三相桥式整流电路设计(带反电动势负载)

合集下载

三相桥式全控整流电路

三相桥式全控整流电路

1系统概述整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。

可从各种角度对整流电路进行分类,主要分类方法有:按组成的器件可分为不可控、半控、全控三种。

由电力二极管等不可控器件构成的整流电路叫做不可控整流电路,由晶闸管等半控器件构成的整流电路称为半控型整流电路,由门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应晶体管(Power MOSFET)以及绝缘栅双极晶体管(IGBT)等全控型器件构成等的整流电路称为全控整流电路。

按电路结构可分为桥式电路和零式电路。

按交流输入相数分为单相电路和多相电路。

按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。

本系统属于三相桥式全控整流电路,而三相可控整流电路一般有三相半波可控整流电路、三相桥式全控整流电路。

三相半波可控整流电路只需要三个晶闸管,若带阻感负载,则只在正半周开通。

三相半波可控整流电路的特点是简单,但输出脉动大,变压器二次测电流中含直流分量,造成变压器铁心直流磁化。

为使变压器铁心不饱和,需增大铁心截面积,增大了设备的。

因此,实际中一般不采用半波整流,而采用全波整流。

三相可控整流电路中应用较多的是三相桥式全控整流电路,共六个晶闸管组成三对桥臂。

由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。

在u2一个周期内,整流电压波形脉动6次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。

变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率也高。

1.1总体方案设计现要设计一三相桥式半控整流电路,带直流电动机负载,电压调节范围为0~220V。

整个系统可分为主电路和触发电路两部分,总体结构框图如下图1所示:1.2系统工作原理在系统主电路中,首先由主变压器将电网电压变换为需要的交流电压,接着由整流桥将交流电转化为直流电供给直流电动机负载。

三相桥式整流

三相桥式整流
VT4
uc-ua =uca
VT5
VT6
uc-ub =ucb
11
三相桥式全控整流电路的特点:
(1)两个SCR同时通形成供电回路,其中共阴极组和共 阳极组各 有一个 SCR导 通, 且不能为 同相的两 个 SCR(否则没有输出)。
(2)对触发脉冲的要求:
按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差 60;
这种共阳极电路接法,对
ud id RL
于螺栓型晶闸管的阳根可 图3-26 三相半波可控整流电路
以共用散热器,使装置结
构简化;但三个触发器的
输出必须彼此绝缘。
6
T
a
n
b
c
Id1
VT 1
VT3
R/2
VT5
L/2
o
L/2
VT 4
VT6
R/2
VT2
Id2
Io
VT1 VT3 VT5 d1
i2a T
n
id

3


3
6U 2
sin td (t)

2.34U 2 1

cos( 3
)
(2)输出电流平均值为 :Id=Ud /R
22
平均值:
1
IdVT 2
2 3

Id
d
(t)

1 3
Id
有效值:
IVT
1
2
I
2 d
2
3

1 3
Id
(3)晶闸管承受的最大反压:
2 3U2 6U2
(4)当整流变压器采用星形接法,带电感性负载时,变压器二次侧电

实验七 三相桥式全控整流电路实验

实验七 三相桥式全控整流电路实验

实验七 三相桥式全控整流电路实验一、实验目的了解三相桥式全控整流电路的工作原理,研究可控整流电路在电阻负载,电阻电感性负载,反电动势负载时的工作情况。

二、实验所需挂件及附件1. 电源控制屏2. 三相晶闸管触发电路3. 双踪示波器,万用表4. 晶闸管主电路5. 可调电阻,电感等三、实验原理1、电阻性负载图7-1 三相桥式全控整流电路(电阻性负载)及o 0=α波形阴极连接在一起的3个晶闸管(VT1,VT3,VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4,VT6,VT2)称为共阳极组。

共阴极组中与a ,b ,c 三相电源相接的3个晶闸管分别为VT1,VT3,VT5,共阳极组中与a ,b ,c 三相电源相接的3个晶闸管分别为VT4,VT6,VT2。

晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。

o 0=α表示各晶闸管从其自然换相点开始触发,得到的输出电压波形为其线电压的包络线。

图7-2 三相桥式全控整流电路(电阻性负载)o 30=α时波形从图可以看出,当o 60≤α时,u d 波形连续,对于电阻负载,i d 波形与u d 波形形状一样,也连续,每管工作120︒ ,每间隔60︒有一管换流。

60︒为波形连续和不连续的分界点。

α>60︒,由于对应线电压的过零变负,非同一相的共阴极组和共阳极晶闸管串联承受负压而关断,此时输出电压电流为零。

负载电流断续,各晶闸管导通角小于120︒。

晶闸管及输出整流电压的情况如下表所示:时段I II III IV V VI 共阴极组中导通的晶闸管VT1VT1VT3VT3VT5VT5共阳极组中导通的晶闸管VT6VT2VT2VT4VT4VT6整流输出电压u du α -u b=u abu α -u c=u αcu b –u c=u bcu b –u a=u bau c –u a=u cau c –u b=u cb三相桥式全控整流电路的特点:(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。

三相桥式整流电路设计

三相桥式整流电路设计

一、设计的基本要求1.1、主要技术数据1)电源电压:交流220V/50Hz2)输出电压范围50V~100V3)最大输出电流:10A4)具有过流保护功能,动作电流:12A5)具有稳压功能6)效率不低于70%1.2、主要用途三相桥式整流电路在电力电子领域中的应用及其重要,也是应用最为广泛的电路。

不仅在一般的工业领域的应用非常广泛,如中频炉、发电机励磁、自动控制等,也广泛应用于交通运输、电力系统、通信系统、能源系统、以及其他领域。

二、总体方案三、电路原理说明3.1、主电路原理说明3.1.1、工作原理三相全控桥式整流电路是由一组共阴极接法的三相半波可控整流电路和一组共阳极接法的三相半波可控整流电路串起来组成的,如上图所示。

为了便于表达晶闸管的导通顺序,把共阴极组的晶闸管依次编号为VT1、VT3、VT5,而把共阳极组的晶闸管依次编号为VT4、VT6、VT2。

假设六个晶闸管换成六个整流二极管,则电路为不可控电路。

相当于晶闸管触发角α=0°时的情况。

三相电压正、负半周各有三个自然换相点,六个自然换相点依次相差60°。

对于共阴极组,阳极电位最高的器件导通;对于共阳极组,阴极电位最低的器件导通。

六个自然换相点把一个周期分成以下六段:1)ωt1<ωt≤ωt2时,共阴极组VT1导通,共阳极组VT6导通,ud=uab。

2)ωt2<ωt≤ωt3时,共阴极组VT1导通,共阳极组VT2导通,ud=uac。

3)ωt3<ωt≤ωt4时,共阴极组VT3导通,共阳极组VT2导通,ud=ubc。

4)ωt4<ωt≤ωt5时,共阴极组VT3导通,共阳极组VT4导通,ud=uba。

5)ωt5<ωt≤ωt6时,共阴极组VT5导通,共阳极组VT4导通,ud=uca。

6)ωt6<ωt≤ωt1时,共阴极组VT5导通,共阳极组VT6导通,ud=ucb。

通过以上分析,可知三相全控桥式整流电路有以下几个基本特点:1)任何时刻必须有两个晶闸管同时导通,一个为共阴极组,一个为共阳极组,以便形成通路2)晶闸管在组内换相,同组内晶闸管的触发脉冲互差120°,由于共阴极组与共阳极组的自然换相点互差60°,所以每隔60°有一个元件换相。

三相桥式全控整流电路

三相桥式全控整流电路

1系统概述整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。

可从各种角度对整流电路进行分类,主要分类方法有:按组成的器件可分为不可控、半控、全控三种。

由电力二极管等不可控器件构成的整流电路叫做不可控整流电路,由晶闸管等半控器件构成的整流电路称为半控型整流电路,由门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应晶体管(Power MOSFET)以及绝缘栅双极晶体管(IGBT)等全控型器件构成等的整流电路称为全控整流电路。

按电路结构可分为桥式电路和零式电路。

按交流输入相数分为单相电路和多相电路。

按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。

本系统属于三相桥式全控整流电路,而三相可控整流电路一般有三相半波可控整流电路、三相桥式全控整流电路。

三相半波可控整流电路只需要三个晶闸管,若带阻感负载,则只在正半周开通。

三相半波可控整流电路的特点是简单,但输出脉动大,变压器二次测电流中含直流分量,造成变压器铁心直流磁化。

为使变压器铁心不饱和,需增大铁心截面积,增大了设备的。

因此,实际中一般不采用半波整流,而采用全波整流。

三相可控整流电路中应用较多的是三相桥式全控整流电路,共六个晶闸管组成三对桥臂。

由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。

在u2一个周期内,整流电压波形脉动6次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。

变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率也高。

1.1总体方案设计现要设计一三相桥式半控整流电路,带直流电动机负载,电压调节范围为0~220V。

整个系统可分为主电路和触发电路两部分,总体结构框图如下图1所示:1.2系统工作原理在系统主电路中,首先由主变压器将电网电压变换为需要的交流电压,接着由整流桥将交流电转化为直流电供给直流电动机负载。

三相桥式全控整流电路设计

三相桥式全控整流电路设计

1 主电路的设计与原理说明1.1 主电路图图1-1中阴极连接在一起的3个晶闸管(VT1、VT3、 VT5)为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)为共阳极组。

晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5, 共阳极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT4、VT6、VT2。

从后面的分析可知,按此编号,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。

此主电路要求带反电动势负载,此反电动势E=60V ,电阻R=10Ω,电感L 无穷大使负载电 流连续。

其原理如图1所示。

图1-1 三相桥式全控整理电路原理图1.2 主电路原理为说明此原理,假设将电路中的晶闸管换作二极管,这种情况就也就相当于晶闸管触发角α=0o 时的情况。

此时,对于共阴极组的三个晶闸管,阳极所接交流电压值最高的一个导通。

而对于共阳极组的三个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。

这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。

α=0o 时,各晶闸管均在自然换相点处换相。

由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。

在分析d u 的波形时,既可从相电压波形分析,也可以从线电压波形分析。

从相电压波形看,以变压器二次侧的中点n 为参考点,共阴极组晶闸管导通时,整流输出电压 1d u 为相电压在正半周的包络线;共阳极组导通时,整流输出电压2d u 为相电压在负半周的包络线,总的整流输出电压d u =1d u -2d u 是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大的相电压,而共阳极组中处于通态的晶闸管对应的是最小的相电压,输出整流电压 d u 为这两个相电压相减,是线电压中最大的一个,因此输出整流电压d u 波形为线电压在正半周的包络线。

三相桥式全控整流电路的设计

课程设计任务书学生姓名:杨专业班级:自动化指导教师:工作单位:信息工程系题目:三相全控桥式整流电路的设计一.初始条件:1.直流电动机额定参数: PN=10KW, UN=220V, IN =50A,n=1000r/min,电枢电阻NRa=0.5Ω,电流过载倍数λ=1.5,电枢电感LD =7mH,励磁电压UL=220V 励磁电流IL=1.6A.2.进线交流电源:三相380V3.性能指标:直流输出电压0-220V,最大输出电流75A,保证电流连续的最小电流为5A。

使用三相可控整流电路,电动机负载,工作于电动状态。

二.要求完成的主要任务:1. 三相全控桥式主电路设计(包括整流变压器参数计算,整流元件定额的选择,平波电抗器电感量的计算等),讨论晶闸管电路对电网及系统功率因数的影响。

2.触发电路设计。

触发电路选型(可使用集成触发器)。

3.晶闸管的过电压保护与过电流保护电路设计。

4.提供系统电路图纸不少于一张。

三.时间安排:指导老师签字:年月日1引言整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路, 不仅用于一般工业, 也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域. 因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义, 这不仅是电力电子电路理论学习的重要一环, 而且对工程实践的实际应用具有预测和指导作用. 因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。

2设计的步骤⑴根据给出的技术要求,确定总体设计方案⑵选择具体的元件,进行硬件系统的设计⑶进行相应的电路设计,完成相应的功能⑷进行调试与修改⑸撰写课程设计说明书3设计方案选择及论证3.1三相桥式全控整流电路(如图3-1)应用最为广泛,共阴极组——阴极连接在一起的3个晶闸管(VT1,VT3,VT5)共阳极组——阳极连接在一起的3个晶闸管(VT4,VT6,VT2)编号:1、3、5,4、6、2阻感负载时的工作情况a≤60°时,u d波形连续,工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压u d波形、晶闸管承受的电压波形等都一样区别在于:由于负载不同,同样的整流输出电压加到负载上,得到的负载电流i d波形不同。

电力电子技术三相桥式全控整流及有源逆变电路实验报告

一、实验背景整流是指将交流电变换为直流电的变换,而将交流电变换为直流电的电路称为整流电路。

整流电路是四种变换电路中最基本的变换电路,应用非常广泛。

对于整流电路,当其带不同负载情况下,电路的工作情况不同。

此外,可控整流电路不仅可以工作在整流状态,即将交流电能变换为直流电能,还可以工作在逆变状态,即将直流电能变换为交流电能,称为有源逆变。

在工业中,应用最为广泛的是三相桥式全控整流电路(Three Phase Full Bridge Converter),它是由两个三相半波可控整流电路发展而来。

该次试验即是针对三相桥式全控整流电路而展开的一些较为简单的学习与研究。

二、实验原理三相桥式全控整流及有源逆变该次实验连接电路图如下图所示整流有源逆变控制信号初始化约定:,,整流,,逆变,,临界注意事项:在接主电路过程中,晶闸管接入双刀双闸开关时一定要注意正负极必须正确匹配。

电容器用于吸收感性电流引起的干扰,使得示波器显示的波形更加标准、清晰。

双刀双掷开关在切换时主回路必须断电,否则很可能因切换时拉出电弧而损坏设备。

(一)整流电路1、整流的概念把交流电变换为直流电的变换称为整流(Rectifier),又叫AC-DC变换(AC-DC Converter)。

整流电路是一种把交流电源电压转换成所需的直流电压的电路。

AC-DC变换的功率流向是双向的,功率流向由交流电源流向负载的变换称之为“整流”,功率流向由负载流向交流电源的变换称之为“有源逆变”。

采用晶闸管作为整流电路的主控器件,通过对晶闸管触发相位的控制从而达到控制输出直流电压的目的,这样的电路称之为相控整流电路。

2、整流电路的分类(1)按电路结构分类①半波整流电路:半波整流电路中每根电源进线流过单方向电流,又称为零式整流电路或单拍整流电路。

②全波整流电路:全波整流电路中每根电源进线流过双方向电流,又称为桥式整流电路或双拍整流电路。

(2)按电源相数分类①单相整流电路:又分为单脉波整流电路和双脉波整流电路。

三相桥式全控整流电路


完成期限:自 2015 年
设计依据、要求及主要内容 一、设计依据 设计参数: 变流器参数:额定电压:DC110V,额定电流 50A 二、要求及主要内容 1.主电路、保护电路、控制电路设计; 2.主电路元件的参数计算与选择; 3.计算整流变压器参数、选择其容量和规格; 4.主电路中过电压过电流保护电路的选择及相应电路元件的计算与选择; 5.绘制主电路、保护电路、控制电路设计电气系统原理图; 6.写出课程设计报告。其中设计报告要包括有设计的目的,设计原理,设计参数的 计算,元器件选型,器件表,电路图的设计说明以及设计的心得等;设计报告 3000 字 以上;
评语:
成绩:
评阅人:
日期:
信息与电气工程学院 课程设计任务书
2015 —2016 学年第 1 学期
专业:电气工程及其自动化 班级:13 电气六班 学号:1304010306 姓名:雷志明 学号:1304010304 姓名:曹 学号:1304010317 姓名:杨 可 帅
学号:1304010321 姓名:奉林峰 课程设计名称: 电力电子技术课程设计 设计题目: 三相桥式全控整流器设计(输出电压 110V,电流 50A) 11 月 4 日至 2015 年 12 月 12 日共 4 周
湖南科技大学 信息与电气工程学院
《课程设计报告》
题 专 班 姓 学 目: 业: 级: 三相桥式全控整流电路 13 级电气工程及其自动化 六班
名:雷志明、曹可、杨帅、奉林峰 号: 1304010306、 1304010304 1304010317、 1304010321
指导教师:
郭小定
2015 年 12 月 12 日
2、原理(原理论述、原理图)
2.1 主电路 习惯将其中阴极连接在一起的 3 个晶闸管(VT1、VT3、 VT5)称为共阴极组;阳极 连接在一起的 3 个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管 按从 1 至 6 的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与 a、b、c 三 相电源相接的 3 个晶闸管分别为 VT1、VT3、VT5, 共阳极组中与 a、b、c 三相电源相接 的 3 个晶闸管分别为 VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺 序为 VT1-VT2-VT3-VT4-VT5-VT6。此主电路要求带反电动势负载,此反电动势 E=60V,电阻 R=10Ω,电感 L 无穷大使负载电流连续。其原理如图 2-1 所示。

3单相桥式全控电路—反电动势负载

3单相桥式全控电路—反电动势负载三相桥式全控电路是一种常用的交流电调压控制电路,常用于交流电调光、电动机调速等应用场合。

它的基本原理是通过控制晶闸管的导通角度来控制负载的电压或电流。

接下来,我们将详细介绍三相桥式全控电路在反电动势负载下的工作原理和应用。

首先,我们来了解一下什么是反电动势负载。

反电动势是指负载中的感性元件(如电动机、变压器等)在工作时产生的电压。

这个电压的方向与输入电源的电压相反,产生的电流称为反电动势电流。

在三相桥式全控电路中,我们需要考虑这个反电动势电流对电路的影响。

三相桥式全控电路由六个晶闸管组成,分别标记为T1、T2、T3、T4、T5和T6、晶闸管T1和T6、T2和T4、T3和T5两两并联,形成三个并联的可控整流单元。

通过控制晶闸管的触发角度,可以控制整流单元的导通时间,从而控制负载上的电压或电流。

在反电动势负载情况下,我们需要根据负载的特性来选择合适的控制方式。

当负载为感性负载时,晶闸管的触发角度要高于负载的相角,以保证晶闸管在负载电流过零点时才被触发导通。

而当负载为电容负载时,晶闸管的触发角度要低于负载的相角,以尽快地将负载电流导通。

在反电动势负载情况下,桥式全控电路还需要增加一个调相电路,用于控制晶闸管的触发角度。

调相电路一般由电位器、光电耦合器和触发电路组成。

电位器用于调节晶闸管的触发角度,光电耦合器将电位器的调节信号转换成触发电流,触发电路用于控制晶闸管的导通。

总结起来,三相桥式全控电路在反电动势负载下的工作原理如下:1.根据负载的特性选择合适的控制方式,即确定晶闸管的触发角度。

2.通过调相电路控制晶闸管的触发角度,调节负载电压或电流。

3.负载产生的反电动势电流对电路的导通时间产生影响,需要合理控制触发角度。

4.调相电路由电位器、光电耦合器和触发电路组成,将电位器调节信号转化为触发电流。

三相桥式全控电路在反电动势负载下广泛应用于电动机调速系统、变压器调压系统等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁工业大学电力电子技术课程设计(论文)题目:三相桥式整流电路的设计(带反电动势的负载)院(系):电气工程学院专业班级:学号:学生姓名:指导教师:(签字)起止时间:2013.12.30-2014.1.10课程设计(论文)任务及评语院(系):电气工程学院 教研室:自动化注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算学 号 110302025学生姓名陈绳鹏专业班级自动化111课程设计(论文)题目三相桥式整流电路的设计(带反电动势负载) 课程设计(论文)任务课题完成的功能、设计任务及要求、技术参数整流电路就是把交流电能转换成直流电能的电路,多数由变压器、整流主电路和滤波器等组成,在直流电动机的调速、发电机励磁调节、电解及电镀等领域得到广泛地应用。

整流电路的种类很多,工业上广泛应用的三相桥式全控整流电路是从三相半波电路发展而来的。

两组三相半波整流电路,一组是共阴极,另一组是共阳极串联组成。

设计任务及要求1、确定系统设计方案,各器件的选型;2、设计主电路、触发电路、保护电路;3、各参数的计算(输出平均电压、平均电流、有功功率及波形分析);4、建立仿真模型,验证设计结果。

5、撰写、打印设计说明书一份;设计说明书应在4000字以上。

技术参数输入电压:三相交流380V ,50HZ整流输出电压0~110V ,电流最大值10A ,反电动势 40V ,电阻10欧姆 进度计划1、 布置任务,查阅资料,确定系统方案(1天)2、 系统功能分析(1天)3、 系统方案确定(1天)4、 主电路、触发电路等设计(2天)5、 各参数计算(1天)6、 仿真分析与研究(2天)7、 撰写、打印设计说明书(1天)8、 答辩(1天)指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字:年 月 日摘要整流电路就是把交流电能转换成直流电能的电路,大多数整流电路由变压器、整流主电路和滤波器等组成,在直流电动机的调速、发电机励磁调节、电解及电镀等领域得到广泛地应用。

整流电路由主电路、滤波器和变压器组成。

本次三相桥式电路整流器的设计采用的是三相全控桥整流电路,电路设计在带反电动势负载下完成。

系统电路主要包括,三相桥式整流器主电路设计,晶闸管相控触发电路设计,过电流和过电压保护电路设计三个部分,因而整个系统设计就大体从这三个电路部分来设计完成。

通过MatlAB软件对主电路进行仿真获得相应的输出电压、电流波形,与理论上的输出波形进行对比。

关键词:整流;变压;触发;保护电路;MatlAB目录第1章绪论 (1)第2章课程设计的方案 (2)2.1概述 (2)2.2系统组成总体结构 (2)第3章三相桥式全控整流主电路的设计 (3)3.1主电路设计及原理 (3)3.2主电路设计的原理 (3)3.3输出参数计算 (7)第4章外围电路设计及元件选择 (9)4.1触发电路的设计 (9)4.1.1 电路图的选择 (9)4.1.2 触发电路原理说明 (10)4.2保护电路的设计 (11)4.2.1 主电路的过电压保护 (11)4.2.2 晶闸管的过电压保护 (12)4.2.3 晶闸管的过电流保护 (13)4.3整流变压器的参数计算 (13)第5章三相桥式整流电路的MATLAB仿真 (15)第6章课程设计总结 (17)参考文献 (18)第1章绪论电子技术包括信息电子技术和电力电子技术两大分支。

通常所说的模拟电子技术和数字电子技术都属于信息电子技术。

电力电子技术是应用于电力领域的电子技术。

具体的说,就是使用电力电子器件对电能进行变换和控制的技术。

所用的电力电子器件均用半导体制成,故也称为电力半导体器件。

电力电子技术所变换的“电力”,功率可以大到数百MW甚至GW,也可以小到数W甚至1W以下。

信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。

电力电子涉及由半导体开关启动装置进行电源的控制与转换领域。

半导体整流控制、半导体硅整的小型化等的出现,产生一个新的电力电子应用领域。

半导体硅整流、汞弧整流器应用于控制电源,但是这样的整流回路只是工业电子的一部分,对于汞弧整流器应用范围而言是有局限的。

半导体硅整流的应用涉及很多领域,如汽车、电站、航空电子、高频变频器等。

整流电路就是把交流电能转换成直流电能的电路,大多数整流电路由变压器、整流主电路和滤波器等组成,在直流电动机的调速、发电机励磁调节、电解及电镀等领域得到广泛地应用。

整流电路由主电路、滤波器和变压器组成。

随着科学技术的日益发展人们对电路的要求越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可方便得到大、中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。

在电能的生产和传输上,目前以交流电为主。

电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。

要得到直流电,除了直流发电机外最普遍应用的是利用各种半导体元件产生直流电。

这个方法中,整流是最基础的一步。

整流,即利用具有单向导电性的器件,把方向和大小交变的电流变换为直流电。

本设计主要是对三相桥式全控整流电路(带反电动势的负载)的研究。

20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。

整流电路的种类很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。

工业上广泛应用的三相桥式全控整流电路是从三相半波电路发展而来的。

三相桥式全控整流电路与三相半波电路相比,输出整流电压提高一倍,输出电压的脉动率高,基波频率为300HZ,在负载要求相同的直流电压下,晶闸管承受的最大正方向电压将比三相半波减少一半,变压器的容量也比较小,同时三相电流平衡,无须中线。

所以,三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

第2章 课程设计的方案2.1 概述本设计是三相全控桥式整流电路的设计。

而三相桥式整流电路作用是给直流电动机供电,可以知道这是一个交流到直流的变换电路,即整流电路。

直流电动机负载可以看成是三相全控桥式电路接一个反电动势负载,由此可以得出此设计的重点在于设计三相全控桥式晶闸管整流电路实现交流到直流的转换,且保证输出的直流电压和电流能使电动机工作在电动状态即可。

然后分别对主电路及触发电路进行设计。

技术要求,输入电压:三相交流380V ,50HZ ,整流输出电压0~110V ,电流最大值10A ,反电动势 40V ,电阻10欧姆。

2.2 系统组成总体结构本设计是三相全控桥式整流电路的设计。

主要由主电路、触发电路、保护电路三部分组成,主电路主要完成对交流电到直流电的整流过程,触发电路控制晶闸管的导通和关断控制输出电压的大小,保护电路保护主电路中的元器件。

总体框图如图2.1所示。

图2.1 系统总框图触发电路保护电路主电路三相交流电源 负载第3章 三相桥式全控整流主电路的设计3.1 主电路设计及原理将阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。

习惯上我们希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与U 、V 、W 三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与U 、V 、W 三相电源相接的3个晶闸管分别为VT4、VT6、VT2,。

又后面的分析可知,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6图3.1 主电路的设计3.2 主电路设计的原理整流电路的负载为带反电动势的阻感性负载。

当晶闸管触发角α=0°时,此时,对于共阴极组的3个晶闸管,阴极所接交流电压值最高的一个导通。

而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低的一个导通。

这样任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。

工作波形如图3.2所示。

VT1S2800AVT2S2800AVT3S2800AVT4S2800A VT5S2800AVT6S2800A L 1.0MH R 30ΩL11.0mH L21.0mH L31.0mHL41.0mH L51.0mHL61.0mH abc图3.2 反电动势α=0°时的波形α=0o时,各晶闸管均在自然换相点处换相。

在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。

从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压 ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大(正得最多)的相电压,而共阳极组中处于通态的晶闸管对应的是最小(负得最多)的相电压,输出整流电压 ud为这两个相电压相减,是线电压中最大的一个,因此输出整流电压ud波形为线电压在正半周的包络线。

由于负载端接得有电感且电感的阻值趋于无穷大,当电流增加时,它的极性阻止电流增加,当电流减小时,它的极性反过来阻止电流减小。

电感的这种作用使得电流波形变得平直,电感无穷大时趋于一条平直的直线。

为了说明各晶闸管的工作的情况,将波形中的一个周期等分为6段,每段为60o,如图2所示,每一段中导通的晶闸管及输出整流电压的情况如表所示。

由该表3.1可见,6个晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。

表3-1α=0o时晶闸管工作情况图3.3 给出了α=30o 时的波形。

从ωt1角开始把一个周期等分为6段,每段为60o 与α=0o 时的情况相比,一周期中ud 波形仍由6段线电压构成,每一段导通晶闸管的编号等仍符合表1的规律。

区别在于,晶闸管起始导通时刻推迟了30o ,组成 ud 的每一段线电压因此推迟30o ,ud 平均值降低。

晶闸管电压波形也相应发生变化如图所示。

图中同时给出了变压器二次侧a 相电流 ia 的波形,该波形的特点是,在VT1处于通态的120o 期间,ia 为正,由于大电感的作用,ia 波形的形状近似为一条直线,在VT4处于通态的120o 期间,ia 波形的形状也近似为一条直线,但为负值。

时段Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ共阴极组中导通的晶闸管V T1V T1V T3V T3V T5V T5共阳极组中导通的晶闸管V T6V T2V T2V T4V T4VT6输出电压UdU ab U ac U bcU baU caU cb图3.3 α=30o时的波形由以上分析可见,当α≤60o时,u d波形均连续,对于带大电感的反电动势,i d波形由于电感的作用为一条平滑的直线并且也连续。

相关文档
最新文档