动态系统建模与仿真
电力系统的动态建模与仿真

电力系统的动态建模与仿真电力系统是一个复杂而庞大的系统,涉及到发电、输电和配电等多个环节。
为了确保电力系统的稳定运行,了解和预测电网中的各种动态行为是相当重要的。
因此,电力系统的动态建模与仿真成为了电力领域研究的重要方向之一。
本文将探讨电力系统动态建模与仿真的相关内容。
一、电力系统的动态行为电力系统的动态行为主要包括电力负荷的变化、电网故障的发生以及电力设备的开关行为等。
这些行为都会对电力系统的稳定性和可靠性产生影响。
了解这些动态行为可以帮助电力系统运营人员进行故障处理、优化调度以及更好地保障供电质量。
电力负荷的变化是电力系统中最主要的动态行为之一。
随着社会的发展,电力负荷呈现出多样化和不确定性。
例如,天气变化会引起家庭和企业的用电需求发生波动,而季节性的负荷变化则会对电网的稳定性产生挑战。
了解电力负荷的动态变化趋势对于电力系统的规划和调度至关重要。
电网故障的发生是另一个重要的动态行为。
故障可以是电力设备的短路、断开或者其他异常情况,这会导致电网的局部或者整体运行出现问题。
例如,一条输电线路的短路故障可能导致周边地区的电力中断,而变压器的损坏可能会引发设备连锁故障。
通过建立电力系统的动态模型,可以预测故障的发生和传播路径,提前进行故障处理,减少故障对电力系统的影响。
二、电力系统的动态建模电力系统的动态建模是通过数学和物理方法,把电网中的各种动态行为用模型进行描述。
在建模过程中,需要考虑电力设备之间的连接关系、能量传输以及系统中的控制和保护机制等因素。
电力系统的动态建模可以采用多种方法,其中最常见的方法之一是基于微分方程的状态空间模型。
该模型能够描述电力系统中各种元件的动态行为和相互作用。
例如,发电机的机械运动方程、电动机的电磁方程以及线路元件的电流与电压关系等。
通过求解这些微分方程,可以获得电力系统在不同时间点上的状态。
此外,电力系统的动态建模还可以采用基于概率和统计的方法。
这种方法通过收集和分析大量的实际运行数据,建立电力系统动态行为的概率模型。
直升机飞行控制系统动态建模与仿真

直升机飞行控制系统动态建模与仿真一、引言直升机是一种垂直起降的飞行器,在现代社会中扮演着重要的角色,广泛应用于军事、民用、医疗、物流等领域。
其飞行控制系统的设计和开发具有十分重要的意义。
直升机的飞行控制系统包括机械设计部分和电子控制部分。
机械设计部分主要包括主旋翼叶片、尾旋翼、机身结构等,而电子控制部分则主要包括传感器、执行器、控制器等。
其中,飞行控制系统的设计不仅需要考虑直升机的稳定性、可靠性和飞行性能等问题,还需要考虑到其复杂的结构和多变的工作环境。
本文旨在通过动态建模和仿真的方法,分析直升机飞行控制系统的工作原理和控制机理,进而提高其稳定性和可靠性,为直升机的应用提供技术支撑。
二、直升机的基本结构直升机是一种可以垂直起降的旋翼飞行器,它具有以下基本结构:(1)旋翼系统旋翼系统是直升机的主要部分,包括主旋翼和尾旋翼。
主旋翼通过旋转产生升力和推力,使直升机获得升力和前进动力。
尾旋翼主要用于平衡机身的姿态和控制机身的方向。
(2)机身结构机身结构是直升机的框架,承担着旋翼系统和发动机的重量。
机身结构的主要材料是铝合金、钛合金、复合材料等。
(3)发动机发动机是直升机的动力系统,一般采用燃气轮机或柴油机。
发动机的功率主要决定着直升机的飞行性能和载荷能力。
(4)电子控制装置电子控制装置是直升机的核心部件,主要负责控制旋翼系统的运动和控制机身的姿态。
电子控制装置包括传感器、执行器和控制器等。
三、直升机控制系统的组成直升机的控制系统由传感器、执行器和控制器三部分组成。
(1)传感器传感器是直升机控制系统的输入部分,可以测量飞机的姿态、速度、位置和加速度等参数。
传感器的主要类型包括角速度陀螺仪、加速度计、地磁传感器、气压计等。
(2)执行器执行器是直升机控制系统的输出部分,根据控制器的指令对飞机进行姿态控制和位置控制。
执行器的主要类型包括电动舵机、平衡阀、电动水平面和液压阀等。
(3)控制器控制器是直升机控制系统的核心部件,它接收传感器的信号,计算控制指令,并将其发送给执行器进行控制。
离散事件动态系统建模与仿真技术研究

离散事件动态系统建模与仿真技术研究离散事件动态系统(Discrete Event Dynamic System,DEDS)是一种用来描述离散事件的数学模型,其在集成电路设计、制造业、物流管理、网络通信等领域中得到了广泛应用。
离散事件动态系统建模和仿真技术是研究这一领域的关键问题之一。
I. 离散事件动态系统简介离散事件动态系统是一种将时间分为离散事件的模型,该模型针对每个事件进行计算,以决定模型的下一个状态。
每个事件的时间戳都是不同的,一次模拟可以包含大量的事件,事件之间可能会有多种关系,这是离散事件模拟的特点。
常见的离散事件动态系统包括排队系统、自动控制系统、网络系统、供应链系统、交通系统等,可以应用于机器人系统、智能交通、虚拟现实等领域。
II. 离散事件动态系统建模离散事件动态系统的建模是指将动态的系统描述成一个离散事件模型的过程,常用的建模框架包括Petri网、DEVS和CTPN等。
Petri网是描述离散事件模型的一种图形化建模语言,其由Petri网元素和变迁组成。
当一个Petri网达到一个使变迁操作成为可能的状态时,变迁将被激活。
Petri网允许对分布式系统进行实时分析和检验,并允许通过变形分析系统行为的改变。
DEVS是离散事件系统建模技术的一种形式化表达,其通过定义系统组件之间的输入输出以及它们之间的转移逻辑来描述系统行为。
DEVS模型一般包含四个部分,输入信号、状态、事件响应函数和状态转移函数。
CTPN是一种图形化建模语言,它通过两个主要元素,控制流程和时间约束,来建模系统的动态行为。
控制流程用于表示系统中的活动和控制流,时间约束表示活动之间的时间上限和下限。
III. 离散事件动态系统仿真离散事件动态系统仿真技术是为了模拟离散事件系统的行为,以便分析和预测其性能。
通常,离散事件动态系统仿真需要从实际系统的模型出发,将系统的模型转换成计算机程序,利用程序模拟实际系统不同的状态和事件,并通过这些状态和事件来推断系统的行为。
电气工程中的电力系统动态建模与仿真

电气工程中的电力系统动态建模与仿真在当今社会,电力作为支撑现代文明的基石,其稳定、高效的供应对于经济发展和人们的日常生活至关重要。
电气工程中的电力系统动态建模与仿真技术,作为保障电力系统安全、稳定、经济运行的重要手段,正发挥着日益关键的作用。
电力系统是一个极其复杂且庞大的系统,它由发电、输电、变电、配电和用电等多个环节组成。
为了深入理解电力系统的运行特性,预测其在不同工况下的动态行为,以及优化系统的设计和运行策略,我们需要借助电力系统动态建模与仿真技术。
电力系统动态建模,简单来说,就是将电力系统中的各种元件和设备,如发电机、变压器、输电线路等,用数学模型来描述其电气特性和动态行为。
这些数学模型通常基于物理定律和工程经验,通过一系列的方程和参数来表达。
例如,发电机的模型通常包括其电磁特性、机械运动特性以及控制系统的特性等。
而输电线路的模型则需要考虑电阻、电感、电容等参数,以及线路的分布特性。
在建立数学模型时,需要对实际的电力系统进行合理的简化和假设。
这是因为电力系统的复杂性使得完全精确的模型难以建立和求解。
通过适当的简化,可以在保证一定精度的前提下,大大降低模型的复杂度,提高计算效率。
然而,简化也需要谨慎进行,过度的简化可能导致模型无法准确反映电力系统的实际行为,从而影响分析和决策的准确性。
有了数学模型,接下来就是进行仿真。
电力系统仿真就是利用计算机技术,按照一定的算法和步骤,对建立的数学模型进行求解,以得到电力系统在不同条件下的运行状态和动态响应。
通过仿真,我们可以模拟电力系统在正常运行、故障发生、设备投切等各种情况下的电压、电流、功率等参数的变化,从而评估系统的稳定性、可靠性和经济性。
在电力系统仿真中,常用的算法包括时域仿真算法和频域仿真算法。
时域仿真算法直接求解电力系统的微分方程和代数方程,能够较为准确地反映系统的暂态过程,但计算量较大,适用于小规模系统和短时间的仿真。
频域仿真算法则通过将电力系统的方程转换到频域进行求解,计算效率较高,适用于大规模系统的稳态分析和小信号稳定性分析。
飞行器动力系统的动态建模与仿真

飞行器动力系统的动态建模与仿真在现代航空航天领域,飞行器动力系统的性能和可靠性至关重要。
为了更好地设计、优化和预测飞行器动力系统的工作特性,动态建模与仿真是一种不可或缺的工具。
飞行器动力系统是一个复杂的多学科交叉领域,涵盖了热力学、流体力学、燃烧学、机械工程等多个学科的知识。
其主要组成部分包括发动机、燃料供应系统、进气系统、排气系统等。
发动机作为核心部件,又可以分为多种类型,如喷气式发动机、涡轮螺旋桨发动机、火箭发动机等,每种类型都有其独特的工作原理和性能特点。
动态建模是对飞行器动力系统的物理过程和行为进行数学描述的过程。
通过建立精确的数学模型,可以捕捉到系统中各种参数之间的关系,以及它们随时间的变化规律。
例如,对于喷气式发动机,建模需要考虑空气的吸入、压缩、燃烧、膨胀和排出等过程。
在建模过程中,需要运用各种数学方法和理论,如微分方程、偏微分方程、数值分析等。
在建立模型时,首先要对系统进行合理的简化和假设。
这是因为实际的飞行器动力系统非常复杂,如果不进行简化,建模将变得极其困难甚至无法实现。
然而,简化也需要谨慎进行,以确保模型能够准确反映系统的主要特性和关键行为。
例如,在建模燃烧过程时,可以假设燃烧是均匀的、完全的,但同时需要考虑实际中可能存在的燃烧不完全、火焰传播速度等因素的影响。
模型的参数确定是建模过程中的一个关键环节。
这些参数通常包括物理常数、几何尺寸、材料特性等。
获取参数的方法有多种,如实验测量、理论计算、参考已有文献和数据等。
实验测量可以提供最直接和准确的参数值,但往往受到实验条件和设备的限制。
理论计算则基于物理定律和数学公式,可以在一定程度上预测参数值,但计算过程可能较为复杂。
参考已有文献和数据可以节省时间和成本,但需要对数据的可靠性和适用性进行评估。
建立好模型后,接下来就是进行仿真。
仿真就是利用计算机软件对建立的模型进行数值求解,以得到系统在不同工况下的性能参数和输出结果。
仿真软件通常包括专业的航空航天仿真工具,如MATLAB/Simulink、ANSYS Fluent 等。
Matlab中的动态系统建模与仿真

Matlab中的动态系统建模与仿真Matlab是一种专业的数学计算软件,被广泛应用于工程、科学和经济等领域。
它提供了一系列强大的工具,使得动态系统的建模与仿真变得更加简便和高效。
本文将介绍在Matlab中进行动态系统建模与仿真的方法和技巧,以及应用领域的案例分析。
一、动态系统建模动态系统是指随时间变化的系统,包括物理系统、生物系统、经济系统等。
动态系统建模是通过数学模型来描述系统的运动规律和行为。
在Matlab中,可以利用函数、方程和状态空间等方法进行动态系统的建模。
1.1 函数建模函数建模是最基本的建模方法之一。
使用函数可以将系统的输入与输出之间的关系表示为一个简单的数学表达式。
例如,对于一个简单的弹簧振子系统,可以用下面的方程描述其运动:m * x''(t) + k * x(t) = 0其中,m是质量,k是弹簧的劲度系数,x(t)是位置关于时间的函数,x''(t)是加速度的二阶导数。
通过利用Matlab的符号计算工具箱,可以求解这个运动方程,并得到系统的解析解。
这种方法适用于简单系统和已知解析解的情况。
1.2 方程建模方程建模是一种更加通用的建模方法。
通过列写系统的动态方程和边界条件,可以得到系统的数学模型。
例如,对于一个控制系统,可以利用微分方程来描述系统的运动规律。
然后,可以利用Matlab的ode工具箱来求解这个微分方程。
这种方法适用于非线性系统和复杂系统的建模。
1.3 状态空间建模状态空间建模是一种描述系统状态和输入输出之间的关系的方法。
通过定义状态向量和状态方程,可以将系统的动态行为表示为一个状态空间模型。
在Matlab 中,可以使用ss函数来构建状态空间模型,并利用sim函数进行仿真。
这种方法适用于线性系统和多输入多输出系统的建模。
二、动态系统仿真动态系统仿真是指通过在计算机上运行模型来模拟系统的行为。
在Matlab中,可以利用仿真工具箱实现动态系统的仿真。
动态系统建模与仿真的方法与技巧介绍

动态系统建模与仿真的方法与技巧介绍动态系统建模与仿真是指通过数学模型和计算机仿真来描述和预测系统在不同时间下的行为和性能。
这种方法被广泛应用于各个领域,如物理学、工程学、经济学、生物学等。
正确地进行动态系统的建模和仿真可以帮助我们深入理解系统的运行机制,优化系统的设计,以及预测系统的未来发展。
在动态系统建模与仿真中,有许多方法与技巧可供选择。
以下是一些常见的方法和技巧,可以帮助我们进行有效的建模和仿真:1. 系统边界定义:在建模前,首先需要明确定义系统的边界。
系统边界决定了哪些因素和变量需要纳入模型以及哪些可以被忽略。
合理的系统边界定义对于建模的准确性和可行性至关重要。
2. 变量识别和选择:在建模过程中,需要识别和选择与系统行为密切相关的变量。
这些变量可以是系统的输入、输出或者内部状态,对于模型的准确性和有效性有重要影响。
辨别关键变量是建模的关键一步。
3. 建立数学模型:建立数学模型是动态系统建模的核心任务。
不同的系统往往需要不同的数学模型来描述。
常见的数学模型包括微分方程、差分方程、概率模型等。
选择合适的数学模型并根据实际情况确定模型参数是建模过程中的关键步骤。
4. 参数估计和校准:一个准确的数学模型必须经过参数估计和校准,以确保模型输出与实际观测值相吻合。
参数估计可以基于统计方法、最小二乘法等进行,校准后的模型可以更加准确地描述系统的行为。
5. 系统仿真:通过数值计算和计算机仿真技术,将建立的数学模型转化为一个可以在计算机上运行的模拟系统。
通过仿真,可以观察系统在不同输入条件下的行为和性能,预测系统的未来发展趋势,并进行性能优化与决策支持。
6. 灵敏性分析:灵敏性分析用于评估模型输出对输入变量的响应程度。
这可以帮助我们了解各个输入变量对系统性能的贡献程度,进一步优化系统设计和运行。
7. 验证与验证:建立的数学模型和仿真结果需要与实际观测数据进行验证与验证。
验证是指通过对比模型输出与实际观测值的差异来评估模型的准确性。
如何使用MATLABSimulink进行动态系统建模与仿真

如何使用MATLABSimulink进行动态系统建模与仿真如何使用MATLAB Simulink进行动态系统建模与仿真一、引言MATLAB Simulink是一款强大的动态系统建模和仿真工具,广泛应用于各个领域的工程设计和研究中。
本文将介绍如何使用MATLAB Simulink进行动态系统建模与仿真的方法和步骤。
二、系统建模1. 模型构建在MATLAB Simulink中,可以通过拖拽模块的方式来构建系统模型。
首先,将系统的元件和子系统模块从库中拖拽到模型窗口中,然后连接这些模块,形成一个完整的系统模型。
2. 参数设置对于系统模型的各个组件,可以设置对应的参数和初始条件。
通过双击模块可以打开参数设置对话框,可以设置参数的数值、初始条件以及其他相关属性。
3. 信号连接在模型中,各个模块之间可以通过信号连接来传递信息。
在拖拽模块连接的同时,可以进行信号的名称设置,以便于后续仿真结果的分析和显示。
三、系统仿真1. 仿真参数设置在进行系统仿真之前,需要设置仿真的起止时间、步长等参数。
通过点击仿真器界面上的参数设置按钮,可以进行相关参数的设置。
2. 仿真运行在设置好仿真参数后,可以点击仿真器界面上的运行按钮来开始仿真过程。
仿真器将根据设置的参数对系统模型进行仿真计算,并输出仿真结果。
3. 仿真结果分析仿真结束后,可以通过查看仿真器界面上的仿真结果来分析系统的动态特性。
Simulink提供了丰富的结果显示和分析工具,可以对仿真结果进行绘图、数据处理等操作,以便于对系统模型的性能进行评估。
四、参数优化与系统设计1. 参数优化方法MATLAB Simulink还提供了多种参数优化算法,可以通过这些算法对系统模型进行优化。
可以通过设置优化目标和参数范围,以及定义参数约束条件等,来进行参数优化计算。
2. 系统设计方法Simulink还支持用于控制系统、信号处理系统和通信系统等领域的特定设计工具。
通过这些工具,可以对系统模型进行控制器设计、滤波器设计等操作,以满足系统性能要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:经过半个多世纪的发展,仿真技术已经成为对人类社会发展进步具有重要影响的一门综合性学科。
本文对建模与仿真技术发展趋势作了比较全面的分析。
仿真建模方法更加丰富,更加需要仿真建模具有互操作性和可重用性,仿真建模与可信度评估成为仿真建模发展的重要支柱;仿真体系结构逐渐形成标准,仿真系统层次化、网络化已成为现实,仿真网格将是下一个重要发展方向;仿真应用领域更加丰富,向复杂系统领域发展,并将更将贴近人们的生活。
经过半个多世纪的发展,仿真技术已经成为人类社会发展进步具有重要影响的一门综合性学科。
仿真技术的领域不在局限于某些尖端学科技术研究领域,而成为一项被众多学科领域广泛采用的通用型技术。
半个世纪以来,仿真救赎一方面始终是建模技术、计算技术和其他信息技术最先的应用者,另一方面是对计算技术和网络技术等的发展不断提出新的挑战。
在我国建模与仿真方法是随着应用需求的发展不断的进步,近十年来仿真技术发展是沿着以应用需求牵引建模与仿真系统开发、以建模与仿真系统带动建模与仿真技术突破、以建模与仿真技术促进建模与仿真系统发展、将建模与仿真系统又服务于应用良性循环的道路向前发展。
仿真技术研究人员一方面不断地扩展仿真应用领域,另一方面,其他领域研究的丰富成果与不断促使仿真技术人员从新的角度、新的高度、新的广度认识建模与仿真。
在近半个世纪的积累和近十年的快速发展的基础上,建模与仿真技术已经成为以相似原理、模型理论、系统技术、信息技术以及仿真应用领域的有关专业技术为基础,以计算机系统、与应用相关的物理效应设备及仿真器为工具,利用模型对已有的或设想的系统进行研究、分析、实验与运行的一门综合性技术。
仿真建模的发展仿真是基于建模的活动,模型建立、实现、验证、应用是仿真过程不变的主题。
随着时代的发展,仿真模型包含的内容大大扩展,建模方法日益多样,模型交互性和重要性变的越来越重要,模型的校核与验证的成功为仿真中必要步骤。
-----------------------------------系统仿真学报杨明张冰王子才哈尔滨工业大学,哈尔滨150001基本概念系统:按照某些规律结合起来,互相作用、互相依存的所有实体的集合或总和。
模型:从特定应用角度,表达对象系统特征与特性的形式。
仿真:用物理模型或数学模型代替实际系统进行实验和研究。
对象系统:仿真、分析与研究的对象。
仿真系统:实施仿真的系统。
仿真分类:根据实现手段分类:物理仿真、数字仿真、混合仿真根据仿真时钟与实际时钟的比例关系分类:实时仿真、亚实时仿真、超实时仿真根据仿真对象状态时间特性分类:连续系统仿真、离散事件系统仿真相似理论是仿真的理论基础。
相似而非相同相似需要抓住重点特征重点特征因观察角度而改变1. 物理模型仿真几何相似:模型与原型的尺寸成比例,角度相等。
运动相似:模型流动与原型流动的流速场相似。
即速度三角形几何相似:动力相似:在原型流动和模型流动中,对应点作用有同样性质的力(即同名力),并且方向相同,大小成比例。
2. 模拟计算仿真用相对比较容易实现与调整的电气、电子系统对其它物理系统进行仿真。
3、数字仿真建立原型的数学模型。
直接对原型的数学、逻辑模型求解,分析原型的状态运动规律。
一)计算机仿真所谓计算机仿真就是建立系统数学模型,并利用该模型在计算机上运行,进行系统科学试验研究的全过程,如图4-3-2 所示。
由图可见.数学模型和仿真计算机是计算机仿真系统的核心。
按照所使用的仿真计算机类型(模拟机数字机和混合机)不同,计算机仿真被分为模拟仿真、数字仿真和数—模混合仿真。
模拟仿真出现在10 世纪50 年代:当时模拟机以并行高速运算,可直接联接实物设备,尤其适于解算微分方程的突出优点而风云一时,使模拟仿真成为计算机仿真的主流。
但是它存在精度低、元逻辑判断功能和存贮能力.且处理非线性能力差等严重缺陷,终于被后来的混合仿真和数字仿真所排挤,失去进一步发展势头。
实际系统模建学数数学模型图4-3-2 仿真模型建立仿真试验仿真计算60 年代至70 年代,空间技术发展推动了模拟机与数字技术相结合,从第一台混合计算机用于洲际导弹仿真后出现了混合仿真技术应用的黄金时代。
从仿真角度讲,混合机兼备模拟机和数字机在功能和性能上的优点,是复杂大系统实时仿真最理想的工具。
然而,由于它结构复杂、价格昂贵,很难在一般场合推广使用。
因此至今仅用于像航空、航天等少数部门和复杂大系统的实时仿真。
70 年代后,微电于技术和数字计算机的迅速发展,促进了全数字仿真技术的崛起。
至此混合仿真逐渐失去了实时仿真的垄断地位,而数字仿真以优良的性能价格比优势成为计算机仿真的主流。
80 年代的全数字仿真技术促进了仿真方法学、并行技术、多媒体技术、分布交互式仿真、虚拟现实技术的迅速发展,进而将计算机仿真从传统的工程领域扩展到社会、经济、生态、作战等非工程领域。
(二)计算机仿真技术发展的几个主要方面计算机仿真是以多种学科理论为基础,以计算机及相应的仿真软件为工具进行实验研究的理论和方法论体系,是一种综合性高技术和各学科的共用技术。
计算机仿真技术的发展涉及到多个方面的技术进步,其中最密切相关的是:仿真计算机、建模与验模、仿真环境、仿真方法学和仿真器研制与使用等。
现代仿真(1)现代仿真计算机及系统仿真计算机是计算机仿真的主要工具和核心。
正如前述,仿真计算机大体可分三类,即模拟机、数字机和混合机。
这些仿真计算机根据仿真规模和对象的不同,可以单独选用,亦可组合使用。
目前,仿真计算机结构体制已形成相当宽的型谱(参见图l—8)供用户选择,并有如下四类配置可以优选,即①分布式计算机系统;②并行处理机系统;②超小型机加外围阵列处理机(PAP);①混合汁算机系统。
除此,为了提高系统仿真效率还出现了各种仿真工作站ADRTS 最具代表性。
(2)建模与验模建模既是计算机仿真的重要内容,又是仿真的前提条件。
为了获得有效模型,必须进行模型的校核、验证和确认,即所谓验模。
仿真界一直在数学模型和仿真模型两个方面的建立和验模上作出了不懈努力,这些工作的主要方面包括:①研究新的建模方法,从而使传统的机理分析建模和实验统计建模,扩充到系统辨识建模、层次分析建模及定性推理建模等;②创造先进建模环境,如计算机辅助建模,利用先进仿真语言建模等;视专家系统在系统建模中的作用,不断完善专家系统的建模知识库,并致力于研制专用于系统建模的专家系统;④加强建模薄弱环节,如模型校核、验证和确认的技术研究工作。
为此,一些国家还成立了专门研究机构.统一管理和协调这方面工作。
(3)仿真环境提供先进的仿真环境是保证高质量和高效率仿真的极其重要的方面。
为此,仿真界在先进的仿真硬、软环境上努力探索,不断追求.产生了突破性进展,主要表现在:①在20 世纪60 年代以来出现了大量用于不同对象、不同领域的数字仿真语言和混合仿真语言的基础上研制出了集建模与仿真为一体的先进仿真语言SLAM,SIMAM 等;②多媒体技术用于仿真;③虚拟现实技术创造了更逼真的仿真环境;④分布交互式仿真技术实现了多地域、多节点的实时仿真交互,为巨系统仿真创造了环境条件。
(4)仿真方法学传统的仿真方法主要指在计算机上建立仿真模型并进行仿真研究的方法,因此无外乎是模拟仿真、数字仿真和混合仿其中的方法问题。
模拟仿真是一种相似仿真技术和方法,数字仿真是一种函数插值和数值积分算法,混合仿真自然是两者的有机结合。
这些方法曾对计算机仿真技术的发展起到了相当大的推动作用。
近l0 多年来.由于巨型复杂系统的研究,促二)三)第3 期( 总第84 期) No. 3 (SUM No. 84 )机械管理开发ME C HANICAL MANAGE ME NT AND DE VE LOPMENT2005 年6 月Jun . 200 5计算机仿真与建模初探王泽兵( 中北大学自动控制系山西太原030051)【要】在概述计算机仿真一般步骤的基础上详细地论述了摘连续的变量动态系统、离散的事件动态系统的仿真建模,并介绍计算机仿真在新型领域中的应用。
【关键词】计算机仿真计算机建模动态系统【中图分类号ITP391. 9 [文献标识码] B 【文章编号]1003 一773X(2005)03 一0087 一021 计算机仿真概述计算机仿真又称计算机模拟或计算机实验。
所谓计算机仿真就是建立系统模型的仿真模型进而在电子计算机上对该仿真模型进行模拟实验(仿真实验)研究的过程。
计算机仿真方法即以计算机仿真为手段,通过仿真模型模拟实际系统的运动来认识其规律的一种研究方法。
计算机仿真方法的产生是与电子计算机技术的发明和应用紧密相联的。
上世纪70 年代以来,随着数字计算机运算速度的大大提高以及相应的仿真软件的不断完善,数字计算机仿真得到很快发展,其应用范围也由各种工程领域扩展到非工程领域。
进人上世纪90 年代,计算机仿真技术又朝向智能化仿真(仿真技术与人工智能相结合) 、分布式并行处理仿真、仿真支持系统等方向发展。
目前,无论在科学研究还是技据系统的特点和仿真的要求选择合适的算法,当采用该算法建立仿真模型时,其计算的稳定性、计算精度、计算速度应能满足仿真的需要。
第三步是程序设计,即将仿真模型用计算机能执行的程序来描述,程序中还要包括仿真实验的要求,如仿真运行参数、控制参数、输出要求等。
程序检验一般是必不可少的。
一方面是程序调试,更重要的是检验所选仿真算法的合理性。
这是仿真过程的第四步。
第五步是对模型进行实验,这是实实在在的仿真活动,他根据仿真的目的对模型进行多方面的实验,相应地得到模型地输出。
仿真过程的第六步是要对仿真输出进行分析,也即对模型数据的处理,同时也是对模型的可信性进行检验。
3 动态系统的仿真建模模型与真实世界之间最重要的关系之一是抽象和术发工设中计机真术唤示强开和业计,算仿技者出大的威力,已成为人们研究复杂系统时不可缺少的一种手段,其成效十分显著。
然而,无论是什么样的仿真,都是以系统数学建模为基础,在一定假设条件下进行的信息处理过程,进而在仿真基础上进行实验研究。
2 计算机仿真的一般步骤仿真是基于模型的活动,首先要针对实际系统建立其模型,建模于形式化的任务是根据研究和分析的目的确定模型的边界,因为任何一个模型都只能反映实际系统的某一部分或某一方面,也就是说,一个模型只是实际系统的有限映象。
另一方面,为了使模型具有可信性,必须具备对系统的先验知识及必要的试验数据。
特别是,还必须对模型进行形式化处理,以得到计算机仿真所要求的数学描述。
模型可信性检验使建模阶段的最后一步,也是必不可少的一步。
只有可信的模型才能作为仿真的基础。
仿真建模是仿真过程的第二步,其主要任务是:根映射,建立抽象模型是仿真技术的关键。
模型分析方法是仿真建模的基本研究方法,通过模型分析与模型实验对实际系统认识、控制和优化。