 巴斯德(Pasteur)效应是指氧存在下酵 解速度降低
首先接触的是糖代谢的两个途径:糖酵解和柠檬酸循环。
下图给出了糖酵解和柠檬酸循环两个途径之间的关系。在糖 酵解途径中葡萄糖转化为三碳酸丙酮酸。 丙酮酸有3种主要的去路: (a)丙酮酸氧化脱羧形成乙酰CoA,乙酰CoA进入柠檬酸循环。
果糖-6-磷酸的和异头物在水溶液中是处于非酶催化的快速平衡中。
4、醛缩酶催化果糖-1,6-二磷酸裂解,生成甘油醛-3-磷酸和 磷酸二羟丙酮
果糖-1,6-二磷酸在醛缩酶的作用下使 C-3和C-4之间键断 裂,生成甘油醛-3-磷酸和磷酸二羟丙酮。甘油醛-3-磷酸进 一步进行酵解反应,而磷酸二羟丙酮可以作为-甘油磷酸合 成的前体,或者是转换成甘油醛-3-磷酸进行酵解。 平衡有利于逆反应方向,但在生理条件下,甘油醛-3-磷
3、磷酸果糖激酶-I催化果糖-6-磷酸磷酸化生成果糖-1,6-二磷酸, 消耗了第二个ATP分子
磷酸果糖激酶-I 催化ATP中的磷酸基团转移到果糖-6-磷酸的C-1的羟基
上,生成果糖-1,6-二磷酸。
要注意的是尽管葡萄糖-6-磷酸异构酶催化的反应生成的产物是-D-果糖 -6-磷酸,但果糖-6-磷酸磷酸果糖激酶的底物却是的异头物 -D-果糖-6-磷酸,
分的异构酶。
9、 烯醇化酶催化2-磷酸甘油酸形成磷酸烯醇式丙酮酸
在烯醇化酶(需要Mg2+)催化下,从2-磷酸甘油酸中的,位脱去水 形成磷酸烯醇式丙酮酸,反应是可逆的。
磷酸烯醇式丙酮酸具有很高的磷酰基转移潜能,因为它的磷酰基是以
一种不稳定的烯醇式互变异构形式存在的。
10、丙酮酸激酶催化磷酰基从磷酸烯醇式丙酮酸转移给ADP, 生成丙酮酸和ATP
酸不断地转化成丙酮酸,大大地降低了甘油醛-3-磷酸的浓度,
从而驱动反应向裂解方向进行。
5、丙糖磷酸异构酶催化甘油醛-3-磷酸和磷酸二羟 丙酮的相互转换
磷酸二羟丙酮需要在丙糖磷酸异构酶的的催化下转化 为甘油醛-3-磷酸,反应进行到这一步实际上等于一分子的 果糖-1,6-二磷酸裂解生成了能进一步酵解的两分子的甘油 醛-3-磷酸。
葡萄糖酵解过程
见教材下册P66,糖酵解过程中,中间产物磷酸化的 重要意义是: (1) (2) (3)
糖酵解包括10步酶催化反应
1、己糖激酶催化葡萄糖磷酸化形成葡萄糖-6-磷酸,消 耗一分子ATP.
糖酵解的第一步反应是葡萄糖的C-6被磷酸化形成葡萄糖-6-磷酸,这 一磷酰基团转移反应是由己糖激酶催化的,消耗一分子ATP,该反应是不 可逆反应。
2丙酮酸+2ATP+2NADH+2H++2H2O
9.2 酵母于厌氧条件下可将丙酮酸转化成乙醇
在厌氧状态下,酵母细胞将丙酮酸转化为乙醇和CO2,同时NADH被氧 化为NAD+,这一过程涉及二个反应。首先在丙酮酸脱羧酶催化下,丙酮酸 脱羧生成乙醛,然后乙醛在醇脱氢酶催化下还原为乙醇的同时,NADH被氧 化为NAD+。一分子葡萄糖经酵解和丙酮酸转化为乙醇的总反应为:
在红细胞中,1,3-二磷酸甘油酸除了转变为3-磷酸甘油 酸 外 , 还 可 转 换 为 2,3- 二 磷 酸 甘 油 酸 ( 2,3-
bisphosphoglycerate, 2,3-BPG),这是红细胞中糖酵解的
一个重要功能。2,3-BPG是血红蛋白氧合作用的别构抑制剂。
红细胞中含有二磷酸甘油酸变位酶,它催化1,3-二磷酸
糖的Km=0.1mmol/L,而肝葡萄糖激酶的Km=10 mmol/L,平时细胞内葡萄
糖浓度为5 mmol/L,此时己糖激酶的酶促反应已达最大速度,而葡萄糖 激酶并不活跃。只有在进食后,肝细胞内葡萄糖浓度高时葡萄糖激酶才起