2020届全国各地高考试题分类汇编13 立体几何
立体几何大题真题汇编(理) - (原卷版)(2020高考数学)

立体几何大题真题汇编1.(2017•新课标Ⅱ,19)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.2.(2017•江苏,15)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(Ⅰ)EF∥平面ABC;(Ⅱ)AD⊥AC.3.(2016·山东,17)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值.4.(2016·全国Ⅲ,19)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.5.(2015·江苏,16)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.6.(2014·江苏,16)如图,在三棱锥P ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A =6,BC=8,DF=5.求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.7.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角DAEC为60°,AP=1,AD=3,求三棱锥EACD的体积.8.(2014·湖北,19)如图,在棱长为2的正方体ABCDA1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.9.(2018江苏,15)在平行六面体ABCD−A1B1C1D1中,AA1=AB,AB1⊥B1C1。
2015-2020年高考全国卷(文)立体几何试题(含答案)

2015-2020年全国卷立体几何试题(含答案)1.(2020年全国卷1 文3).埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 51-B 51-C 51+D 51+2.(2020年全国卷1 文12).已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π3.(2020年全国卷1 文19).如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC △是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO 23π,求三棱锥P −ABC 的体积.4.(2020年全国卷2 文11).已知ABC ∆是面积为439的等边三角形, 且其顶点都在球O 的球面上。
若球O 的表面积为π16,则O 到平面ABC 的距离为 A. 3 B. 23 C. 1 D. 23 5.(2020年全国卷2 文16).设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内。
2p :过空间中任意三点有且仅有一个平面。
3p :若空间两条直线不相交,则这两条直线平行。
4p :若直线⊂l 平面α,直线⊥m 平面α,则l m ⊥。
则下述命题中所有真命题的序号是____________。
①41p p ∧②21p p ∧③32p p ∨⌝④43p p ⌝∨⌝6.(2020年全国卷2 文20).如图,已知三棱柱111C B A ABC -的底面是正三角形,侧面C C BB 11是矩形,M 、N 分别为BC 、11C B 的中点,P 为AM 上一点。
过11C B 和P 的平面交AB 于E ,交AC 于F 。
2012-2020年全国卷高考立体几何大题汇编(文科)

立体几何大题汇编(文科)1.(2020年全国一卷文19)如图、为圆锥曲线的顶点,底面的内接正三角形,为上一点,(1平面(2)设,圆锥的侧面积为,求三棱锥2.(2020年全国二卷文20的底面是正三角形,侧面是矩形,分别为,的中点,为上一点,过和的平面交于,交于(1)证明:面(2)设为的中心,若,面,且求四棱锥3.(2020年全国三卷文19)如图、在长方体中,点分别在棱,(1)证明:当时,(2)证明:点在平面内4.(2019年全国一卷文19)如图,直四棱柱的底面是棱形,,,,,分别是,的中点(1(2)求点到平面的距离5.(2019年全国二卷文科17)如图,长方体的底面是正方形,点在棱(1平面(2,,求四棱锥6.(2019年全国三卷文科19)图是矩形组成的一个平面图形,其中,将其沿,折起使得与重合,连接,如图(1)证明:图平面(2)求图中的四边形的面积7.(2018年全国三卷文科19)如图,边长为的正方形所在的平面与半圆弧所在平面垂直,是上异于的点(1(2)在线段上是否存在点?请说明理由8.(2018年全国二卷文科19)如图,在三棱锥中,,,为的中点(1(2)若点在棱,求点到平面的距离9.(2018年全国一卷文科18)如图,在平行四边形中,,以到达点(1平面(2)为线段上一点,为线段上一点,且,求三棱锥的体积10.(2017年全国三卷文科19)如图,在四面体是正三角形,(1(2)是直角三角形,,若为棱上与不重合的点,求四面体与四面体的体积比11.(2017年全国二卷文科18)如图,四棱锥中,侧面为等边三角形且垂直于底面,(1(2,求四棱锥的体积12.(2017年全国一卷文科18)如图,在四棱锥,,且(1平面(2)若,求该四棱锥的侧面积13.(2016年全国三卷文科19)如图,底面,,,,为线段,为的中点(1(2的体积14.(2016年全国二卷文科19)如图,菱形的对角线与交于点,点分别在,上,交于点(1(2)若,,15.(2016年全国一卷文科18)如图,的侧面是直角三角形,,顶点在平面内正投影为点,在平面内的正投影为点,连接并延长交于点(1)证明:是的中点(2)大答题卡第题中作出点在平面内的正投影(说明作法及理由),并求四面体的体积16.(2015年全国二卷文科19)如图,长方体中,,,点,分别在,上,,过点,的平面与此长方体的面相交,交线围成一个正方形。
2020高考数学新题分类汇编 立体几何(高考真题+模拟新题)

2020高考数学新题分类汇编 立体几何(高考真题+模拟新题)课标理数12.G1[2020·福建卷] 三棱锥P -ABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥P -ABC 的体积等于________.课标理数12.G1[2020·福建卷] 【答案】 3【解析】 由已知,S △ABC =12×22sin π3=3,∴ V P -ABC =13S △ABC ·PA =13×3×3=3,即三棱锥P -ABC 的体积等于 3.课标文数8.G2[2020·安徽卷] 一个空间几何体的三视图如图1-1所示,则该几何体的表面积为( )图1-1A .48B .32+817C .48+817D .80课标文数8.G2[2020·安徽卷] C 【解析】 由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱(如图所示),所以该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.课标理数6.G2[2020·安徽卷] 一个空间几何体的三视图如图1-1所示,则该几何体的表面积为( )图1-1A .48B .32+817C .48+817D .80图1-3课标理数7.G2[2020·北京卷] 某四面体的三视图如图1-3所示,该四面体四个面的面积中最大的是( )A .8B .6 2C .10D .8 2课标理数7.G2[2020·北京卷] C 【解析】 由三视图可知,该四面体可以描述为SA ⊥平面ABC ,∠ABC =90°,且SA =AB =4,BC =3,所以四面体四个面的面积分别为10,8,6,62,从而面积最大为10,故应选C.图1-4课标文数5.G2[2020·北京卷] 某四棱锥的三视图如图1-1所示,该四棱锥的表面积是( )图1-1A .32B .16+16 2C .48D .16+32 2课标文数5.G2[2020·北京卷] B 【解析】 由题意可知,该四棱锥是一个底面边长为4,高为2的正四棱锥,所以其表面积为4×4+4×12×4×22=16+162,故选B.课标理数7.G2[2020·广东卷] 如图1-2,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( )图1-2A .6 3B .9 3C .12 3D .18 3课标理数7.G2[2020·广东卷] B 【解析】 由三视图知该几何体为棱柱,h =22-1=3,S 底=3×3,所以V =9 3.课标文数9.G2[2020·广东卷] 如图1-2,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .4 3B .4C .2 3D .2课标文数9.G2[2020·广东卷] C 【解析】 由三视图知该几何体为四棱锥,棱锥高h=232-32=3,底面为菱形,对角线长分别为23,2,所以底面积为12×23×2=23,所以V =13Sh =13×23×3=2 3.图1-1课标理数3.G2[2020·湖南卷] 设图1-1是某几何体的三视图,则该几何体的体积为( )A.92π+12 B.92π+18 C .9π+42 D .36π+18课标理数3.G2[2020·湖南卷] B 【解析】 由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3、高为2的长方体所构成的几何体,则其体积为:V =V 1+V 2=43×π×⎝ ⎛⎭⎪⎫323+3×3×2=92π+18, 故选B.课标文数4.G2[2020·湖南卷] 设图1-1是某几何体的三视图,则该几何体的体积为( )图1-1A .9π+42B .36π+18 C.92π+12 D.92π+18 课标文数4.G2[2020·湖南卷] D 【解析】 由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3高为2的长方体所构成的几何体,则其体积为: V=V 1+V 2=43×π×⎝ ⎛⎭⎪⎫323+3×3×2=92π+18,故选D.课标理数6.G2[2020·课标全国卷] 在一个几何体的三视图中,正视图和俯视图如图1-2所示,则相应的侧视图可以为( )图1-2 图1-3课标理数 6.G2 [2020·课标全国卷] D 【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如下图,故侧视图选D.图1-5课标理数15.G2[2020·辽宁卷] 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图1-5所示,左视图是一个矩形,则这个矩形的面积是________.课标理数15.G2[2020·辽宁卷] 2 3 【解析】 由俯视图知该正三棱柱的直观图为图1-6,其中M ,N 是中点,矩形MNC 1C 为左视图.由于体积为23,所以设棱长为a ,则12×a 2×sin60°×a =23,解得a =2.所以CM=3,故矩形MNC 1C 面积为2 3.图1-6图1-3课标文数8.G2[2020·辽宁卷] 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图1-3所示,左视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2 D. 3课标文数8.G2[2020·辽宁卷] B 【解析】 由俯视图知该正三棱柱的直观图为下图,其中M ,N 是中点,矩形MNC 1C 为左视图.图1-4 由于体积为23,所以设棱长为a ,则12×a 2×sin60°×a =23,解得a =2.所以CM=3,故矩形MNC 1C 面积为23,故选B.课标文数8.G2[2020·课标全国卷] 在一个几何体的三视图中,正视图和俯视图如图1-2所示,则相应的侧视图可以为( )图1-2 图1-3课标文数8.G2[2020·课标全国卷] D 【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如图,故侧视图选D.图1-4图1-2课标理数11.G2[2020·山东卷] 如图1-2是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图1-2;②存在四棱柱,其正(主)视图、俯视图如图1-2;③存在圆柱,其正(主)视图、俯视图如图1-2.其中真命题的个数是( )A .3B .2C .1D .0课标理数11.G2[2020·山东卷] A 【解析】 ①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确.图1-3课标文数11.G2[2020·山东卷] 如图1-3是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图1-3;②存在四棱柱,其正(主)视图、俯视图如图1-3;③存在圆柱,其正(主)视图、俯视图如图1-3.其中真命题的个数是( )A .3B .2C .1D .0课标文数11.G2[2020·山东卷] A 【解析】 ①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确.课标理数5.G2[2020·陕西卷] 某几何体的三视图如图1-2所示,则它的体积是( )图1-2A .8-2π3B .8-π3C .8-2π D.2π3课标理数5.G2[2020·陕西卷] A 【解析】 分析图中所给的三视图可知,对应空间几何图形,应该是一个棱长为2的正方体中间挖去一个半径为1,高为2的圆锥,则对应体积为:V =2×2×2-13π×12×2=8-23π.课标文数5.G2[2020·陕西卷] 某几何体的三视图如图1-2所示,则它的体积为( )图1-2A .8-2π3B .8-π3C .8-2π D.2π3课标文数5.G2[2020·陕西卷] A 【解析】 主视图与左视图一样是边长为2的正方形,里面有两条虚线,俯视图是边长为2的正方形与直径为2的圆相切,其直观图为棱长为2的正方体中挖掉一个底面直径为2的圆锥,故其体积为正方体的体积与圆锥的体积之差,V正=23=8,V 锥=13πr 2h =2π3(r =1,h =2),故体积V =8-2π3,故答案为A.课标理数10.G2[2020·天津卷] 一个几何体的三视图如图1-5所示(单位:m),则该几何体的体积为________ m 3.图1-5课标理数10.G2[2020·天津卷] 6+π 【解析】 根据图中信息,可得该几何体为一个棱柱与一个圆锥的组合体,V =3×2×1+13π×1×3=6+π.课标文数10.G2[2020·天津卷] 一个几何体的三视图如图1-4所示(单位:m),则该几何体的体积为________ m 3.图1-4课标文数10.G2[2020·天津卷] 4 【解析】 根据三视图还原成直观图,可以看出,其是由两个形状一样的,底面长和宽都为1,高为2的长方体叠加而成,故其体积V =2×1×1+1×1×2=4.图1-2课标理数3.G2[2020·浙江卷] D 【解析】由正视图可排除A、B选项,由俯视图可排除C选项.课标文数7.G2[2020·浙江卷] 若某几何体的三视图如图1-1所示,则这个几何体的直观图可以是( )图1-1图1-2课标文数7.G2[2020·浙江卷] B 【解析】由正视图可排除A,C;由侧视图可判断该该几何体的直观图是B.大纲理数3.G3[2020·四川卷] l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面大纲理数3.G3[2020·四川卷] B 【解析】对于A,直线l1与l3可能异面;对于C,直线l1、l2、l3可能构成三棱柱三条侧棱所在直线时而不共面;对于D,直线l1、l2、l3相交于同一个点时不一定共面. 所以选B.课标文数19.G4,G7[2020·安徽卷] 如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4课标文数19.G4,G7[2020·安徽卷] 本题考查空间直线与直线、直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力.【解答】 (1)证明:设G 是线段DA 与EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA =1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G 和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B 和C 分别是GE 和GF 的中点.所以BC 是△GEF 的中位线,故BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S OBED =S △EOB +S △OED =332.过点F 作FQ ⊥DG ,交DG 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.图1-4课标理数17.G4,G7[2020·安徽卷] 【解析】 本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能力,推理论证能力和运算求解能力.图1-5【解答】 (1)(综合法)证明:设G 是线段DA 与线段EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA=1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与线段FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B ,C 分别是GE 和GF 的中点,所以BC 是△GEF 的中位线,故BC ∥EF .(向量法)过点F 作FQ ⊥AD ,交AD 于点Q ,连QE .由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED .以Q 为坐标原点,QE →为x 轴正向,QD →为y 轴正向,QF →为z 轴正向,建立如图所示空间直角坐标系.图1-6由条件知E (3,0,0),F (0,0,3),B ⎝ ⎛⎭⎪⎫32,-32,0,C ⎝ ⎛⎭⎪⎫0,-32,32.则有BC →=⎝ ⎛⎭⎪⎫-32,0,32,EF →=(-3,0,3).所以EF →=2BC →,即得BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S 四边形OBED =S △EOB +S △OED =332.过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.课标文数17.G4[2020·北京卷]图1-4如图1-4,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.课标文数17.G4[2020·北京卷] 【解答】 (1)证明:因为D ,E 分别为AP ,AC 的中点,图1-5所以DE ∥PC .又因为DE ⊄平面BCP ,PC ⊂平面BCP , 所以DE ∥平面BCP .(2)因为D 、E 、F 、G 分别为AP 、AC 、BC 、PB 的中点, 所以DE ∥PC ∥FG , DG ∥AB ∥EF ,所以四边形DEFG 为平行四边形. 又因为PC ⊥AB , 所以DE ⊥DG ,所以平行四边形DEFG 为矩形.(3)存在点Q 满足条件,理由如下: 连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC 、AB 的中点M ,N ,连接ME 、EN 、NG 、MG 、MN .与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM =QN =12EG .所以Q 为满足条件的点.图1-3课标文数15.G4[2020·福建卷] 如图1-3,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.课标文数15.G4[2020·福建卷] 2 【解析】 ∵ EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,又∵E 是AD 的中点,∴F 是CD 的中点,即EF 是△ACD 的中位线,∴EF =12AC =12×22= 2.课标数学16.G4,G5[2020·江苏卷] 如图1-2,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.图1-2求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .课标数学16.G4,G5[2020·江苏卷] 本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力.【解答】 证明:(1)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,图1-3所以直线EF ∥平面PCD .(2)连结BD ,因为AB =AD ,∠BAD =60°,所以△ABD 为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD , 平面PAD ∩平面ABCD =AD ,所以BF ⊥平面PAD . 又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .课标文数4.G4[2020·浙江卷] 若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交课标文数4.G4[2020·浙江卷] B 【解析】 在α内存在直线与l 相交,所以A 不正确;若α内存在直线与l 平行,又∵l ⊄α,则有l ∥α,与题设相矛盾,∴B 正确,C 不正确;在α内不过l 与α交点的直线与l 异面,D 不正确.图1-6课标理数16.G5,G11[2020·北京卷] 如图1-6,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC 垂直时,求PA 的长.课标理数16.G5,G11[2020·北京卷] 【解答】 (1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .又因为PA ⊥平面ABCD , 所以PA ⊥BD ,所以BD ⊥平面PAC . (2)设AC ∩BD =O .因为∠BAD =60°,PA =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,OB 、OC 所在直线及点O 所在且与PA 平行的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O -xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0).图1-7所以PB →=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64. (3)由(2)知BC →=(-1,3,0). 设P (0,-3,t )(t >0), 则BP →=(-1,-3,t ).设平面PBC 的法向量m =(x ,y ,z ), 则BC →·m =0,BP →·m =0.所以⎩⎨⎧-x +3y =0,-x -3y +tz =0,令y =3,则x =3,z =6t, 所以m =⎝ ⎛⎭⎪⎫3,3,6t .同理,可求得平面PDC 的法向量n =⎝ ⎛⎭⎪⎫-3,3,6t .因为平面PBC ⊥平面PDC ,所以m ·n =0,即-6+36t2=0.解得t = 6.所以当平面PBC 与平面PDC 垂直时,PA = 6.大纲理数6.G5、G11[2020·全国卷] 已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足.点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( )A.23B.33C.63D .1 大纲理数6.G5、G11[2020·全国卷] C 【解析】 ∵α⊥β,AC ⊥l ,∴AC ⊥β,则平面ABC ⊥β,在平面β内过D 作DE ⊥BC ,则DE ⊥平面ABC ,DE 即为D 到平面ABC 的距离,在△DBC 中,运用等面积法得DE =63,故选C.大纲理数19.G5,G11[2020·全国卷] 如图1-1,四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形.AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的大小.图1-1大纲理数19.G5,G11[2020·全国卷] 【解答】 解法一:(1)取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2.图1-2连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2, 所以∠DSE 为直角. 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E ,得AB ⊥平面SDE ,所以AB ⊥SD . SD 与两条相交直线AB 、SE 都垂直. 所以SD ⊥平面SAB .(2)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE . 作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ×SE DE =32. 作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,则SG ⊥BC . 又BC ⊥FG ,SG ∩FG =G ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ×FG SG =37,即F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,故E 到平面SBC 的距离d 也为217. 设AB 与平面SBC 所成的角为α,则sin α=d EB =217,α=arcsin 217.解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图1-3所示的空间直角坐标系C -xyz .图1-3设D (1,0,0),则A (2,2,0),B (0,2,0). 又设S (x ,y ,z ), 则x >0,y >0,z >0. (1)AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ),DS →=(x -1,y ,z ), 由|AS →|=|BS →|得x -22+y -22+z 2=x 2+y -22+z 2, 故x =1, 由|DS →|=1得y 2+z 2=1,又由|BS →|=2得x 2+(y -2)2+z 2=4,即y 2+z 2-4y +1=0,故y =12,z =32.于是S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝ ⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,DS →·AS →=0,DS →·BS →=0.故DS ⊥AS ,DS ⊥BS ,又AS ∩BS =S , 所以SD ⊥平面SAB .(2)设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=⎝⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).又AB →=(-2,0,0),所以cos 〈AB →,a 〉=AB →·a |AB →|·|a |=217.故AB 与平面SBC 所成的角为arcsin 217.大纲文数8.G5[2020·全国卷] 已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则CD =( )A .2 B. 3 C. 2 D .1 大纲文数8.G5[2020·全国卷] C 【解析】 ∵α⊥β,AC ⊥l ,∴AC ⊥β,则AC ⊥CB ,∵AB =2,AC =1,可得BC =3,又BD ⊥l ,BD =1,∴CD =2,故选C.大纲文数20.G5,G11[2020·全国卷] 如图1-1,四棱锥S -ABCD 中,图1-1AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形.AB =BC =2,CD =SD =1. (1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的大小.大纲文数20.G5,G11[2020·全国卷] 【解答】 解法一:(1)取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2.图1-2连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2, 所以∠DSE 为直角.由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E ,得AB ⊥平面SDE ,所以AB ⊥SD . SD 与两条相交直线AB 、SE 都垂直. 所以SD ⊥平面SAB .(2)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE . 作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ×SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,则SG ⊥BC . 又BC ⊥FG ,SG ∩FG =G ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ×FG SG =37,即F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,故E 到平面SBC 的距离d 也为217. 设AB 与平面SBC 所成的角为α,则sin α=d EB=217,α=arcsin 217. 解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图1-3所示的空间直角坐标系C -xyz .图1-3设D (1,0,0),则A (2,2,0),B (0,2,0). 又设S (x ,y ,z ),则x >0,y >0,z >0. (1)AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ),DS →=(x -1,y ,z ), 由|AS →|=|BS →|得x -22+y -22+z 2=x 2+y -22+z 2, 故x =1, 由|DS →|=1得y 2+z 2=1,又由|BS →|=2得x 2+(y -2)2+z 2=4,即y 2+z 2-4y +1=0,故y =12,z =32.于是S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝ ⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,DS →·AS →=0,DS →·BS →=0.故DS ⊥AS ,DS ⊥BS ,又AS ∩BS =S , 所以SD ⊥平面SAB .(2)设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=⎝⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).又AB →=(-2,0,0),所以cos 〈AB →,a 〉=AB →·a |AB →|·|a |=217.故AB 与平面SBC 所成的角为arcsin217.课标理数20.G5,G10,G11[2020·福建卷] 如图1-7,四棱锥P -ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,图1-7AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°. (1)求证:平面PAB ⊥平面PAD ; (2)设AB =AP .①若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;②在线段AD 上是否存在一个点G ,使得点G 到P 、B 、C 、D 的距离都相等?说明理由. 课标理数20.G5,G10,G11 [2020·福建卷] 【解答】图1-8(1)证明:因为PA ⊥平面ABCD , AB ⊂平面ABCD , 所以PA ⊥AB .又AB ⊥AD ,PA ∩AD =A , 所以AB ⊥平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .图1-9(2)①以A 为坐标原点,建立空间直角坐标系A -xyz (如图1-9). 在平面ABCD 内,作CE ∥AB 交AD 于点E , 则CE ⊥AD .在Rt △CDE 中,DE =CD ·cos45°=1, CE =CD ·sin45°=1.设AB =AP =t ,则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ).由n ⊥CD →,n ⊥PD →,得⎩⎪⎨⎪⎧-x +y =0.4-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). 又PB →=(t,0,-t ),故由直线PB 与平面PCD 所成的角为30°得c os60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·P B →|n |·|PB →|, 即|2t 2-4t |t 2+t 2+4-t 2·2t 2=12. 解得t =45或t =4(舍去,因为AD =4-t >0),所以AB =45.则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →=(0,-m ,t ).由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m ;① 由|GD →|=|GP →|得(4-t -m )2=m 2+t 2.②由①、②消去t ,化简得m 2-3m +4=0.③由于方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 法二:假设在线段AD 上存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等. 由GC =GD ,得∠GCD =∠GDC =45°,图1-12从而∠CGD =90°,即CG ⊥AD . 所以GD =CD ·cos45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 在Rt △ABG 中, GB =AB 2+AG 2=λ2+3-λ2=2⎝⎛⎭⎪⎫λ-322+92>1.这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点B 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.课标理数18.G5,G10[2020·广东卷] 如图1-3,在锥体P -ABCD 中,ABCD 是边长为1的菱形,且∠DAB =60°,PA =PD =2,PB =2,E ,F 分别是BC ,PC 的中点.(1)证明:AD ⊥平面DEF ;(2)求二面角P -AD -B 的余弦值.图1-3课标理数18.G5,G10[2020·广东卷] 【解答】 法一:(1)证明:设AD 中点为G ,连接PG ,BG ,BD .图1-1因PA =PD ,有PG ⊥AD ,在△ABD 中,AB =AD =1,∠DAB =60°,有△ABD 为等边三角形,因此BG ⊥AD ,BG ∩PG =G ,所以AD ⊥平面PBG ,所以AD ⊥PB ,AD ⊥GB .又PB ∥EF ,得AD ⊥EF ,而DE ∥GB 得AD ⊥DE ,又FE ∩DE =E ,所以AD ⊥平面DEF . (2)∵PG ⊥AD ,BG ⊥AD ,∴∠PGB 为二面角P -AD -B 的平面角.在Rt △PAG 中,PG 2=PA 2-AG 2=74,在Rt △ABG 中,BG =AB ·sin60°=32, ∴cos ∠PGB =PG 2+BG 2-PB 22PG ·BG=74+34-42·72·32=-217. 法二:(1)证明:设AD 中点为G ,因为PA =PD ,所以PG ⊥AD , 又AB =AD ,∠DAB =60°,所以△ABD 为等边三角形,因此,BG ⊥AD ,从而AD ⊥平面PBG . 延长BG 到O 且使PO ⊥OB ,又PO ⊂平面PBG ,所以PO ⊥AD ,又AD ∩OB =G ,所以PO ⊥平面ABCD .以O 为坐标原点,菱形的边长为单位长度,直线OB ,OP 分别为x 轴,z 轴,平行于AD 的直线为y 轴,建立如图1-2所示的空间直角坐标系.设P (0,0,m ),G (n,0,0),则A ⎝⎛⎭⎪⎫n ,-12,0,D ⎝ ⎛⎭⎪⎫n ,12,0.图1-2∵|GB →|=|AB →|sin60°=32,∴B ⎝ ⎛⎭⎪⎫n +32,0,0,C ⎝ ⎛⎭⎪⎫n +32,1,0,E ⎝⎛⎭⎪⎫n +32,12,0,F ⎝ ⎛⎭⎪⎫n 2+34,12,m 2. ∴AD →=(0,1,0),DE →=⎝ ⎛⎭⎪⎫32,0,0,FE →=⎝ ⎛⎭⎪⎫n 2+34,0,-m 2,∴AD →·DE →=0,AD →·FE →=0, ∴AD ⊥DE ,AD ⊥FE ,又DE ∩FE =E ,∴AD ⊥平面DEF .(2)∵PA →=⎝ ⎛⎭⎪⎫n ,-12,-m ,PB →=⎝ ⎛⎭⎪⎫n +32,0,-m , ∴m 2+n 2+14=2,⎝⎛⎭⎪⎫n +322+m 2=2,解得m =1,n =32. 取平面ABD 的法向量n 1=(0,0,-1), 设平面PAD 的法向量n 2=(a ,b ,c ),由PA →·n 2=0,得32a -b 2-c =0,由PD →·n 2=0,得32a +b 2-c =0,故取n 2=⎝ ⎛⎭⎪⎫1,0,32.∴cos〈n1,n2〉=-32 1·74=-217.即二面角P-AD-B的余弦值为-217.课标理数18.G5,G11[2020·湖北卷] 如图1-4,已知正三棱柱ABC-A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tanθ的最小值.图1-4课标理数18.G5,G11[2020·湖北卷] 【解答】解法1:过E作EN⊥AC于N,连结EF.(1)如图①,连结NF、AC1,由直棱柱的性质知,底面ABC⊥侧面A1C,又底面ABC∩侧面A1C=AC,且EN⊂底面ABC,所以EN⊥侧面A1C,NF为EF在侧面A1C 内的射影,在Rt△CNE中,CN=CE co s60°=1,则由CFCC1=CNCA=14,得NF∥AC1.又AC1⊥A1C,故NF⊥A1C,由三垂线定理知EF⊥A1C.(2)如图②,连结AF,过N作NM⊥AF于M,连结ME,由(1)知EN⊥侧面A1C,根据三垂线定理得EM⊥AF,所以∠EMN是二面角C-AF-E的平面角,即∠EMN=θ,设∠FAC=α,则0°<α≤45°.在Rt△CNE中,NE=EC·sin60°=3,在Rt△AMN中,MN=AN·sinα=3sinα,故tanθ=NEMN=33sinα.又0°<α≤45°,∴0<sinα≤22,故当sinα=22,即当α=45°时,tanθ达到最小值,tanθ=33×2=63,此时F与C1重合.解法2:(1)建立如图③所示的空间直角坐标系,则由已知可得A(0,0,0),B(23,2,0),C(0,4,0),A1(0,0,4),E (3,3,0),F (0,4,1),于是CA 1→=(0,-4,4),EF →=(-3,1,1), 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0,故EF ⊥A 1C .(2)设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ),AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0,取m =(3λ,-λ,4),又由直三棱柱的性质可取侧面A 1C 的一个法向量为n =(1,0,0),于是由θ为锐角可得cos θ=|m·n||m|·|n|=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2, 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63, 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.图1-2课标文数18.G5,G11[2020·湖北卷] 如图1-2,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为32,点E 在侧棱AA 1上,点F 在侧棱BB 1上,且AE =22,BF = 2.(1)求证:CF ⊥C 1E ;(2)求二面角E -CF -C 1的大小.课标文数18.G5,G11[2020·湖北卷]【解答】 解法1:(1)证明:由已知可得CC 1=32,CE =C 1F =22+222=23,EF =C 1E =22+22= 6.于是有EF 2+C 1E 2=C 1F 2,CE 2+C 1E 2=CC 21. 所以C 1E ⊥EF ,C 1E ⊥CE .又EF ∩CE =E ,所以C 1E ⊥平面CEF . 又CF ⊂平面CEF ,故CF ⊥C 1E .(2)在△CEF 中,由(1)可得EF =CF =6,CE =23,于是有EF 2+CF 2=CE 2,所以CF ⊥EF . 又由(1)知CF ⊥C 1E ,且EF ∩C 1E =E , 所以CF ⊥平面C 1EF .又C 1F ⊂平面C 1EF ,故CF ⊥C 1F .于是∠EFC 1即为二面角E -CF -C 1的平面角.由(1)知△C 1EF 是等腰直角三角形,所以∠EFC 1=45°,即所求二面角E -CF -C 1的大小为45°图1-3解法2:建立如图1-3所示的空间直角坐标系,则由已知可得A (0,0,0),B (3,1,0),C (0,2,0),C 1(0,2,32),E (0,0,22),F (3,1,2).(1)C 1E →=(0,-2,-2),CF →=(3,-1,2), ∴C 1E →·CF →=0+2-2=0, ∴CF ⊥C 1E . (2)CE →=(0,-2,22),设平面CEF 的一个法向量为m =(x ,y ,z ). 由m ⊥CE →,m ⊥CF →,得⎩⎪⎨⎪⎧m ·CE →=0,m ·CF →=0,即⎩⎨⎧-2y +22z =0,3x -y +2z =0,可取m =(0,2,1).设侧面BC 1的一个法向量为n ,由n ⊥CB →,n ⊥CC 1→,及CB →=(3,-1,0),CC 1→=(0,0,32),可取n =(1,3,0),设二面角E -CF -C 1的大小为θ,于是由θ为锐角可得cos θ=|m·n ||m ||n |=63×2=22,所以θ=45°,即所求二面角E -CF -C 1的大小为45°.图1-6课标理数19.G5,G11[2020·湖南卷] 如图1-6,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB 的中点,D 为AC 的中点.(1)证明:平面POD ⊥平面PAC ; (2)求二面角B -PA -C 的余弦值.课标理数19.G5,G11[2020·湖南卷] 【解答】 解法一:(1)连结OC ,因为OA =OC ,D 是AC 的中点,所以AC ⊥OD .图1-7又PO ⊥底面⊙O ,AC ⊂底面⊙O ,所以AC ⊥PO .因为OD ,PO 是平面POD 内的两条相交直线,所以AC ⊥平面POD ,而AC ⊂平面PAC ,所以平面POD ⊥平面PAC .(2)在平面POD 中,过O 作OH ⊥PD 于H ,由(1)知,平面POD ⊥平面PAC ,所以OH ⊥平面PAC . 又PA ⊂面PAC ,所以PA ⊥OH .在平面PAO 中,过O 作OG ⊥PA 于G ,连结HG ,则有PA ⊥平面OGH .从而PA ⊥HG . 故∠OGH 为二面角B -PA -C 的平面角.在Rt △ODA 中,OD =OA ·sin45°=22.在Rt △POD 中,OH =PO ·ODPO 2+OD 2=2×222+12=105.在Rt △POA 中,OG =PO ·OA PO 2+OA 2=2×12+1=63.在Rt △OHG 中,sin ∠OGH =OH OG =10563=155. 所以cos ∠OGH =1-sin 2∠OGH =1-1525=105. 故二面角B -PA -C 的余弦值为105. 解法二:(1)如图1-8所示,以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则图1-8O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫-12,12,0.设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量,则由n 1·OD →=0,n 1·OP →=0,得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0.所以z 1=0,x 1=y 1.取y 1=1,得n 1=(1,1,0).设n 2=(x 2,y 2,z 2)是平面PAC 的一个法向量,则由n 2·PA →=0,n 2·PC →=0,得⎩⎨⎧-x 2-2z 2=0,y 2-2z 2=0.所以x 2=-2z 2,y 2=2z 2,取z 2=1,得n 2=(-2,2,1).因为n 1·n 2=(1,1,0)·(-2,2,1)=0,所以n 1⊥n 2.从而平面POD ⊥平面PAC . (2)因为y 轴⊥平面PAB ,所以平面PAB 的一个法向量为n 3=(0,1,0).由(1)知,平面PAC 的一个法向量为n 2=(-2,2,1).设向量n 2和n 3的夹角为θ,则cos θ=n 2·n 3|n 2|·|n 3|=25=105.由图可知,二面角B -PA -C 的平面角与θ相等,所以二面角B -PA -C 的余弦值为105.课标文数19.G5,G11[2020·湖南卷] 如图1-5,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,点C 在AB 上,且∠CAB =30°,D 为AC 的中点.(1)证明:AC ⊥平面POD ;(2)求直线OC 和平面PAC 所成角的正弦值.图1-5课标文数19.G5,G11[2020·湖南卷] 【解答】 (1)因为OA =OC ,D 是AC 的中点,所以AC ⊥OD . 又PO ⊥底面⊙O ,AC ⊂底面⊙O ,所以AC ⊥PO . 而OD ,PO 是平面POD 内的两条相交直线, 所以AC ⊥平面POD .(2)由(1)知,AC ⊥平面POD ,又AC ⊂平面PAC , 所以平面POD ⊥平面PAC .在平面POD 中,过O 作OH ⊥PD 于H ,则OH ⊥平面PAC .图1-6连结CH ,则CH 是OC 在平面PAC 上的射影, 所以∠OCH 是直线OC 和平面PAC 所成的角.在Rt △ODA 中,OD =OA ·sin30°=12.在Rt △POD 中,OH =PO ·OD PO 2+OD 2=2×122+14=23.在Rt △OHC 中,sin ∠OCH =OH OC =23. 故直线OC 和平面PAC 所成角的正弦值为23.图1-9课标理数18.G5,G10,G11[2020·课标全国卷] 如图1-9,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:PA ⊥BD ;(2)若PD =AD ,求二面角A -PB -C 的余弦值.课标理数18.G5,G10,G11[2020·课标全国卷] 【解答】 (1)因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD , 所以BD ⊥平面PAD .故PA ⊥BD .图1-10(2)如图,以D 为坐标原点,AD 的长为单位长,DA 、DB 、DP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1), AB →=(-1,3,0),PB →=(0,3,-1),BC →=(-1,0,0).设平面PAB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·PB →=0,即⎩⎨⎧-x +3y =0,3y -z =0.因此可取n =(3,1,3).设平面PBC 的法向量为m ,则⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0,可取m =(0,-1,-3).cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.图1-8课标文数18.G5,G11[2020·课标全国卷] 如图1-8,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:PA ⊥BD ;(2)设PD =AD =1,求棱锥D -PBC 的高.课标文数18.G5,G11[2020·课标全国卷] 【解答】 (1)证明:因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD , 所以BD ⊥平面PAD ,故PA ⊥BD . (2)如图,作DE ⊥PB ,垂足为E . 已知PD ⊥底面ABCD ,则PD ⊥BC .由(1)知BD ⊥AD ,又BC ∥AD ,所以BC ⊥BD.图1-9故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知PD =1,则BD =3,PB =2.根据DE ·PB =PD ·BD 得DE =32.即棱锥D -PBC 的高为32. 课标理数16.G5,G9[2020·陕西卷] 如图1-6,在△ABC 中,∠ABC =60°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.图1-6(1)证明:平面ADB ⊥平面BDC;(2)设E 为BC 的中点,求AE →与DB →夹角的余弦值.课标理数16.F2[2020·陕西卷] 【解答】 (1)∵折起前AD 是BC 边上的高, ∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D , ∴AD ⊥平面BDC , ∵AD 平面ABD ,∴平面ABD ⊥平面BDC .cos 〈AE →,DB →〉=AE →·DB →|AE →|·|DB →|=121×224=2222.课标文数16.G5[2020·陕西卷] 如图1-8,在△ABC 中,∠ABC =45°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.(1)证明:平面ADB ⊥平面BDC ;(2)若BD =1,求三棱锥D -ABC 的表面积.图1-8课标文数16.G5[2020·陕西卷] 【解答】 (1)∵折起前AD 是BC 边上的高, ∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D . ∴AD ⊥平面BDC . ∵AD 平面ABD ,∴平面ABD ⊥平面BDC .(2)由(1)知,DA ⊥DB ,DB ⊥DC ,DC ⊥DA , DB =DA =DC =1. ∴AB =BC =CA = 2.从而S △DAB =S △DBC =S △DCA =12×1×1=12.S △ABC =12×2×2×sin60°=32. ∴表面积S =12×3+32=3+32.课标数学16.G4,G5[2020·江苏卷] 如图1-2,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.图1-2求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .课标数学16.G4,G5[2020·江苏卷] 本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力.【解答】 证明:(1)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,图1-3所以直线EF ∥平面PCD .(2)连结BD,因为AB=AD,∠BAD=60°,所以△ABD为正三角形,因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面BEF,所以平面BEF⊥平面PAD.大纲文数6.G5[2020·四川卷] l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面大纲文数6.G5[2020·四川卷] B 【解析】对于A,直线l1与l3可能异面;对于C,直线l1、l2、l3可能构成三棱柱三条侧棱所在直线而不共面;对于D,直线l1、l2、l3相交于同一个点时不一定共面. 所以选B.课标理数4.G5[2020·浙江卷] 下列命题中错误..的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β课标理数4.G5[2020·浙江卷] D 【解析】若面α⊥面β,在面α内与面β的交线不相交的直线平行于平面β,故A正确;B中若α内存在直线垂直平面β,则α⊥β,与题设矛盾,所以B正确;由面面垂直的性质知选项C正确.由A正确可推出D错误.课标文数19.G4,G7[2020·安徽卷] 如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4课标文数19.G4,G7[2020·安徽卷] 本题考查空间直线与直线、直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力.【解答】 (1)证明:设G 是线段DA 与EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA =1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G 和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B 和C 分别是GE 和GF 的中点.所以BC 是△GEF 的中位线,故BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S OBED =S △EOB +S △OED =332.过点F 作FQ ⊥DG ,交DG 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.课标理数17.G4,G7[2020·安徽卷]如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4课标理数17.G4,G7[2020·安徽卷] 【解析】 本题考查空间直线与直线,直线与平面、。
2020年普通高等学校招生全国统一考试数学试题汇编 立体几何(理科)部分

2020年普通高等学校招生全国统一考试数学试题汇编 立体几何(理科)部分立体几何(理科)部分1. (广东5)给定以下四个命题:①假设一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②假设一个平面通过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④假设两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和② B.②和③ C..③和④ D.②和④ D2.〔宁夏海南11〕一个棱锥的三视图如图,那么该棱锥的全面积 〔单位:c 2m 〕为〔A 〕48+122 〔B 〕48+242 〔C 〕36+122 〔D 〕36+242 解析:选A.3. (宁夏海南8) 如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F ,且22EF =,那么以下结论中错误的选项是 〔A 〕AC BE ⊥ 〔B 〕//EF ABCD 平面〔C 〕三棱锥A BEF -的体积为定值 〔D 〕异面直线,AE BF 所成的角为定值解析:A 正确,易证11;AC D DBB AC BE ⊥⊥平面,从而B 明显正确,//,//EF BD EF ABCD ∴平面易证;C 正确,可用等积法求得;D 错误。
选D.4.(山东4) 一空间几何体的三视图如下图,那么该几何体的体积为( ). A.223π+ B. 423π+ C. 2323π+ D. 2343π+【解析】:该空间几何体为一圆柱和一四棱锥组成的, 圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面 边长为2,高为3,因此体积为()2123233⨯⨯=因此该几何体的体积为2323π+.答案:C【命题立意】:此题考查了立体几何中的空间想象能力, 由三视图能够想象得到空间的立体图,并能准确地 运算出.几何体的体积.5.(辽宁11)正六棱锥P-ABCDEF 中,G 为PB 的中点,那么三棱锥D-GAC 与三棱锥P-GAC 体积之比为〔A 〕1:1 〔B 〕1:2 〔C 〕2:1 〔D 〕3:2 答案:C 解析:连接FC 、AD 、BE ,设正六边形 的中心为O ,连接AC 与OB 相交点H ,那么GH∥PO,故GH⊥平面ABCDEF , ∴平面GAC⊥平面ABCDEF 又DC⊥AC,BH⊥AC, ∴DC⊥平面GAC ,BH⊥平面GAC , 且DC=2BH ,故三棱锥D-GAC 与三棱锥P-GAC 体积之比为2:1。
2020年高考试题分类汇编(立体几何)

2020年高考试题分类汇编(立体几何)考法1空间中的点、线、面的位置关系1.(2020·全国卷Ⅰ·文理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状科视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥的一个侧面三角形的面积,则其侧面三角形底边上的高于底面正方形的边长的比值为 A .514- B .512- C .514+ D .512+2.(2020·全国卷Ⅰ·理科)如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥, 30CAE ∠=,则cos FCB ∠= .3.(2020·全国卷Ⅱ·文理科)设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一个平面内. 2p :过空间任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行. 4p :若直线l ⊂平面α,直线m ⊥平面α,则l m ⊥.则下列命题中所以真命题的序号是 .①14p p ∧ ②12p p ∧ ③23()p p ⌝∨ ④34()()p p ⌝∨⌝ 4.(2020·浙江卷)已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,ABCD (P )E (P )F (P )l 在同一平面”是“m ,n ,l 两两相交”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 考法2三视图1.(2020·全国卷Ⅱ·理科)右图是一个多面体的三视图,这个多面体某天棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H2.(2020·全国卷Ⅲ·文理科)右图为某几何体的三视图,则该几何体的表面积为A .642+B .442+C .623+D .423+3.(2020·浙江卷)某几何体的三视图(单位:cm )如图所示,则该几 何体的体积(单位:3cm )是A .73B .143C .3D .64.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱M N EF GH222的表面积为A .63+B .623+C .123+D .1223+考法3与球的组合体1.(2020·全国卷Ⅰ·文理科)已知A ,B ,C 为球O 的球面上三点,1O 为ABC ∆的外接圆,若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48π C .36π D .32π2.(2020·山东卷)日冕是中国古代用来测定时间的仪器,利用与冕面垂直的冕针投射到冕面的影子来测定时间,把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成的角,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个日冕,若冕面与赤道所在的平面平行,点A 的纬度为北纬40,则冕针与点A 处的水平面所成的角为A .20B .40C .50D .903.(2020·全国卷Ⅱ·文理科)已知ABC ∆是面积为934的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的面积112正(主)视图 侧(左)视图俯视图AB .32C .1 D.24.(2020·全国卷Ⅲ·文理科)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .5.(2020·山东卷)已知直四棱柱1111ABCD A B C D -的棱长均为2,60BAD ∠=.以1D11BCC B 的交线长为 .6.(2020·天津卷)若棱长为则该球的表面积为A .12πB .24πC .36πD .144π考法4解答题1.(2020·全国卷Ⅰ·理科)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC ∆是底面的内角正三角形,P 为DO上一点,6PO DO =. (Ⅰ)证明:PA ⊥平面PBC ; (Ⅱ)求二面角B PC E --的余弦值.2.(2020·全国卷Ⅰ·文科)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC ∆是底面的内角正三角形,P 为DO 上一点,90ABC ∠=. (Ⅰ)证明:平面PAB ⊥平面PAC ;(Ⅱ)设DO =,求三棱锥P ABC -的体积.P ABO E CDP ABO C D3.(2020·全国卷Ⅱ·理科)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BCC B 是矩形,M ,N 分别为的BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(Ⅰ)证明:1AA MN ∥,且平面1A AMN ⊥平面11EB C F ;(Ⅱ)设O 为111A B C ∆的中心,若AO ∥平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.4.(2020·全国卷Ⅱ·文科)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BCC B 是矩形,M ,N 分别为的BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(Ⅰ)证明:1AA MN ∥,且平面1A AMN ⊥平面11EB C F ;(Ⅱ)设O 为111A B C ∆的中心,若6AO AB ==,AO ∥平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.5.(2020·全国卷Ⅲ·理科)如图,在长方体1111ABCD A B C D -中,点E 、F 分别在棱1DD ,1BB 上,且2DE =1ED ,12BF FB =. (Ⅰ)证明:点1C 在平面AEF 内;ABC E F O MNA 1B 1C 1PABC E FO MNA 1B 1C 1P(Ⅱ)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.6.(2020·全国卷Ⅲ·文科)如图,在长方体1111ABCD A B C D -中,点E 、F 分别在棱1DD ,1BB 上,且2DE =1ED ,12BF FB =.(Ⅰ)当AB BC =时,EF AC ⊥. (Ⅱ)证明:点1C 在平面AEF 内;7.(2020·山东卷)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l . (Ⅰ)证明:l ⊥平面PDC ;(Ⅱ)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.A BCDEF A 1B 1C 1D 1ABCDEFA 1B 1C 1D 1PABCD8.(2020·天津卷)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,AC BC ⊥,2AC BC ==,13CC =,点D ,E 分别在棱1AA 和棱1CC 上,且1AD =,2CE =,M 为棱11A B 的中点. (Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.9.(2020·浙江卷)如图,三棱台DEF ABC -中,面ADFC ⊥面ABC ,45ACB ACD ∠=∠=,DC =2BC .(Ⅰ)证明:EF DB ⊥;(Ⅱ)求DF 与面DBC 所成角的正弦值.A BCDEMB 1A 1C 1ABCDEF10.(2020·北京卷)如图,在正方体1111ABCD A B C D 中,E 为1BB 的中点. (Ⅰ)求证:1BC ∥平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.ABCDE A 1B 1C 1D 1。
2020届高考数学专题:立体几何计算问题(答案不全)

立体几何中的计算问题1.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;2.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
3斜二测法:1.画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y o r ∠=︒︒,它们确定的平面表示水平平面;2.在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 例1.下列命题:①如果一个几何体的三视图是完全相同的,那么这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,那么这个几何体是长方体; ③如果一个几何体的三视图都是矩形,那么这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,那么这个几何体是圆台.其中正确的是( )A .①②B .③C .②③D .④ 2、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小.例2.在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( )ABCD【答案】D例3.直三棱柱ABC ﹣A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线 BA 1与AC 1所成的角为( ) A .60°B .90°C .120°D .150°例4.在四面体ABCD 中,AC 与BD 的夹角为30°,2AC =,BD =M ,N 分别是AB ,CD 的中点,则线段MN 的长度为________. 【答案】13.二面角 找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法 (iii)三垂线法(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.例5.已知正三棱锥底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为________.【答案】12例6.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,E .F 分别为1A B ,1A C 的中点,D 为11B C 上的点,且11A D B C ⊥.(1)求证://EF 平面ABC . (2)求证:平面1A FD ⊥平面11BCC B .(3)若三棱柱所有棱长都为a ,求二面角111A B C C --的平面角的余弦值.【答案】(1)见解析;(2)见解析;(3)74.空间几何体的表面积、体积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22Srl r Rl Rππππ=+++扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底,锥体的体积 :13V S h =⨯底台体的体积 :1)3V S S h =+⨯下上( ,球体的体积:343V R π= 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.例8.在长、宽、高分别为a b c ,,的长方体中,以它的各面的中心为顶点可得到一个八面体,则该八面体的体积为________.【答案】16abc例9.如图,在上、下底面对应边的比为1:2的三棱台中,过上底面的一边作一个平行于棱的平面11A B EF ,则这个平面分三棱台成两部分的体积之比为( ).A .1:2B .2:3C .3:4D .4:5【答案】C例10.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=4,AB=2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.⑴求证:平面ABM ⊥平面PCD ; (2)求点O 到平面ABM 的距离.【答案】(1)见解析(2)3例11.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,//FD EA,且112FD EA==.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【答案】(1)103V=多面体;(2)见解析.5.与球有关的组合体7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;例11.已知棱长为a的正四面体,其内切球的半径为r,外接球的半径为R,则:r R= ________.【答案】1:3例12.已知棱长为a的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为().A.91:3:4B.1:3:2C.D.31:2【答案】B例13.已知,,,S A B C是球O表面上的点,SA⊥平面,,1,ABC AB BC SA AB BC⊥===则球O的体积为__________.例14.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:圆锥内切球的体积.(2)2563Vπ=立体几何中的计算问题一、三视图1.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【答案】B2.如图所示,A O B '''∆表示水平放置的AOB ∆的直观图,B '在x '轴上,A O ''与x '轴垂直,且2A O ''=,则AOB ∆的OB 边上的高为______.【答案】二、线线角3.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A.3B.3C.4D.4【答案】D4.如图所示为一个正方体的展开图.对于原正方体,给出下列结论: ①AB 与EF 所在直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成60︒角;④MN 与CD 所在直线互相垂直. 其中正确结论的序号是________. 【答案】②④5.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA AB AC ==,AB AC ⊥,M 是1CC 的中点,Q 是BC 的中点,点P 在11A B 上,则直线PQ 与直线AM 所成的角为( ). A .30° B .45︒C .60︒D .90︒【答案】D 三、二面角问题二面角:关键是找出二面角的平面角。
2020年高考数学 立体几何试题分类汇编 理

2020年高考数学 立体几何试题分类汇编 理(安徽)(A ) 48 (B)32+817 (C) 48+817 (D) 80(北京)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A .8B .62C.10D .82(湖南)设图一是某几何体的三视图,则该几何体的体积为( )A .9122π+B .9182π+ C .942π+ D .3618π+答案:B3 正视图侧视图解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。
(广东)如图l —3.某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.63B.93C.123D.183(江西)已知321,,ααα是三个相互平行的平面,平面21,αα之间的距离为1d ,平面32,αα之间的距离为2d .直线l 与321,,ααα分别交于321,,P P P .那么”“3221P P P P =是”“21d d =的 ( ) A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件答案:C解析:平面321,,ααα平行,由图可以得知:如果平面距离相等,根据两个三角形全等可知3221P P P P = 如果3221P P P P =,同样是根据两个三角形全等可知21d d =(辽宁)如图,四棱锥S —ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确...的是 A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角(辽宁)已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,ο30=∠=∠BSC ASC ,则棱锥S —ABC的体积为 A .33B .32C .3D .1(全国2)已知直二面角l αβ--,点,A AC l α∈⊥,C 为垂足,,,B BD l D β∈⊥为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)2 (B)3 (C)6 (D) 1 【思路点拨】本题关键是找出或做出点D 到平面ABC 的距离DE ,根据面面垂直的性质不难证明AC ⊥平面β,进而β⊥平面平面ABC,所以过D 作DE BC ⊥于E ,则DE 就是要求的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届全国各地高考试题分类汇编13 立体几何1.(2020•北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A. 6B. 6+C. 12+D. 12+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭故选:D. 2.(2020•北京卷)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值. 【解析】(Ⅰ)如下图所示:在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,11//AB C D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD , 1BC ⊄平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;(Ⅰ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D、()0,2,1E ,()12,0,2AD =,()0,2,1AE =,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅. 因此,直线1AA与平面1AD E 所成角的正弦值为23.3.(2020•全国1卷)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.B.C.D. 【答案】C【解析】如图,设,CD a PE b ==,则PO ==,由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去). 故选:C.4.(2020•全国1卷)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( ) A. 64π B. 48πC. 36πD. 32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A5.(2020•全国1卷)如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】AB AC ⊥,AB =1AC =,由勾股定理得2BC ==,同理得BD =BF BD ∴==ACE △中,1AC =,AE AD ==,30CAE ∠=,由余弦定理得2222cos30132112CE AC AE AC AE =+-⋅=+-⨯=,1CF CE ∴==,在BCF 中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.6.(2020•全国1卷)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO 上一点,PO .(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【解析】(1)由题设,知DAE △为等边三角形,设1AE =,则DO =,1122CO BO AE ===,所以4PO ==,PC PB ====又ABC 为等边三角形,则2sin 60BA OA =,所以BA =,22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥, 同理PA PC ⊥,又PC PB P =,所以PA ⊥平面PBC ;(2)过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则111(,0,0),((,244E P B C ---,1(,444PC =---,1(,444PB =--,1(,0,24PE =--,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得1111110x x ⎧---=⎪⎨-+=⎪⎩,令1x =,得111,0z y =-=,所以(2,0,1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222020x x ⎧--=⎪⎨--=⎪⎩,令21x=,得223z y ==,所以3(1,,3m =-故cos ,5||||3n mmn n m ⋅<>===⋅⨯, 设二面角B PC E --的大小为θ,则cos θ=7.(2020•全国2卷)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A. EB. FC. GD. H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选:A8.(2020•全国2卷)已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A.B.32C. 1D.【答案】C【解析】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C.9.(2020•全国2卷)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值. 【解析】(1),M N 分别为BC ,11B C 的中点,1//MN BB ∴,又11//AA BB ,1//MN AA ∴,在ABC 中,M 为BC 中点,则BC AM ⊥,又侧面11BB C C 为矩形,1BC BB ∴⊥,1//MN BB ,MN BC ⊥,由MN AM M ⋂=,,MN AM ⊂平面1A AMN , ∴BC ⊥平面1A AMN ,又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC ,又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =,11//B C EF ∴ ,//EF BC ∴,又BC ⊥平面1A AMN ,∴EF ⊥平面1A AMN ,EF ⊂平面11EB C F ,∴平面11EB C F ⊥平面1A AMN ,(2)连接NP ,//AO 平面11EB C F ,平面AONP ⋂平面11EB C F NP =,∴//AO NP ,根据三棱柱上下底面平行,其面1A NMA ⋂平面ABC AM =,面1A NMA ⋂平面1111A B C A N =,∴//ON AP ,故:四边形ONPA 是平行四边形,设ABC 边长是6m (0m >),可得:ON AP =,6NP AO AB m ===,O 为111A B C △的中心,且111A B C △边长为6m ,∴16sin 603ON =⨯⨯︒=,故:ON AP ==,//EF BC ,∴AP EPAM BM=,∴3EP=,解得:EP m =,在11B C 截取1B Q EP m ==,故2QN m =, 1B Q EP =且1//B Q EP ,∴四边形1B QPE 是平行四边形,∴1//B E PQ ,由(1)11B C ⊥平面1A AMN ,故QPN ∠为1B E 与平面1A AMN 所成角,在Rt QPN △,根据勾股定理可得:PQ ===sin10QN QPN PQ ∴∠===∴直线1B E 与平面1A AMN10.(2020•全国3卷)下图为某几何体的三视图,则该几何体的表面积是( )【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△∴该几何体的表面积是:632=⨯++故选:C.11.(2020•全国3卷)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOCS S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=2r ,其体积:343V r π==..12.(2020•全国3卷)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值. 【解析】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG =,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F , ()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的法向量为()111,,m x y z =,由0m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-, 设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,cos ,3m n m n m n⋅<>===⨯⋅ 设二面角1A EF A--的平面角为θ,则cos 7θ=,sin7θ∴==. 因此,二面角1A EF A --的正弦值为7.13.(2020•江苏卷)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】2π【解析】正六棱柱体积为262⨯,圆柱体积为21()222ππ⋅=所求几何体体积为2π,故答案为: 2π14.(2020•江苏卷)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB . 由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C . (2)由于1B C ⊥平面ABC ,AB平面ABC ,所以1B C AB ⊥.由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C , 由于AB平面1ABB ,所以平面1AB C ⊥平面1ABB .15.(2020•新全国1山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°【答案】B【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选:B16.(2020•新全国1山东)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =, 因为5AP =,所以45AGP ︒∠=,因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥,即OAH △为等腰直角三角形;在直角OQD △中,52OQ r =-,72DQ =-,因为3tan 5OQ ODC DQ ∠==,所以2125=,解得r =等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+.故答案为:542π+.17.(2020•新全国1山东)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1DBCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,1D E ,所以||EP ===所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==.故答案为:2.18.(2020•新全国1山东)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 【解析】(1)证明: 在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC , 又因为AD ⊂平面PAD ,平面PAD平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥ 且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D =所以l ⊥平面PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-, 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即0y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则cos ,3n PB n PB n PB⋅<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于|cos ,|n PB <>===≤≤=,当且仅当1m =时取等号,所以直线PB 与平面QCD .19.(2020•天津卷)若棱长为则该球的表面积为( ) A. 12π B. 24πC. 36πD. 144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.20.(2020•天津卷)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以CA 、CB 、1CC 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),可得()0,0,0C 、()2,0,0A 、()0,2,0B 、()10,0,3C 、()12,0,3A 、()10,2,3B 、()2,0,1D 、()0,0,2E 、()1,1,3M .(Ⅰ)依题意,()11,1,0C M =,()12,2,2B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥; (Ⅰ)依题意,()2,0,0CA =是平面1BB E 的一个法向量,()10,2,1EB =,()2,0,1ED =-.设(),,n x y z =为平面1DB E 的法向量,则100n EB n ED ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x z +=⎧⎨-=⎩,不妨设1x =,可得()1,1,2n =-.cos ,2C CA n A C nA n ⋅<>===⋅⨯, 230sin ,1cos ,CAn CA n ∴<>=-<>=.所以,二面角1B B E D --;(Ⅰ)依题意,()2,2,0AB =-.由(Ⅰ)知()1,1,2n=-为平面1DB E 的一个法向量,于是cos ,22AB n AB nAB n⋅<>===⋅.所以,直线AB 与平面1DB E 21.(2020•浙江卷)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143C. 3D. 6【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭.故选:A22.(2020•浙江卷)已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 故答案为:123.(2020•浙江卷)如图,三棱台DEF —ABC 中,面ADFC ⊥面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I )证明:EF ⊥DB ;(II )求DF 与面DBC 所成角的正弦值.【解析】(Ⅰ)作DH AC ⊥交AC 于H ,连接BH .∵平面ADFC ⊥平面ABC ,而平面ADFC 平面ABC AC =,DH ⊂平面ADFC , ∴DH ⊥平面ABC ,而BC ⊂平面ABC ,即有DH BC ⊥.∵45ACB ACD ∠=∠=︒,∴2CD BC CH ==⇒=. 在CBH 中,22222cos 45BH CH BC CH BC BC =+-⋅︒=,即有222BH BC CH +=,∴BH BC ⊥.由棱台的定义可知,//EF BC ,所以DH EF ⊥,BH EF ⊥,而BHDH H =,∴EF ⊥平面BHD ,而BD ⊂平面BHD ,∴EF DB ⊥. (Ⅱ)因为//DF CH ,所以DF 与平面DBC 所成角即为与CH 平面DBC 所成角. 作HG BD ⊥于G ,连接CG ,由(1)可知,BC ⊥平面BHD ,因为所以平面BCD ⊥平面BHD ,而平面BCD 平面BHD BD =,HG ⊂平面BHD ,∴HG ⊥平面BCD .即CH 在平面DBC 内的射影为CG ,HCG ∠即为所求角.在Rt HGC △中,设BC a =,则CH =,BH DH HG BD ⋅===,∴sinHG HCG CH ∠===.故DF 与平面DBC24.(2020•上海卷)在棱长为10的正方体.1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,点P 到1AA 的距离为2,则过点P 且与1A C 平行的直线交正方体于P 、Q 两点,则Q 点所在的平面是( )A.11AA B BB. 11BB C CC. 11CC D DD. ABCD 【答案】D 【解析】延长BC 至M 点,使得=2CM ,延长1C C 至N 点,使得3CN =,以C M N 、、为顶点作矩形,记矩形的另外一个顶点为H ,连接1A P PH HC 、、,则易得四边形1A PHC 为平行四边形,因为点P 在平面11ADD A 内,点H 在平面11BCC B 内,且点P 在平面ABCD 的上方,点H 在平面ABCD 下方,所以线段PH 必定会在和平面ABCD 相交,即点Q 在平面ABCD 内25.(2020•上海卷)已知边长为1的正方形ABCD ,沿BC 旋转一周得到圆柱体。