风洞试验

合集下载

风洞试验原理

风洞试验原理

风洞试验原理
风洞试验是一种用于模拟大气流场对物体的影响的实验方法,它在航空航天、
汽车、建筑等领域都有着广泛的应用。

通过风洞试验,可以模拟不同速度、压力、温度的气流环境,从而对物体的气动特性进行研究和分析。

本文将介绍风洞试验的原理及其在工程领域的应用。

首先,风洞试验的原理是基于流体力学和空气动力学的基本理论。

当物体在气
流中运动时,气流会对物体施加压力和阻力,同时也会产生升力和侧向力。

风洞试验就是通过模拟不同气流环境,测量物体在气流中的受力情况,从而分析物体的气动性能。

在风洞试验中,首先需要确定试验的目的和参数。

根据不同的研究对象和需求,可以确定试验的速度范围、气流密度、温度等参数。

然后,通过风洞设备产生符合要求的气流环境,将待测试物体放置在气流中进行试验。

在试验过程中,可以通过压力传感器、力传感器等设备实时监测物体受到的气动力,同时也可以通过流场可视化技术观察气流对物体的影响。

风洞试验在工程领域有着广泛的应用。

在航空航天领域,风洞试验可以用于研
究飞机、导弹等飞行器在不同速度、高度下的气动性能,为设计和改进飞行器提供重要依据。

在汽车工程领域,风洞试验可以用于研究汽车外形设计、空气动力学性能,提高汽车的燃油经济性和稳定性。

在建筑领域,风洞试验可以用于研究建筑结构在大风作用下的受力情况,为建筑设计提供可靠的风荷载数据。

总之,风洞试验是一种重要的工程实验方法,它通过模拟气流环境,研究物体
在气流中的受力情况,为工程设计和研究提供重要依据。

随着科学技术的不断发展,风洞试验在工程领域的应用将会更加广泛,为各行各业的发展提供有力支持。

客机模型风洞实验报告(3篇)

客机模型风洞实验报告(3篇)

第1篇一、实验目的本次实验旨在研究某型号客机模型在风洞中的气动特性,包括升力、阻力、俯仰力矩、滚转力矩和偏航力矩等。

通过实验数据,评估客机模型的空气动力学性能,为后续的飞机设计提供理论依据。

二、实验设备1. 风洞:T-128号风洞,具备0.96马赫的试验速度,雷诺数在3.5-5百万之间。

2. 客机模型:按照实际尺寸1:1比例制作,材料为轻质合金。

3. 测量系统:包括压力传感器、力矩传感器、角度传感器等。

4. 数据采集与处理系统:用于实时采集实验数据并进行处理。

三、实验方案1. 客机模型在风洞中固定,调整角度和姿态,使模型处于水平状态。

2. 通过调整风洞的风速,模拟不同飞行状态下的气流情况。

3. 在不同风速下,测量客机模型的升力、阻力、俯仰力矩、滚转力矩和偏航力矩等参数。

4. 利用液晶视频测量法,对机翼变形进行扰流显像研究。

四、实验结果与分析1. 升力与阻力实验结果表明,客机模型在0.96马赫的速度下,升力系数随攻角增大而增大,阻力系数随攻角增大而减小。

在攻角为15°时,升力系数达到最大值,阻力系数达到最小值。

这与理论分析相符。

2. 俯仰力矩实验结果表明,客机模型的俯仰力矩系数随攻角增大而增大。

在攻角为15°时,俯仰力矩系数达到最大值。

这与理论分析相符。

3. 滚转力矩实验结果表明,客机模型的滚转力矩系数随攻角增大而增大。

在攻角为15°时,滚转力矩系数达到最大值。

这与理论分析相符。

4. 偏航力矩实验结果表明,客机模型的偏航力矩系数随攻角增大而增大。

在攻角为15°时,偏航力矩系数达到最大值。

这与理论分析相符。

5. 机翼变形通过液晶视频测量法,对机翼变形进行扰流显像研究。

结果表明,在攻角为15°时,机翼变形较小,气动性能较好。

五、结论1. 客机模型在0.96马赫的速度下,具有良好的气动性能,升力系数、俯仰力矩系数、滚转力矩系数和偏航力矩系数均达到较优值。

风洞试验结果分析

风洞试验结果分析

风洞试验结果分析风洞试验是一种重要的工程实验方法,可以模拟大气中不同速度的风场环境,以评估飞行器、建筑物等在真实风场中的性能。

风洞试验结果分析是对试验数据进行系统分析和解释的过程,旨在揭示物体在不同风速下的气动特性。

在进行风洞试验时,通常会选择不同尺度的模型代替真实对象,通过模型在风场中的表现来推断真实对象的行为。

试验中,测量和记录的数据包括但不限于气动力、风速、温度、压力等参数。

这些数据需要经过整理和分析,才能提取有用的信息。

下面将从气动力分析、数据处理和结果解读三个方面进行风洞试验结果分析的探讨。

首先,气动力分析是风洞试验结果分析的重要组成部分。

在风洞试验中,测量到的气动力包括升力、阻力和力矩等因素。

升力是垂直于气流方向的力,其大小取决于模型形状和气流速度。

阻力是平行于气流方向的力,一般与模型表面积和气流速度成正比。

力矩则是绕模型某一点产生的扭转力。

通过对这些气动力进行分析,可以了解模型在不同风速下的受力情况,为设计和优化提供依据。

其次,数据处理是风洞试验结果分析的重要环节。

经过实验得到的数据通常以原始数据的形式呈现,需要进行筛选、修正和校准,以消除误差和噪音的影响,确保数据的准确性。

常见的数据处理方法包括峰值检测、平滑处理、滤波、插值和归一化等。

通过合理的数据处理,可以获得更准确和可靠的试验结果。

最后,结果解读是风洞试验结果分析的重要目标。

通过对试验数据进行整合和综合分析,可以得到物体在不同风速下的气动特性曲线、流场结构、气动性能参数等信息。

根据这些结果,可以评估模型的飞行稳定性、气动性能和结构强度等重要指标。

结果解读需要结合工程应用背景和设计要求,注重结果的实用性和可行性。

综上所述,风洞试验结果分析是对试验数据进行系统分析和解释的过程,包括气动力分析、数据处理和结果解读三个方面。

通过分析风洞试验结果,可以揭示物体在不同风速下的气动特性,为工程应用和设计提供重要参考。

在进行风洞试验结果分析时,需要注重数据的准确性和质量,合理选择数据处理方法,并结合具体应用背景进行结果解读。

风洞试验方案

风洞试验方案

风洞试验方案一、引言风洞试验是航空航天、汽车工程、建筑等领域中必不可少的研究手段之一。

通过在风洞中对模型进行气动力测试,可以获取与实际情况相似的数据,从而评估设计方案的可行性和优化设计。

本文将介绍一种风洞试验方案,以期为相关研究提供参考。

二、目标本次风洞试验的主要目标是研究某型飞机机翼在不同飞行速度和攻角下的气动力性能。

通过测量机翼的升力、阻力、升力系数和阻力系数等参数,评估机翼的气动性能,并为后续的飞行器设计提供参考数据。

三、试验设备1. 风洞:采用水平流向风洞,具备可调节风速和风向的功能,以满足不同试验要求。

2. 模型:选择适用于飞机机翼的缩比模型,考虑到兼容性和可重复性,模型尺寸与实际情况保持一定比例。

模型制作材料要求具备良好的刚度和表面光滑度,以保证试验数据的准确性。

3. 数据采集系统:采用高精度的传感器和数据采集设备,能够实时记录模型在不同试验条件下的气动力数据。

同时,确保数据采集系统的准确性和稳定性,以避免数据误差对试验结果的影响。

四、试验步骤1. 模型准备:在试验开始前,对模型进行必要的准备工作,包括清洁模型表面、确认模型的尺寸和重量等,以确保试验的可靠性和重复性。

2. 试验条件设定:根据试验目标,设定不同的飞行速度和攻角组合。

在设定试验条件时,需要考虑模型受风洞流场影响的因素,如风洞尺寸、风洞流场均匀性等。

3. 实施试验:将模型放置在风洞中心位置,根据设定的试验条件进行试验。

在每组试验中,要确保模型的姿态稳定和位置准确,以保证试验数据的准确性。

4. 数据采集:在试验过程中,通过数据采集系统实时记录模型的气动力参数。

同时,应确保数据采集设备的稳定性和准确性,以保证试验数据的可靠性。

5. 数据分析:对采集到的试验数据进行处理和分析,计算升力系数、阻力系数等气动力参数,并绘制相关曲线和图表。

通过对数据的分析,评估模型在不同试验条件下的气动性能。

六、试验安全与注意事项1. 设备安全:确保风洞设备的稳定运行,避免发生故障或安全事故。

风洞试验技术介绍及应用课件

风洞试验技术介绍及应用课件

风洞管道
用于产生和控制气流,通常由坚固、轻质且 耐腐蚀的材料制成。
风扇和压缩机
模型台
用于放置和固定试验模型,具备高精度和高 稳定性。
提供风洞所需的气流,具有大推力和高效率 的特点。
02
01
控制系统
调节气流参数,如速度、方向等,保证试验 的准确性和可重复性。
04
03
风洞设备的性能参数
最大气流速度
决定了风洞能模拟的最 高风速,是衡量风洞性 能的重要指标。
环境监测与评估
通过风洞试验技术监测环境质量,评估环境对人类和 生态的影响。
建筑领域应用
建筑风工程
通过风洞试验技术模拟建筑在风力作用下的动态响应和稳定性, 优化建筑设计。
建筑环境模拟
模拟建筑内部的环境条件,评估建筑环境的舒适度和能效。
古建筑保护
通过风洞试验技术评估古建筑在风力作用下的安全性,为古建筑 的保护提供依据。
评估汽车的空气动力学性能、行驶稳定性等参数, 提高汽车的安全性和舒适性。
汽车研发与改进
通过风洞试验技术对汽车进行性能测试和优化, 加速新车型的研发和改进。
环境模拟领域应用
气候模拟
模拟气候变化对环境的影响,研究气候变化的规律和 趋势。
自然灾害模拟
模拟自然灾害如风、雨、雪等对环境的影响,研究灾 害的预防和应对措施。
风洞工作原理
01
02
03
风洞结构
风洞由收缩段、实验段、 风扇和控制系统等组成, 能够产生稳定的气流供试 验使用。
气流控制
通过调节风扇转速和控制 系统,实现对气流速度、 方向和压力等参数的控制。
模型安装与测量
试验模型安装在风洞实验 段,通过测量仪器测量气 流对模型的作用力、压力 和温度等参数。

风洞试验的基本原理

风洞试验的基本原理

风洞试验的基本原理风洞是个啥玩意儿?嘿,你可别小瞧了它,这风洞啊,那可是航空航天、汽车制造等领域的大功臣呢!风洞试验,听起来是不是就很神秘?那它的基本原理到底是啥呢?咱就先从风洞的构造说起吧。

风洞就像是一个巨大的风的通道,里面有各种复杂的设备。

想象一下,它就像一个超级大的风箱,只不过这个风箱可不是普通的风箱哦。

它可以产生各种不同速度和方向的风,就像一个魔法盒子,能变出各种神奇的风。

风洞里面有个测试段,这可是关键部位。

测试段就像是一个舞台,各种被测试的物体就在这里登场。

比如说飞机模型、汽车模型啥的。

当风从风洞的一端吹过来,经过测试段的时候,就会对放在那里的模型产生作用。

这就好像一阵强风刮过一片草地,草会被风吹得弯下腰来。

那被测试的模型呢,也会在风的作用下产生各种反应。

风洞是怎么产生风的呢?这可就厉害了!它通常是通过大功率的风扇或者压缩机来实现的。

这些设备就像大力士一样,能把空气加速到很高的速度。

这就好比一个超级大的吹风机,只不过这个吹风机的风力可不是一般的大。

它可以产生每秒几十米甚至上百米的风速呢!在风洞试验中,科学家们会通过各种仪器来测量被测试物体所受到的力和力矩。

这些仪器就像一双双敏锐的眼睛,能准确地捕捉到每一个细微的变化。

比如说,当风刮过飞机模型的时候,仪器可以测量出飞机模型所受到的升力、阻力和力矩等。

这就好像一个细心的医生在给病人做检查,不放过任何一个小问题。

那风洞试验有啥用呢?这用处可大了去了!比如说在航空航天领域,飞机在设计阶段就需要进行风洞试验。

通过风洞试验,科学家们可以了解飞机在不同飞行状态下所受到的空气动力,从而优化飞机的设计。

这就像一个雕塑家在不断地雕琢自己的作品,让它变得更加完美。

在汽车制造领域,风洞试验可以帮助汽车设计师降低汽车的风阻,提高汽车的性能和燃油经济性。

这就好比给汽车穿上了一件更加合身的衣服,让它跑得更快、更省油。

风洞试验可不是一件简单的事情哦!它需要科学家们具备高超的技术和丰富的经验。

风洞实验报告

风洞实验报告

风洞实验报告引言:风洞实验作为现代科技研究的重要手段之一,广泛应用于航空航天、汽车工程、建筑结构等领域。

本报告将围绕风洞实验的原理、应用以及相关技术展开探讨,旨在加深对风洞实验的理解和应用。

一、风洞实验的原理风洞实验是通过利用风洞设备产生流速、温度和压力等环境条件,对模型进行真实环境仿真试验的一种方法。

其基本原理是利用气体流动力学的规律,使得实验模型暴露在所需风速的气流中,从而通过测量模型上的各种力和参数来分析其气动性能。

二、风洞实验的应用领域1.航空航天领域风洞实验在航空航天领域有着广泛的应用。

通过风洞实验,可以模拟不同飞行状态下的风载荷,评估飞机、火箭等载体的稳定性和安全性,在设计和改进新型飞行器时提供可靠的数据支撑。

2.汽车工程领域风洞实验在汽车工程领域同样具有重要意义。

通过对汽车模型在高速风场中的测试,可以优化车身外形设计,降低气动阻力,提高燃油效率。

此外,风洞实验还可用于汽车内部气流研究,如车内空调流场、风挡玻璃除雾等。

3.建筑工程领域在建筑工程领域,风洞实验可以帮助研究风荷载对建筑物结构产生的影响,以提高建筑物的抗风性能。

通过模拟真实的气流环境,可以评估建筑物在不同风速下的应力、应变分布情况,为工程设计和结构优化提供依据。

三、风洞实验技术1.气流控制技术气流控制技术是风洞实验中必备的关键技术之一。

通过对风洞内流场进行合理设计和调整,可以实现不同速度、湍流强度和均匀度的气流条件,以保证实验的准确性和可重复性。

2.试验模型制作技术试验模型制作技术对于风洞实验的结果具有重要影响。

模型的准确度和还原程度直接关系到实验数据的可靠性。

现如今,各类先进材料和加工技术的应用,使得模型制作更加精准和高效。

3.数据采集和分析技术风洞实验所得数据的采集和分析是判断实验成果的关键环节。

当前,数字化技术的快速发展为数据采集和分析提供了强有力的支持。

传感器、图像处理等先进技术的应用,使得实验数据获取更为精确和全面。

风洞试验方案

风洞试验方案
七、试验结果评价
1.模型在试验过程中的受力、温度、压力等参数应符合设计要求。
2.试验结果应满足相关技术标准及工程设计要求。
3.对试验结果进行分析,提出优化建议。
八、试验周期
根据试验项目及试验设备性能,预计试验周期为一个月。
九、试验费用
根据试验项目、设备使用、人力资源等综合因素,预计试验费用为人民币XX万元。
风洞试验方案
第1篇
风洞试验方案
一、方案背景
风洞试验是研究流体力学、空气动力学等领域的重要手段,通过对模型在模拟气流环境下的受力、温度、压力等参数的测试,为工程设计、科学研究提供基础数据。本方案旨在制定一套合法合规的风洞试验方案,确保试验过程安全、可靠、高效。
二、试验目的
1.分析模型在特定风速、风向条件下的气动特性。
二、试验目的
1.评估模型在不同风速和风向条件下的气动特性。
2.分析模型结构的稳定性,以及气流对其影响。
3.提供工程设计所需的基础数据和理论依据。
三、试验依据
1.法律法规:依据《中华人民共和国安全生产法》、《中华人民共和国产品质量法》等相关法律法规。
2.技术标准:参照GB/T 1236-2017《风洞试验方法》、ISO 5130:2017《风洞试验基准》等标准。
5.数据处理与分析:对采集到的数据进行处理和分析,得出试验结果。
6.试验报告:撰写试验报告,包括试验过程、数据、结果等。
六、试验安全保障
1.风洞设备操作人员应具备相关资质,严格遵守操作规程。
2.试验现场应设立安全警示标志,确保试验过程中人员安全。
3.定期对风洞设备进行检查、维护,确保设备安全运行。
4.建立试验应急预案,提高应对突发事故的能力。
五、试验步骤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是风洞风洞一般称之为风洞试验。

简单地讲,就是依据运动的相对性原理,将飞行器的模型或实物固定在地面人工环境中,人为制造气流流过,以此模拟空中各种复杂的飞行状态,获取试验数据。

这是现代飞机、导弹、火箭等研制定型和生产的“绿色通道”。

简单的说,风洞就是在地面上人为地创造一个“天空”。

至于我们国家的风洞为什么会选择建在大山深处,那是历史原因造成的。

发达国家如何发展空气动力学空气动力学是目前世界科学领域里最为活跃、最具有发展潜力的学科之一。

世界各发达国家对空气动力学的发展都给予了高度重视,不惜花费巨额资金建设空气动力试验设施并开展研究工作。

美国早在80年代中期出台的震撼全球的超级跨世纪工程——“星球大战”计划中,就曾把作为基础学科的空气动力学放在非常突出的重要位置上。

的确,如果不先在空气动力学上获得重大突破,这个将耗资1万亿美元的超级工程,很多关键技术将无法解决。

紧接着在1985年发表的“美国航空航天2000年”中,也把空气动力学列为需要解决的七个问题中的第一个。

而剩下的六个问题中还有四个与空气动力学有关。

这使美国花费巨额投资研制了每秒20亿次的超级计算机专门为空气动力学研究服务。

前苏联在“十月革命”胜利后的第二年,列宁就下令组建了国家空气动力研究机构——中央流体动力研究院,并任命“俄罗斯航空之父”茹可夫斯基担任院长,这一决策为前苏联成为世界上另一个航天大国奠定了坚实的基础。

二次大战之前,斯大林曾下令建造了世界上第一座可用于进行整架飞机试验的全尺寸风洞。

与美国相比,前苏联在空气动力学的整体水平上毫不逊色,甚至在许多方面都领先于美国,它在航空航天领域取得的一系列成就足以说明这一点。

英、法两国在二次大战前均为名列前茅的老牌航空先进国家,然而战后他们突然发现自己比美、苏等国落后了一截,于是两国重振旗鼓、奋起直追。

在战后第二年,法国政府便决定把因战争和被占领分散到全国各地的研究机构组织到一起,组建了国家空气动力研究机构,并在阿尔卑斯山腹地开始创建莫当试验中心,堪称世界一流的大功率空气动力试验风洞设备。

曾经发明了世界上第一座风洞的英国人更是不甘落后,除了政府加强对空气动力学的领导规划之外,充分利用大学进行基础学科的研究。

据有关资料透露,在英国的46所大学里,至少有30个以上高水平的空气动力研究试验室。

日本在战后受到限制的情况下,航空工业曾有过长达8年的空白。

但在此期间,其基础研究——空气动力学则进展神速。

仅60年代,就先后仿制出11种飞机,自行设计8种飞机。

风洞试验流体力学方面的风洞实验指在风洞中安置飞行器或其他物体模型,研究气体流动及其与模型的相互作用,以了解实际飞行器或其他物体的空气动力学特性的一种空气动力实验方法;而在昆虫化学生态学方面则是在一个有流通空气的矩形空间中,观察活体虫子对气味物质的行为反应的实验。

目录1实验分类2实验原理3发展历史4不足之处5实验优点6其他应用7观察方法1实验分类空气动力学实验分实物实验和模型实验两大类。

实物实验如飞机飞行实验和导弹实弹发射实验等,不会发生模型和环境等模拟失真问题,一直是鉴定飞行器气动性能和校准其他实验结果的最终手段,这类实验的费用昂贵,条件也难控制,而且不可能在产品研制的初始阶段进行,故空气动力学实验一般多指模型实验。

空气动力学实验按空气(或其他气体)与模型(或实物)产生相对运动的方式不同可分为3类:①空气运动,模型不动,如风洞实验。

②空气静止,物体或模型运动,如飞行实验、模型自由飞实验(有动力或无动力飞行器模型在空气中飞行而进行实验)、火箭橇实验(用火箭推进的在轨道上高速行驶的滑车携带模型进行实验)、旋臂实验(旋臂机携带模型旋转而进行实验)等。

③空气和模型都运动,如风洞自由飞实验(相对风洞气流投射模型而进行实验)、尾旋实验(在尾旋风洞上升气流中投入模型,并使其进入尾旋状态而进行实验)等。

进行模型实验时,应保证模型流场与真实流场之间的相似,即除保证模型与实物几何相似以外,还应使两个流场有关的相似准数,如雷诺数、马赫数、普朗特数等对应相等(见流体力学相似准数)。

实际飞机风洞实验上,在一般模型实验(如风洞实验)条件下,很难保证这些相似准数全部相等,只能根据具体情况使主要相似准数相等或达到自准范围。

例如涉及粘性或阻力的实验应使雷诺数相等;对于可压缩流动的实验,必须保证马赫数相等,等等。

应该满足而未能满足相似准数相等而导致的实验误差,有时也可通过数据修正予以消除,如雷诺数修正。

洞壁和模型支架对流场的干扰也应修正。

空气动力学实验主要测量气流参数,观测流动现象和状态,测定作用在模型上的气动力等。

实验结果一般都整理成无量纲的相似准数,以便从模型推广到实物。

2实验原理风洞一般称之为风洞试验。

简单地讲,就是依据运动的相对性原理,将飞行器的模型或实物固定在地面人工环境中,人为制造气流流过,以此模拟空中各种复杂的飞行状态,获取试验数据。

这是现代飞机、导弹、火风洞箭等研制定型和生产的“绿色通道”。

简单的说,风洞就是在地面上人为地创造一个“天空”。

至于我们国家的风洞为什么会选择建在大山深处,那是历史原因造成的。

3发展历史空气动力学是目前世界科学领域里最为活跃、最具有发展潜力的学科之一。

世界各发达国家对空气动力学的发展都给予了高度重视,不惜花费巨额资金建设空气动力试验设施并开展研究工作。

美国早在80年代中期出台的震撼全球的超级跨世纪工程——“星球大战”计划中,就曾把作为基础学科的空气动力学放在非常突出的重要位置上。

的确,如果不先在空气动力学上获得重大突破,这个将耗资1万亿美元的超级工程,很多关键技术将无法解决。

紧接着在1985年发表的“美国航空航天2000年”中,也把空气动力学列为需要解决的七个问题中的第一个。

而剩下的六个问题中还有四个与空气动力学有关。

这使美国花费巨额投资研制了每秒20亿次的超级计算机专门为空气动力学研究服务。

前苏联在“十月革命”胜利后的第二年,列宁就下令组建了国家空气动力研究机构——中央流体动力研究院,并任命“俄罗斯航空之父”茹可夫斯基担任院长,这一决策为前苏联成为世界上另一个航天大国奠定了坚实的基础。

二次大战之前,斯大林曾下令建造了世界上第一座可用于进行整架飞机试验的全尺寸风洞。

与美国相比,前苏联在空气动力学的整体水平上毫不逊色,甚至在许多方面都领先于美国,它在航空航天领域取得的一系列成就足以说明这一点。

英、法两国在二次大战前均为名列前茅的老牌航空先进国家,然而战后他们突然发现自己比美、苏等国落后了一截,于是两国重振旗鼓、奋起直追。

在战后第二年,法国政府便决定把因战争和被占领分散到全国各地的研究机构组织到一起,组建了国家空气动力研究机构,并在阿尔卑斯山腹地开始创建莫当试验中心,堪称世界一流的大功率空气动力试验风洞设备。

曾经发明了世界上第一座风洞的英国人更是不甘落后,除了政府加强对空气动力学的领导规划之外,充分利用大学进行基础学科的研究。

据有关资料透露,在英国的46所大学里,至少有30个以上高水平的空气动力研究试验室。

日本在战后受到限制的情况下,航空工业曾有过长达8年的空白。

但在此期间,其基础研究——空气动力学则进展神速。

仅60年代,就先后仿制出11种飞机,自行设计8种飞机。

4不足之处风洞实验既然是一种模拟实验,不可能完全准确。

概括地说,风洞实验固有的模拟不足主要有以下三个方面。

与此同时,相应也发展了许多克服这些不足或修正其影响的方法。

1.边界效应或边界干扰真实飞行时,静止大气是无边界的。

而在风洞中,气流是有边界的,边界的存在限制了边界附近的流线弯曲,使风洞流场有别于真实飞行的流场。

其影响统称为边界效应或边界干扰。

克服的方法是尽量把风洞试验段做得大一些(风洞总尺寸也相应增大),并限制或缩小模型尺度,减小边界干扰的影响。

但这将导致风洞造价和驱动功率的大幅度增加,而模型尺度太小会使雷诺数变小。

近年来发展起一种称为"自修正风洞"的技术。

风洞试验段壁面做成弹性和可调的。

试验过程中,利用计算机,粗略而快速地计算相当于壁面处流线应有的真实形状,使试验段壁面与之逼近,从而基本上消除边界干扰。

2.支架干扰风洞实验中,需要用支架把模型支撑在气流中。

支架的存在,产生对模型流场的干扰,称为支架干扰。

虽然可以通过试验方法修正支架的影响,但很难修正干净。

近来,正发展起一种称为"磁悬模型"的技术。

在试验段内产生一可控的磁场,通过磁力使模型悬浮在气流中。

3.相似准则不能满足的影响风洞实验的理论基础是相似原理。

相似原理要求风洞流场与真实飞行流场之间满足所有的相似准则,或两个流场对应的所有相似准则数相等。

风洞试验很难完全满足。

最常见的主要相似准则不满足是亚跨声速风洞的雷诺数不够。

以波音737飞机为例,它在巡航高度(9000m)上,以巡航速度(927km/h)飞行,雷诺数为2.4×107,而在3米亚声速风洞中以风速100m/s试验,雷诺数仅约为1.4×106,两者相距甚远。

提高风洞雷诺数的方法主要有: (1)增大模型和风洞的尺度,其代价同样是风洞造价和风洞驱动功率都将大幅度增加。

如上文所说俄国的全尺寸风洞。

(2)增大空气密度或压力。

已出现很多压力型高雷诺数风洞,工作压力在几个至十几个大气压范围。

我国也正在研制这种高雷诺数风洞。

(3)降低气体温度。

如以90K(-1830C)的氮气为工作介质,在尺度和速度相同时,雷诺数是常温空气的9倍多。

世界上已经建成好几个低温型高雷诺数风洞。

我国也研制了低温风洞,但尺度还比较小。

5实验优点风洞实验尽管有局限性,但有如下四个优点:①能比较准确地控制实验条件,如气流的速度、压力、温度等;②实验在室内进行,受气候条件和时间的影响小,模型和测试仪器的安装、操作、使用比较方便;③实验项目和内容多种多样,实验结果的精确度较高;④实验比较安全,而且效率高、成本低。

因此,风洞实验在空气动力学的研究、各种飞行器的研制方面,以及在工业空气动力学和其他同气流或风有关的领域中,都有广泛应用。

6其他应用昆虫化学生态学的风洞实验近年来风洞技术已成为昆虫性信息素研究中不可缺少的实验手段。

它用于监测粗提物和分离馏分的生物活性,判断鉴定出来的性信息素组分是否完整。

一般来说,风洞实验的结果是非常接近于田间情况的;利用风生态学风洞实验洞实验可以模拟昆虫的田间飞翔能力,其中最重要的一项研究是测量昆虫的飞行周期和飞行的持久性;利用风洞实验还可以研究性信息素浓度对昆虫飞行行为的影响。

7观察方法风洞中流态观察方法大致为分两类:第一类是示踪方法;第二类是光学方法。

示踪方法在流场中添加物质,如有色液体、烟、丝线和固体粒子等,通过照相或肉眼观察添加物随流体运动的图形。

只要添加物足够小,而且比重和流动介质接近,显示出来的添加物运动的图形就表示出气流的运动。

相关文档
最新文档