换热器及换热原理

合集下载

九种换热器的工作原理

九种换热器的工作原理

九种换热器的工作原理换热器是在不同温度的两种或两种以上流体间实现热量传递的节能设备,对于大面积供热而言,换热器的存在必不可少。

按照换热器的传热方式,换热器可分为三大类:直接接触式换热器,也叫混合式换热器,是冷热流体进行直接接触并换热的设备。

通常情况下,直接接触的两种流体是气体和汽化压力较低的液体;蓄能式换热器的工作原理,是利用固体物质的导热特性,具体而言,热介质先将固体物质加热到一定温度,冷介质再从固体物质获得热量,通过此过程可实现热量的传递;间壁式换热器,也是利用了中介物的热传导,冷、热两种介质被固体间壁隔开,并通过间壁进行热量交换。

对于供热企业而言,间壁式换热器的应用最为广泛。

根据结构的不同,它还可划分为管式换热器、板式换热器和热管换热器。

1、管壳式换热器管壳式换热器又称列管式换热器。

是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。

这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。

管壳式换热器根据所采用的补偿措施,管壳式换热器可分为固定管板式换热器、浮头式换热器、U型管式换热器、填料函式换热器等四种类型。

2、固定管板式换热器固定管板式换热器是管壳式换热器的一种。

固定管板式换热器两端的管板采用焊接的方式与壳体连接,主要由外壳、管板、管束、顶盖(封头)等部件构成。

固定管板式换热器的优点是:结构简单;在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。

固定管板式换热器的缺点是:壳程不能进行机械清洗;当换热管与壳体的温差较大(大于50℃)时会产生温差应力,解决措施是在壳体上设置膨胀节,因而壳程压力受膨胀节强度的限制不能太高;只适用于流体清洁且不易结垢,两流体温差不大或温差较大但壳程压力不高的工作场合。

3、浮头式换热器浮头换热器是管壳式换热器的一种,它有一端管板不与外壳相连,可以沿轴向进行自由浮动,也称为浮头。

空气水换热器工作原理

空气水换热器工作原理

空气水换热器工作原理
1. 空气进入换热器:空气通过风机被抽入换热器内部。

2. 空气与水接触:在换热器内部,空气与流经换热器的水进行接触,通过水在管束内流动,与管外的空气进行热交换。

3. 热传递:热传递是通过对流和传导两种方式进行的。

当空气与水接触时,空气中的热量通过对流传递给水,同时水中的热量通过对流传递给空气。

这样,空气和水之间的热量就得以交换。

4. 空气被排出:热交换后的空气被从换热器中抽出排放到室外。

5. 循环往复:换热器会不断循环上述步骤,直至达到预定的换热效果。

需要注意的是,空气水换热器在工作过程中不消耗水资源,只是通过与流经其中的水进行热交换来实现对空气的加热或降温。

这使得空气水换热器成为一种比较经济、环保的换热设备。

暖气换热器工作原理

暖气换热器工作原理

暖气换热器工作原理1.循环流动:暖气换热器通过循环泵将热水从锅炉或其他热源处抽取,然后通过管道输送到换热器内部。

换热器内部有一组密集排列的金属片或管道,使得水在其中流动,从而使热能可以顺利传递给空气。

2.辐射传热:暖气换热器内的金属片或管道被热水加热后,会向四周散发热能。

这种方式被称为辐射传热,通过辐射传热,暖气换热器可以将热能传递给周围的物体和空气。

3.对流传热:暖气换热器内的热水加热空气接触的同时,也会引起空气的对流运动。

当空气接触到热的金属片或管道时,会被加热并上升,然后向周围空间扩散。

同时,较冷的空气由于密度较大,会下沉并再次接触到金属片或管道,形成一个对流循环。

通过对流传热,暖气换热器可以将热能迅速传递给室内空气。

在这个过程中,暖气换热器起到一个传导热能的媒介的作用。

热水通过金属片或管道与室内空气进行热交换,从而使空气温度升高。

当空气吸收足够的热能后,它们会变得温暖,并被送到室内空间,起到供暖的作用。

1.温度调节:暖气换热器可以通过调整热源的温度来控制室内的供暖温度。

通过增加热源的温度,可以提高空气温度;通过降低热源的温度,可以使空气变得更凉爽。

2.热能损失:在热水从锅炉到换热器的过程中,由于管道的存在,会导致一定的热能损失。

此外,暖气换热器在传递热能时也会有一些热能的散失,进一步降低了热能的利用效率。

3.连通性:暖气换热器通常通过管道连接到一个统一的热源,如锅炉。

这种连通性使得多个暖气换热器可以同时工作,从而为整个室内空间提供供暖。

总体来说,暖气换热器通过循环泵将热水从热源传递到换热器内部,然后通过辐射和对流传热的方式将热能传递给室内空气。

这种工作原理使得暖气换热器成为一种常见的供暖设备,广泛应用于家庭和商业建筑中。

换热器的工作原理

换热器的工作原理

换热器的工作原理换热器是一种用于传递热量的设备,它在许多工业和家庭应用中起着至关重要的作用。

换热器的工作原理是通过热传导和对流来实现热量的传递和交换。

下面将详细介绍换热器的工作原理。

一、热传导热传导是指热量通过物质内部的分子碰撞传递的过程。

在换热器中,热量从高温区域传递到低温区域。

换热器通常由金属材料制成,如铜、铝或不锈钢,这些材料具有良好的热传导性能,能够有效地传递热量。

二、对流对流是指通过流体(如液体或气体)的流动来传递热量的过程。

在换热器中,热量通过流体的对流传递到另一侧。

换热器通常分为两个流体通道,分别为热源侧和冷却侧。

热源侧的流体通常是高温的,而冷却侧的流体通常是低温的。

热源侧的流体通过换热器时,会释放热量给冷却侧的流体,从而使两侧的温度差减小。

三、换热器的结构换热器通常由一系列平行的管道或片状结构组成。

这些管道或片状结构被称为换热面。

热源侧的流体通过换热面时,热量会通过热传导从流体传递到换热面上。

然后,冷却侧的流体通过换热面时,热量会通过对流从换热面传递给流体。

这样,热量就从热源侧传递到冷却侧,实现了热量的交换。

四、换热器的类型根据不同的应用需求,换热器可以分为多种类型。

以下是几种常见的换热器类型:1. 管壳式换热器:管壳式换热器由一个管束和一个外壳组成。

热源侧的流体通过管束,而冷却侧的流体通过外壳。

这种换热器适用于高温和高压的应用。

2. 板式换热器:板式换热器由一系列平行的金属板组成。

热源侧和冷却侧的流体分别通过板间隙,实现热量的传递。

板式换热器具有紧凑的结构和高效的换热性能。

3. 螺旋板式换热器:螺旋板式换热器由一系列螺旋形的金属板组成。

热源侧和冷却侧的流体分别通过螺旋通道,实现热量的传递。

螺旋板式换热器具有较高的换热效率和较小的压力损失。

4. 换热管束:换热管束由一系列平行排列的管道组成。

热源侧和冷却侧的流体分别通过管道,实现热量的传递。

换热管束适用于高温和高压的应用。

五、换热器的应用换热器广泛应用于各个领域,包括工业生产、能源系统、空调系统等。

换热器的工作原理

换热器的工作原理

换热器的工作原理换热器是一种用于传递热量的设备,它的工作原理是利用流体之间的热交换实现热量的传递。

换热器广泛应用于工业生产、能源系统、空调系统等领域,起到了重要的热能转移作用。

换热器的工作原理可以简单描述为热量传导和对流传热的过程。

下面将详细介绍换热器的工作原理。

1. 热量传导:换热器中的热量传导是指热量通过固体壁板的传递。

换热器通常由两个流体流经相邻的金属壁板,热量从一个流体通过壁板传递给另一个流体。

这种热量传导是通过壁板的份子振动和碰撞实现的。

壁板通常是由导热性能较好的金属材料制成,如铜、铝、不锈钢等。

2. 对流传热:对流传热是指热量通过流体的传递。

换热器中的两个流体在壁板两侧形成为了对流层,热量通过对流层的传递完成热交换。

对流传热受到流体的流速、流体性质以及壁板的热传导性能等因素的影响。

换热器的工作原理可以分为两种类型:直接传热和间接传热。

1. 直接传热:直接传热是指两个流体直接接触并交换热量。

例如,水和蒸汽在换热器中直接接触并交换热量。

这种方式通常适合于两个流体之间温度差较小的情况。

直接传热的优点是传热效率高,但由于两个流体直接接触,可能存在污染、腐蚀等问题。

2. 间接传热:间接传热是指两个流体通过壁板进行热量传递,彼此之间不直接接触。

例如,热水通过管道流经换热器的壁板,与空气进行热量交换。

这种方式通常适合于两个流体之间温度差较大的情况。

间接传热的优点是能够避免两个流体之间的混合和污染。

换热器的性能评价指标主要包括传热系数、压降和换热面积。

1. 传热系数:传热系数是指单位面积上的热量传递量。

传热系数越大,换热器的传热效率越高。

传热系数受到流体性质、流速、壁板材料等因素的影响。

2. 压降:压降是指流体通过换热器时的压力损失。

压降越小,流体通过换热器的阻力越小,能耗也就越低。

压降受到流速、管道长度、管道直径等因素的影响。

3. 换热面积:换热面积是指用于热量传递的有效面积。

换热面积越大,热量传递的面积也就越大,传热效率也会提高。

换热器流程

换热器流程

换热器流程一、换热器的工作原理换热器的工作原理基于热力学和传热学的知识。

根据热力学第一定律,热量是一种能量,它可以从热源流向冷源,也可以从冷源流向热源。

而根据传热学的知识,热量的传递是通过传热介质(如水、蒸汽、空气等)或导热体(如金属制成的管道、板式换热器等)来实现的。

换热器的工作原理可以简单概括为:将需要加热的介质(如水)和加热介质(如蒸汽)通过换热器传热,使得需要加热的介质的温度升高,而加热介质的温度变化较小。

换热器的工作原理主要包括传热介质和换热介质的流动,以及通过导热体传递热量的过程。

具体来说,换热器的工作原理包括了以下几个关键步骤。

(1) 传热介质和换热介质进入换热器。

通常情况下,传热介质和换热介质分别进入换热器的两端,彼此在换热器中进行热量传递。

(2) 传热介质和换热介质之间通过导热体进行热量传递。

在换热器中,传热介质和换热介质之间一般是通过导热体进行热量传递的,导热体可以是管道、板式换热器等。

(3) 传热介质和换热介质之间的热量传递。

当传热介质和换热介质通过导热体进行热量传递时,传热介质的温度会升高,而换热介质的温度一般变化较小。

(4) 传热介质和换热介质分别流出换热器。

当传热介质和换热介质传热结束后,它们分别流出换热器,完成换热过程。

通过上述步骤,换热器可以实现传热介质和换热介质之间的热量传递,从而实现加热或冷却的目的。

换热器的工作原理可以简化为传热介质和换热介质之间的热量传递过程,通过传热介质流动和换热介质流动实现热量传递,从而达到加热或冷却的目的。

二、换热器的流程换热器的流程是指传热介质和换热介质在换热器中的流动过程,包括传热介质和换热介质的进入、热量传递和流出等环节。

换热器的流程通常包括以下几个方面。

(1) 传热介质的流动。

在换热器中,传热介质一般是通过管道或其他流体输送装置进入换热器的一端,然后在换热器中流动,经过热量传递后再从另一端流出。

传热介质的流动过程通常是由泵等设备驱动的。

换热器工作原理

换热器工作原理

换热器工作原理换热器是一种用于传输热能的机械设备,它通过介质之间的接触来进行热传递。

它主要用于在两个不同介质之间传递热量。

它具有体积小,换热面积大,起作用快,抗堵塞能力强,可靠性高,封装结构紧凑,维护保养简单,运行成本低等优点。

换热器是利用物料的热能而发生的不同程度的热传导作用来改变换热器的温度和状态的装置,它主要用于液体和气体的对流热交换。

换热器的工作原理可以总结为三种:对流热交换原理、涡流热交换原理和传热原理。

(1)t对流热交换原理:是指在换热器内,介质间的温差通过物体表面形成热辐射,其好处是:(1)像素变小,增加了热交换比;(2)相对于涡流热交换,对流热交换具有噪声较低的特点;(3)对温度和压力都很敏感。

(2)t涡流热交换原理:它是通过涡流热交换的原理,在换热器内,介质通过涡流的形式传递热能,这样可以有效地提高传热效率。

它的优点是:(1)小尺寸,紧凑;(2)可抗震动;(3)可调节;(4)外形美观;(5)低压差换热率高。

(3)t传热原理:是指在换热器内,介质通过器件内部介质传热,形成一个完全封闭的空间,并且在这个封闭空间中形成净热流,这样,可以进行有效、高效的传热。

它的优点在于:(1)操作简单;(2)保温性能好;(3)热交换效率高;(4)对温度变化比较灵敏。

以上是换热器的工作原理,它的优势使它应用于工业、冶金、化工、机械及其他行业。

换热器的设计和使用一般遵守一定的规范,需要考虑物料的温度、压力、流量及流体性质等因素。

此外,制造时要考虑介质、结构、规格等,以保证换热器的养护保养和使用寿命。

换热器由法兰、管壳、管程、散热片、螺旋板等组件组成,换热器的设计及制造标准规定了换热器的一些特性及设计要素,如流体的流量、温度、压力,介质的流性能及换热效果等。

考虑到使用环境、温度、流量、介质特性等,换热器的设计尺寸、材料以及结构形式等都要相应地作出相应的调整。

换热器的正确使用、维护、抽检和保养极其重要,必须按照正确的技术方法进行,如定期检查换热器内外的介质,定期检查换热器的螺旋板及其他零部件,定期清洗换热器,及时调整换热器的工作参数等。

换热器原理

换热器原理

换热器原理换热器是一种利用热传导原理将一种流体的热量传递给另一种流体的设备。

它在温度梯度的存在下将热能从高温的一端传给低温的另一端,从而实现多种物质的能量交换并促进其变化。

换热器广泛应用于石油化学、机械冷却、采暖、水力发电、给排水系统等行业,是一种能够实现热量转换的重要设备。

换热器的构成换热器一般由四个部分组成:热交换器,冷凝室,温度传感器和管道。

热交换器是换热器的核心部分,其中包含有两种相互碰撞的流体,即介质流体和控制流体,以热量的形式在两种流体之间传递换热。

冷凝室是换热器中一种重要的部件,它是用于将介质流体和控制流体分隔开,以减少两种流体之间的相互熔合,并同时保证两种流体之间的温度平衡。

温度传感器是换热器中一个重要的部件,它用于测量介质流体和控制流体之间的温度差,以便于确定换热效率。

管道是换热器中最为重要的部件,它负责将介质流体和控制流体连接起来,并将他们传递到相应的热交换器及冷凝室中,以保证流体的流动性和温度的不变。

换热器的原理换热器的工作原理与热传导有关。

它通过热传导原理,将两种流体之间的温度梯度作为激发因素利用拉维尼(Lavini)转移原理,让介质流体向控制流体传递热量,使得介质流体的温度减少,控制流体的温度增加。

这种传递的过程任何时候都只能单向,不会产生反向热量传递的现象,使得换热器在保持稳定的工作状态下发挥最大的能效。

换热器的分类换热器的分类方式有很多,可以按不同的依据,比如:结构角度,按内部流体分类,按换热角度,按特殊用途等进行划分。

根据换热器的结构角度,可以将它分为散热器、传热管、换热片、管壳型换热器、槽壳型换热器和复合型换热器等几种类型。

根据换热器内部流体的不同分类,可以将其分为水换热器、油换热器、气换气热器、气换油热器、气换水热器以及对流换热器等几种主要类型。

根据换热方式的不同分类,可以将其分为直接传热热器、间接传热热器、热沉热器、被动式换热器、主动式换热器和湍流换热器等几类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图示
持热管简介
必要性及设计原理
• 正确的热处理要求牛乳在杀菌温度下保持一定 的时间,这可以通过外设保持管来实现。 • 若已知流量和保持管的内管径,就可以计算出 符合保持时间的合适的管长。
设计原理
• 由于保持管里流速分布不均匀,某些牛乳 粒子的流速要比平均值大。为了确保流速 最快的粒子也能充分地巴氏杀菌,必须采 用一效率系数来校正。这个系数取决于保 持管的设计,通常取0.8~0.9 之间。
工作示意图
补充
焊接式的板式换热器
• • • • 多用于水汽换热,具有很高的集成度 高换热系数,体积小,薄型材料 不用密封圈,铜\镍或钎焊接不锈钢成紧凑直 角型的包状 易于安装,高换热效率,低成本 抗腐蚀性强,抗震,耐高温,高压
图示
总结
板式热交换器是一种新型、高效的节能热 交换设备,它具有换热效率高,结构紧凑, 重量轻,适应性强,热损失少,可拆卸, 可清洗,装拆和维修方便等特点,主要应 用于液液、液汽热交换,特别适用于各种 工艺过程中的加热、冷却、热回收、冷凝 及食品消毒等方面.
公式解释
• • • • • p = 产品的密度 Cp = 产品的比热 △ t = 产品的温度变化 △ tm = 对数平均温差(LMTD) K = 总传热系数
单项分析
• 流量V,是由乳品厂的设计能力决定的。 • 产品密度p 由产品决定。比热cp也由产品 决定,比热值告诉我们将某种物质温度升 高1℃,需提供多少热量。
基础概念
层流:当流体以较小的流速流经管道时,流体成 平稳状态通过全管,流体的质点作平行运动,与 旁侧的流体并无宏观的混合,此流动形态称之为 层流。 湍流:当流体以较高流速流经管道时,流体成波 动状态,并形成旋涡向四周散开,与旁侧的流体 相混强,使流 体以对流方式传热,因而随着湍动程度的增 强传热的效果会更好,而层流使流体主要以 传导的方式进行传热。显而易见湍流状态下 的传热效果要比层流状态下的传热效果好。
特别介绍
影响总传热系数K的要素: • 液体允许的压力降 • 液体的粘度 • 间壁的形状和厚度 • 间壁的材料 • 污垢物质的存在
分析
• 产品和介质的压力降越大,传递的热量越多, 热交换器越小。然而对机械搅拌敏感的产品(例 如乳脂肪)可能会因这种剧烈的处理而坏。 • 产品和使用介质的粘度对于确定热交换器的尺 寸也是非常重要的。与低粘度的产品相比,高 粘度的液体在通过热交换器时,产生紊流的程 度小,如果其它参数一定,这就意味着需要较 大的热交换器。
换热器面积的计算
热交换器必需的尺寸和结构取决于很多因 素,要计算是非常复杂的,当今通常借助 于计算机进行计算。有几种因素一定要加 以考虑: • 产品流量 • 液体的物理性质

• • • • • 温度程序 允许的压力降 热交换器的设计 清洁度的要求 要求运行的时间
热交换器中逆流传热的温度分配
热交换器中并流传热的温度分配
污垢聚集的速度取决于很多因素
• • • • 产品和加热介质的温差 牛乳质量 产品中空气的含量 加热段的压力条件

• 利用热流体,如巴氏杀菌乳的热量来预热 进口的冷牛乳的方法称之为热回收。冷牛 乳也可以冷却热牛乳。这样可以节省水量 和能量。在现代化的巴氏杀菌装置中(板 换),热回收效率可达94-95%。
分析
• 间壁通常是波纹状,以实现更剧烈的紊流。 紊流有助于传热,厚度也十分重要。间壁 越薄,传热效果越好。但是这个厚度要有 足够的强度来承受液体的压力。现代化的 设计和生产技术使得间壁比几年前的更薄。 • 食品加工中通常采用不锈钢材料,不锈钢 有相当好的传热性能
• 加热介质和产品的温差要尽可能地小,通常比杀 菌温度高2-3℃/4-5 ℃ 。 • 相对于产品来说,如果间壁表面太热,牛乳中的 蛋白质将会有凝结并在间壁上结焦的危险。热量 必须通过这一垢层进行传递,这将导致总传热系 数K 值下降。加热介质和产品的温差与以前相同 时,也不能传递同样多的热量,产品的出口温度 将会下降。这可以通过提高加热介质的温度来补 偿,但这又提高了传热表面的温度,以致更多的 蛋白质凝结在换热器表面上,垢层的厚度增加,
单项分析
• 产品的进口温度和出口温度取决于前段加工 情况和后续加工的要求:Δ t1= Δ to1- Δ ti1 • 所用介质的进口温度取决于加工条件,介质 的出口温度可以用能量平衡公式计算得出: V1 × P1 x Cp1 ×△ t1 = V2 × P2 x Cp2 ×△ t2
单项分析
• 温度差异是传热推动力,温差越大,传热越多, 所需的热交换器越小;然而,对于敏感性产品, 可利用的温差是有限的。温差随着液体流经热 交换器而不断变化,所以,温差用一个平均值, LTMD进行计算。决定平均温差大小的一个重 要因素是介质在热交换器中的流动方向。它主 要有两种形式:逆流或并流
通常使用的多管道的管式热交换是基于传 统的列管式热交换器的原理,其产品流过 一组平行的通道,提供的介质围绕在管子 的周围,通过管子和壳体上的螺旋波纹, 产生紊流,实现有效的传热。
补充说明
同一段内可能使用不同规格/模式的管式热交 换器 • 规格:包括外部套管的管径-内部列管的管径 -内部列管的数量-总长度 • 模式:常见的有A B C D四种模式,主要由 外部套管上介质进出口的位置决定
标识介绍
整体结构
管式换热器: 管式热交换器,不同于板式热交换器,它 在产品通道上没有接触点,这样它就可以 处理含有一定颗粒的产品,颗粒的最大直径 取决于管子的直径.
整体结构
在UHT处理中,管式热交换器要比板 式热交换器运行的时间长。从热传递 的观点看,管式热交换器比板式热交 换器的传热效率低
工作原理
本次培训结束
如何进行热交换
热交换系统通常是以热传导和对流两种方式进 行热交换的。热传导是热量传递的一种常见的 方式,其过程中流体各部位之间不发生相对的 位移;对流是流体各部分质点发生相对位移而 引起的热量传递过程。对流分为强制对流与自 然对流,强制对流是使用机械能(如搅拌)使 流体发生对流而传热,比如我们为了冷却一杯 咖啡会不停的搅拌它;自然对流是因流体受热 而有密度的局部变化,导致发生对流而传热。
常用类型:
• 板式换热器(PHE)
• 管式换热器(THE)
整体结构
板式换热器:
• 板片设计成传热效果最好的瓦楞型,板组 牢固地压紧在框中,瓦楞板上的支撑点保 持各板分开,以便在板片之间形成细小的 通道。
整体结构及图
液体通过板片一角的孔 进出通道。改变孔的开 闭,可使液体从—通道 按规定的线路进入另一 通道。板周边和孔周边 的垫圈形成了通道的边 界,以防向外渗漏与内 部液流混合。
相关文档
最新文档