各种换热器的构造原理
各类换热器的应用说明原理

各类换热器的应用说明原理简介换热器是一种将热量从一个介质传递到另一个介质的热交换设备。
在工业生产和生活中,换热器广泛应用于各种设备和系统中,如供暖系统、制冷系统、化工工艺等。
本文将介绍几种常见的换热器以及它们的应用和工作原理。
1. 管壳式换热器管壳式换热器是一种常见的换热器类型,它由一个管束和一个外壳组成。
管束中流动的介质通过与外壳中流动的介质之间进行热量传递来实现换热的目的。
管壳式换热器的应用范围非常广泛,可以用于蒸汽凝结、液体冷却、气体冷却等。
•优点:–效率高:由于管壳式换热器内部的多个传热管,可以提高换热效率。
–维护方便:由于管束和外壳是分离的,维护和清洁较为方便。
•缺点:–体积大:由于管壳式换热器结构相对复杂,体积较大。
–成本高:制造和安装管壳式换热器需要较高的成本。
2. 板式换热器板式换热器由多个金属板组成,通过板与板之间形成的流通通道进行热量传递。
板式换热器适用于低粘度液体或气体的换热,常见应用于冷却器、热水系统等。
•优点:–效率高:板式换热器的流通通道狭窄,可以实现高效换热。
–占用空间小:相比管壳式换热器,板式换热器体积较小。
•缺点:–清洁难度大:板与板之间的流通通道较小,清洁维护困难。
–不能耐受高压:由于板与板之间的连接方式,板式换热器不能耐受高压。
3. 螺旋板式换热器螺旋板式换热器是一种将多个螺旋形金属板组成的换热器,通过螺旋形结构增加热交换面积,提高换热效率。
螺旋板式换热器适用于高粘度介质或含固体颗粒的介质。
•优点:–高效换热:螺旋形金属板的结构增加了热交换面积,提高了换热效率。
–适用于多种介质:螺旋板式换热器适用于高粘度介质、含固体颗粒的介质等。
•缺点:–制造难度大:螺旋板式换热器的制造相对复杂,制造成本较高。
–清洁困难:由于螺旋形结构的特殊性,清洁维护较为困难。
4. 管内换热器管内换热器是一种直接在管内实现换热的设备,适用于液体或气体的换热。
它通常由一个或多个管道组成,通过液体或气体在管道内流动进行热量传递。
换热器的工作原理

换热器的工作原理换热器是一种用于传递热量的设备,它在许多工业和日常生活中的应用中起着重要的作用。
换热器的工作原理是通过热传导和对流来实现热量的传递。
一、换热器的基本结构换热器通常由两个流体流经的管道组成,这两个流体分别称为“工质”和“介质”。
工质是需要被加热或者冷却的物质,而介质则是用来传递热量的物质。
换热器的基本结构包括以下几个主要部份:1. 管束:管束是由一系列平行罗列的管子组成的,工质和介质在这些管子中流动。
2. 管板:管束两端的管子通过管板连接起来,形成一个封闭的系统。
3. 壳体:壳体是用来容纳管束的外壳,它通常由金属制成,具有良好的导热性能。
4. 进出口管道:工质和介质通过进出口管道进入和离开换热器。
二、换热器的工作原理换热器的工作原理可以分为两个基本过程:传导和对流。
1. 传导过程传导是指热量通过固体物质的传递。
在换热器中,工质和介质之间通过管壁进行热量的传导。
当工质的温度高于介质的温度时,热量会从工质传导到介质中,使介质的温度升高。
相反,当工质的温度低于介质的温度时,热量会从介质传导到工质中,使工质的温度升高。
2. 对流过程对流是指热量通过流体的传递。
在换热器中,工质和介质通过流动来实现热量的传递。
当工质和介质在管束中流动时,它们会通过对流的方式进行热量交换。
具体来说,当工质经过管束时,它会将热量传递给介质,使介质的温度升高。
同时,介质也会将冷却的热量传递给工质,使工质的温度降低。
三、换热器的热量传递方式换热器的热量传递方式可以分为三种:对流传热、辐射传热和传导传热。
1. 对流传热对流传热是指热量通过流体的传递。
在换热器中,工质和介质通过流动来实现热量的传递。
当工质和介质在管束中流动时,它们会通过对流的方式进行热量交换。
对流传热的速率取决于流体的流速、流体的物理性质以及管束的结构。
2. 辐射传热辐射传热是指热量通过电磁波的辐射传递。
在换热器中,工质和介质之间的热量传递也会通过辐射的方式进行。
暖气换热器工作原理

暖气换热器工作原理1.循环流动:暖气换热器通过循环泵将热水从锅炉或其他热源处抽取,然后通过管道输送到换热器内部。
换热器内部有一组密集排列的金属片或管道,使得水在其中流动,从而使热能可以顺利传递给空气。
2.辐射传热:暖气换热器内的金属片或管道被热水加热后,会向四周散发热能。
这种方式被称为辐射传热,通过辐射传热,暖气换热器可以将热能传递给周围的物体和空气。
3.对流传热:暖气换热器内的热水加热空气接触的同时,也会引起空气的对流运动。
当空气接触到热的金属片或管道时,会被加热并上升,然后向周围空间扩散。
同时,较冷的空气由于密度较大,会下沉并再次接触到金属片或管道,形成一个对流循环。
通过对流传热,暖气换热器可以将热能迅速传递给室内空气。
在这个过程中,暖气换热器起到一个传导热能的媒介的作用。
热水通过金属片或管道与室内空气进行热交换,从而使空气温度升高。
当空气吸收足够的热能后,它们会变得温暖,并被送到室内空间,起到供暖的作用。
1.温度调节:暖气换热器可以通过调整热源的温度来控制室内的供暖温度。
通过增加热源的温度,可以提高空气温度;通过降低热源的温度,可以使空气变得更凉爽。
2.热能损失:在热水从锅炉到换热器的过程中,由于管道的存在,会导致一定的热能损失。
此外,暖气换热器在传递热能时也会有一些热能的散失,进一步降低了热能的利用效率。
3.连通性:暖气换热器通常通过管道连接到一个统一的热源,如锅炉。
这种连通性使得多个暖气换热器可以同时工作,从而为整个室内空间提供供暖。
总体来说,暖气换热器通过循环泵将热水从热源传递到换热器内部,然后通过辐射和对流传热的方式将热能传递给室内空气。
这种工作原理使得暖气换热器成为一种常见的供暖设备,广泛应用于家庭和商业建筑中。
换热器的原理及应用

换热器的原理及应用一、换热器的基本原理换热器是一种热交换设备,用于将热量从一个介质传递到另一个介质中。
其基本原理是利用不同温度的两种流体(或气体)之间的热传导,使它们在多个细小通道中进行流动,并通过这些通道的壁与介质之间进行换热。
换热器通常由两个主要部分组成:热源端和热载体端。
热源端是传递热量的一侧,热载体端是吸收热量的一侧。
换热器的基本工作原理如下:1.传热方式:换热器主要通过对流、传导和辐射的方式进行热传导。
2.热源端:热源端的流体吸收热量,并传递给换热器中的壁面。
3.热载体端:热载体端的流体通过与换热器的壁面接触,吸收热量进行传递。
4.换热器壁面:换热器壁面起到隔离两边流体的作用,并通过壁面的传导和对流换热,将热量从热源端传递到热载体端。
5.换热流体状态:换热器可以处理不同物态的流体,包括气体、液体和气液两相流体。
二、换热器的应用领域换热器是广泛应用于工业生产中的关键设备,其作用多种多样。
以下是一些典型的换热器应用领域的列举:1.供暖系统:供暖系统中的换热器将锅炉中的热水或蒸汽传递给房间内的暖气设备,用于供暖。
2.汽车冷却系统:汽车发动机冷却系统中的散热器,通过冷却剂的循环来降低发动机温度,保证发动机正常运行。
3.空调系统:空调系统中的蒸发器和冷凝器,通过制冷剂的循环工作,实现对空气的冷却或加热。
4.石油化工:在石油化工生产过程中,换热器用于原油加热、冷却和重整等工序。
5.核能领域:核电站中的换热器被用于冷却核反应堆中的燃料,并产生蒸汽驱动涡轮发电机。
6.食品加工:食品加工行业中的换热器,用于热交换、杀菌、蒸煮和冷却等工艺。
7.航空航天:飞机和火箭中的换热器,用于控制燃料温度和提供舒适的空调环境。
8.造纸业:造纸过程中,使用换热器来调节纸浆的温度,以实现最佳的造纸质量。
三、换热器的类型根据换热器的结构和工作原理,可以将其划分为多种类型。
以下是常见的几种换热器类型的介绍:1.管壳式换热器:管壳式换热器由一个外壳和许多平行或螺旋排列的管子组成。
换热器的工作原理

换热器的工作原理引言概述:换热器是一种用于传递热量的设备,广泛应用于工业生产和日常生活中。
它的工作原理基于热量传导和对流,通过将热量从一个物质传递到另一个物质,实现热能的有效利用。
本文将详细介绍换热器的工作原理及其五个主要部分。
一、传热介质1.1 热源介质:换热器的热源介质通常是高温的流体或气体。
当热源介质通过换热器时,其热量会传递给换热器的工作介质。
1.2 工作介质:工作介质是换热器中的传热介质,可以是液体或气体。
当工作介质经过换热器时,它会吸收热源介质传递过来的热量。
1.3 冷却介质:冷却介质是换热器中的另一个传热介质,用于吸收工作介质释放的热量。
冷却介质可以是水、空气或其他液体。
二、传热方式2.1 对流传热:对流传热是换热器中最常见的传热方式。
当热源介质与工作介质接触时,热量通过对流传递,即热源介质的热量通过流体的流动传递给工作介质。
2.2 导热传热:导热传热是指热量通过固体传递的过程。
在换热器中,导热传热主要发生在换热器的壁体上,热源介质的热量通过壁体传递给工作介质。
2.3 辐射传热:辐射传热是指热量通过电磁辐射传递的过程。
在换热器中,辐射传热主要发生在换热器的壁体和介质之间,热量以电磁波的形式传递。
三、换热器的结构3.1 管式换热器:管式换热器是最常见的一种换热器类型。
它由一组管子组成,热源介质和工作介质分别流过管内和管外,通过管壁的导热传热实现热量的传递。
3.2 板式换热器:板式换热器由一组平行排列的金属板组成,热源介质和工作介质分别流过板间和板面,通过对流传热和导热传热实现热量的传递。
3.3 壳管式换热器:壳管式换热器由一个外壳和一组管束组成,热源介质和工作介质分别流过壳侧和管侧,通过对流传热和导热传热实现热量的传递。
四、换热器的性能参数4.1 热效率:热效率是换热器传递热量的效率,一般用换热器输出的热量与输入的热量之比来表示。
4.2 压降:压降是指流体在换热器中流动时产生的压力损失。
换热器原理与设计

换热器原理与设计
换热器是一种机械设备,它的主要作用是在不同流体之间传递热能,从而从一个流体系统中转移热量到另一个流体系统中。
换热器分为直接换热器和间接换热器,其原理主要是外壳换热器,波纹管换热器,盘管换热器和桥壳换热器等。
外壳换热器分为管状换热器和壳状换热器。
它们通常使用曲线管形式,由放置在外部壳体内部的内管,围绕其外表面运动流体,然后与外管的外表面冷却流体热量。
波纹管换热器主要由内管、定子、波纹管等组成。
定子和波纹管与内管圆柱体内壁紧密地结合在一起,外管和内管之间形成空气层,从而形成热隔离结构。
翅片的弯曲和相互结合使流体在接触的表面上有更大的传热效果。
盘管换热器是由管状容器、盘管、流体分配器等组成。
界面上的接触面积大,配有叶片,用于促进流体混合,以改善传热效率,热阻参数小,容量很大,传热量可以满足较高的工况要求。
桥壳换热器由内壳,节流器,外壳,内外壳组成。
内壳和外壳之间有一个空气层填充,节流器将内壳和外壳连接,形成内外流体两侧的热交换界面,实现内外流体的热量传递。
动图详解:九种换热器的工作原理

动图详解:九种换热器的工作原理换热器是在不同温度的两种或两种以上流体间实现热量传递的节能设备,对于大面积供热而言,换热器的存在必不可少。
按照换热器的传热方式,换热器可分为三大类:直接接触式换热器,也叫混合式换热器,是冷热流体进行直接接触并换热的设备。
通常情况下,直接接触的两种流体是气体和汽化压力较低的液体;蓄能式换热器的工作原理,是利用固体物质的导热特性,具体而言,热介质先将固体物质加热到一定温度,冷介质再从固体物质获得热量,通过此过程可实现热量的传递;间壁式换热器,也是利用了中介物的热传导,冷、热两种介质被固体间壁隔开,并通过间壁进行热量交换。
对于供热企业而言,间壁式换热器的应用最为广泛。
根据结构的不同,它还可划分为管式换热器、板式换热器和热管换热器。
一、管壳式换热器管壳式换热器又称列管式换热器。
是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。
这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。
▲管壳式换热器根据所采用的补偿措施,管壳式换热器可分为固定管板式换热器、浮头式换热器、U型管式换热器、填料函式换热器等四种类型。
二、固定管板式换热器固定管板式换热器是管壳式换热器的一种。
固定管板式换热器两端的管板采用焊接的方式与壳体连接,主要由外壳、管板、管束、顶盖(封头)等部件构成。
▲固定管板式换热器固定管板式换热器的优点是:◆结构简单;◆在相同的壳体直径内,排管数最多,旁路最少;◆每根换热管都可以进行更换,且管内清洗方便。
固定管板式换热器的缺点是:◆壳程不能进行机械清洗;◆当换热管与壳体的温差较大(大于50℃)时会产生温差应力,解决措施是在壳体上设置膨胀节,因而壳程压力受膨胀节强度的限制不能太高;◆只适用于流体清洁且不易结垢,两流体温差不大或温差较大但壳程压力不高的工作场合。
三、浮头式换热器浮头换热器是管壳式换热器的一种,它有一端管板不与外壳相连,可以沿轴向进行自由浮动,也称为浮头。
六种换热器的原理及介绍

介绍
管式换热器在各种工业和民用领域中得到广泛应用,如石油化工、电力、供暖等。其优点 包括结构简单、易于制造、成本低、适应性强等。然而,管式换热器的流体阻力较大,需 要较高的泵送功率。此外,其热传导效率相对较低
3
原理
壳管式换热器是一种通过将热流体和冷流体分别流过相互平行的壳体和管束来实现热量交 换的设备。热量通过管壁传导给壳体中的冷流体,从而实现热量交换。壳管式换热器具有 较高的传热效率和较强的适应性
感谢观看
20XX年XX月
介绍
螺旋板式换热器在各种工业领域 中得到广泛应用,如石油化工、 电力等。其优点包括较高的紧凑 性、较低的流体阻力、能够处理 高温高压流体等。然而,螺旋板 式换热器的制造和维护较为复杂 ,成本相对较高。此外,其传热 效率相对较低
5
原理
翅片式换热器是一种通过在金属表面加工出翅片来增强传热效果的设备。它通过将冷热流 体分别流过翅片表面,通过翅片的扩展表面来增大传热面积,从而实现热量交换。翅片式 换热器具有较高的传热效率和较强的适应性
介绍
壳管式换热器在各种工业和民用 领域中得到广泛应用,如制冷、 化工等。其优点包括较高的传热 效率、较强的适应性、能够处理 各种类型的流体等。然而,壳管 式换热器的体积较大,需要较大 的安装空间。此外,其成本相对 较高
4
原理
螺旋板式换热器是一 种由两块螺旋形金属 板组成的热交换器。 它通过将冷热流体分 别流过金属板的内外 侧,通过金属板的热 传导和流体之间的对 流来实现热量交换。 螺旋板式换热器具有 较高的紧凑性和较低 的流体阻力
介绍
板式换热器在各种工业和民用领域中得到了 广泛应用,如供暖、制冷、工业制程中的加 热和冷却等。其优点包括高效能量转换、低 成本、易于维护和清洁等。然而,板式换热 器的流体阻力较大,对流体的清洁度要求较 高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种换热器的构造原理、特点
■螺旋板式换热器的构造原理、特点:
螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。
它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。
按结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。
■列管式换热器的构造原理、特点:
列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。
■换热设备介绍:换热设备是实现化工生产过程中热量交换和传递不可缺少的设备。
在热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造换热设备的材料具有抗强腐蚀性能。
它可以用石墨、陶瓷、玻璃等非金属材料以及不锈钢、钛、钽、锆等金属材料制成。
但是用石墨、陶瓷、玻璃等材料制成的有易碎、体积大、导热差等缺点,用钛、钽、锆等稀有金属制成的换热设备价格过于昂贵,不锈钢则难耐许多腐蚀性介质,并产生晶间腐蚀。
■管壳式换热器的构造原理、特点:
管壳式换热器是进行热交换操作的通用工艺设备。
广泛应用于化工、石油、石油化工、电力、轻工、冶金、原子能、造船、航空、供热等工业部门中。
特别是在石油炼制和化学加工装置中,占有极其重要的地位。
换热器的型式。
■容积式换热器的构造原理、特点:
自动控温节能型容积式热交换器,它充分利用蒸汽能源、高效、节能,是一种新型热水器。
普通热水器一般需要配置水水热交换器来降低蒸汽凝结水温度以便回用。
而节能型热交换器凝结水出水温度在45℃左右,或直接回锅炉房重复使用。
这样减少了设备投资,节约热交换器机房面积,从而降低基建造价,因此节能型容积式热交换器深受广大设计、用户单位欢迎。
钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。
它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水质量好。
钢壳内衬铜的厚度一般为1.0mm。
钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有防真空阀。
此阀除非定期检修是绝对不能取消的。
部分真空的形成原因可能是排出不当,低水位时从热交换器,或者排水系统不良。
水锤或突然的压力降也是造成压负的原因。
■浮头式换热器的构造原理、特点:
浮头式换热器其一端管板与壳体固定,而另一端的管板可以在壳体内自由浮动。
壳体和管束对热膨胀是自由的,故当两种介质的温差较大时,管束与壳体之间不会产生温差应力。
浮头端设计成可拆结构,使管束可以容易地插入或抽出,这样为检修和清洗提供了方便。
这种形式的换热器特别适用于壳体与换热管温差应力较大,而且要求壳程与管程都要进行清洗的工况。
■管式换热器的构造原理、特点:
DLG型列管式换热器利用热传导和热辐射的原理,烟道气通过管程与逆流通过壳程的空气进行能量交换,从而达到输出洁净热空气的目的。
该换热器结构紧凑,运行可*,列管采用耐高温的薄壁波纹管,增加发传热面积和换热效率。
广泛应用于化工、制药、轻工等行业废气余热利用和空气加热。
■热管换热器的构造原理、特点:
热管是一种高效传热元件,其导热能力比金属高几百倍至数千倍。
热管还具有均温特性好、热流密度可调、传热方向可逆等特性。
用它组成热管换热器不仅具有热管固有的传热量大、温差小、重量轻体积小、热响应迅速等特点,而且还具有安装方便、维修简单、使用寿命长、阻力损失小、进、排风流道便于分隔、互不渗漏等特点。
热管是由内壁加工有槽道的两端密封的铝(轧)翅片管经清洗并抽成高真空后注入最佳液态工质而成,随注入液态工质的成分和比例不同,分为KLS低温热管换热器、GRSC-A中温热管换热器、GRSC-B高温热管换热器。
热管一端受热时管内工质汽化,从热源吸收汽化热,汽化后蒸汽向另一端流动并遇冷凝结向散热区放出潜热。
冷凝液借毛细力和重力的作用回流,继续受热汽化,这样往复循环将大量热量从加热区传递到散热区。
热管内热量传递是通过工质的相变过程进行的。
将热管元件按一定行列间距布置,成束装在框架的壳体内,用中间隔板将热管的加热段和散热段隔开,构成热管换热器。
热管是由美国发明的,最初被用于航天技术和核反应堆,以解决向阳面和背阴面受热不均匀。
20世纪90年代被用于民用空调,由于其优越的导热性,受到越来越广泛的重视,目前在计算机、雷达等高科技领域被广泛应用。
■汽水换热器的构造原理、特点:
该换热器是在板式换热器的基础上加装降温与降压器而组成的,利用调节器对高蒸汽或高温水进行一级换热使之降之150℃以下。
进入板式换热器进行换热,适用于高温蒸汽及高温水(150℃以上)。
这种装置集板式换热器同时具有降温与降压器的优点。
使换热器更加充分地进行热量交换。
■空气换热器的构造原理、特点:
加热炉窑为了降低能耗,在烟道中设置空气换热器,以回收烟气中的大量余热,达到节约燃料、降低生产成本,提高燃烧温度、增加炉子的产量。
空气换热器是余热利用的理想设备,在轧钢加热炉、热处理炉、煅造加热炉等各种工业炉窑上得到广泛应用。
炉用空气换热器的种类很多,目前国内外绝大多数采用的是金属换热器,空气换热器是利用炉窑排出的尾气热量将空气预热至一定的温度后返回炉内助燃或用于其它设备。
金属换热器具有体积小、热交换效率高、严密性好、结构简单等特点。
■波纹管换热器的构造原理、特点:
产品特点一种新型的强化传热节能型高效换热设备,在传统列管式换热器的基础上,采用强化传热技术,是对传统各类换热器的重大突破。
公称通径DN325~2000mm;公称压力P0.6~.4Mpa;换热管规格Ф19,Ф25,Ф32,Ф42.壁厚0.5~1.0;工作介质水-水、汽-水、油-水、油-油等多种换热介质。
总传热系数水-水K=2000~3500w/㎡;汽-水K=2500~4000w/㎡;其它介质视介质物理性能及工况而定。
优性能传热效率高,防腐能力好,不污、不堵、不易结垢,无需维护,密封可*,运行平稳,占地少,节省投资。
■石墨换热器的构造原理、特点:
圆块孔式石墨换热器由柱形不渗透性石墨换热块、石墨上下盖和其间的氟氧橡胶(或柔性石墨)O型圈及金属外壳、压盖等组装而成。
是目前较先进、性能较优越的一种石墨换热器。
圆柱形石墨换热块有较高的结果强度,并易与解决密封问题;在密封中采用氟橡胶(或柔性石墨)O 型圈密封介质,加装压力弹簧作为热胀冷缩的自动补偿,以起到密封保持作用;采用短通道提高紊流程度使设备结构度高、耐温耐压性能强、抗热冲击性能好、体积利用率高、传热效果好并便于装拆检修。
设备纵向孔走腐蚀性介质,横向孔走非腐蚀性介质。
■换热机组的构造原理、特点:
换热机组是一次热网与用户之间的直接桥梁,从一次热网得到热量,自动连续地转换为用户需要的生活用水及采暖用水,适用于空调(供暖供冷),采暖,生活用水(洗浴)或其他换热回路(如地板供热,工艺水冷却等)。
换热机组与中华人民共和国建设部发布的板式换热机组城镇建设行业标准保持高度一致,也可根据客户的具体要求和实际工况设计加工非标准机组。
换热机组由板式换热器、循环水泵、补水泵、过滤器、阀门、机组底座、热计量表、配电箱、电子仪表及自控系统等组成。
热源的蒸汽或高温水从机组的一次侧供水口进入板式换热器,二次侧的低温回水经过过滤器除污,通过循环泵也进入板式过滤器,两种不同温度的水经过热交换,二次侧将热量输送给热用户。