排列组合经典课件 .ppt

合集下载

人教版三年级数学上册《排列组合》PPT课件

人教版三年级数学上册《排列组合》PPT课件

穿法二
穿法三
穿法四
穿法五
穿法六
2×3﹦6(种)
要求:小组中一人记录,其他同学陈述自己的点。
用1,2,3可以组合成哪些两位数?
B
A
小组合作讨论二:
12
13
21
23
31
32
十位
十位
十位
个位
个位
个位
猜一猜:
我今年读九年级了,我的班级是由1、2、3这三个数字组成的一个三位数,请你猜一猜我读的是多少班?
有的问题需要考虑到顺序,也就是结果和顺序有关,例如组成几位数这样的问题等
今后我们在遇到这些问题的时候一定要认真审题,看清楚问题的“隐含条件”
这节课我们学了什么
作业:
同学们回家后仔细观察周围环境中可搭配和组合的实物,自己搭配和组合。
123
132
213
231
312
321
考考你:饮料和点心只能各选一样,有几种不同的搭配方式?
3×2=6(种)







M
能组成哪几个不同的两位数呢?
48 96 98
28
26
46
43
93
从宁波到北京一共有几种走法?
北京 上海 火车 火车 8种
轮船
宁波
飞机
火车
飞机
汽车
我们知道了:
有的问题不用考虑到顺序,也就是说结果和顺序无关,例如握手、比赛等问题
排列与组合
点击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
学习目标:
01
我能找出简单事物的组合数。
02
我能用排列与组合的知识解决生活中的实际问题。

大学排列组合ppt课件

大学排列组合ppt课件

排列与组合的综合实例解析
总结词
通过综合实例,理解排列与组合在实际 问题中的应用。
VS
详细描述
通过一个复杂的问题,如安排一场活动或 者组织一次旅行,综合运用排列和组合的 知识来解决实际问题,并强调排列与组合 在解决实际问题中的重要性和关联性。
05
排列组合的解题技巧
解题思路分析
明确问题要求
01
首先需要清楚题目是关于排列还是组合的问题,排列需要考虑
04
排列组合的实例解析
排列实例解析
总结词
通过具体实例,深入理解排列的概念和计算方法。
详细描述
通过实际生活中的例子,如学生选课、物品的排列等,解释排列的概念,并介绍排列的计算公式,以及如何应用 这些公式解决实际问题。
组合实例解析
总结词
通过具体实例,深入理解组合的概念和计算方法。
详细描述
通过实际生活中的例子,如彩票中奖概率、选举代表等,解释组合的概念,并介绍组合的计算公式, 以及如何应用这些公式解决实际问题。
少?
答案解析
答案1
从5个人中选3个人参加会议共有 $C_{5}^{3} = 10$种不同的选法。
答案3
大于2000的三位数,首位数字可以为 2,3或4,共有$A_{3}^{1} times A_{4}^{2} = 36$种。
答案2
将4把椅子排好,共有$A_{5}^{3} = 60$种坐法。
答案4
不同的分法种数为$A_{5}^{4} = 120$种。
常见错误解析与避免方法
混淆排列与组合
遗漏情况
排列和组合是不同的概念,需要明确 题目要求,正确使用公式。
在解题过程中,需要注意不要遗漏某 些情况,例如在排列时需要考虑元素 的顺序,在组合时需要考虑元素的取 法。

排列组合ppt课件

排列组合ppt课件

排列的分类与计算方法
01
02
03
排列的定义
排列是指从给定个数的元 素中取出指定个数的元素 进行排序。
排列的分类
根据取出的元素是否重复 ,排列可分为重复排列和 不重复排列。
排列的计算方法
排列的计算公式为 nPr=n!/(n-r)!,其中n为 总元素个数,r为要取出的 元素个数。
组合的分类与计算方法
后再合并答案。
利用对称性
在某些问题中,可以利用对称性 来简化计算,例如在计算圆周率 时可以利用对称性来减少计算量

学会推理和猜测
在某些问题中,需要学会推理和 猜测,尝试不同的方法和思路,
以寻找正确的答案。
解题注意事项与易错点
注意细节
在解题过程中要注意细节,例如元素的重复、遗漏等问题,避免 出现错误。
组合的定义
组合是指从给定个数的元 素中取出指定个数的元素 进行组合,不考虑排序。
组合的分类
根据取出的元素是否重复 ,组合可分为重复组合和 不重复组合。
组合的计算方法
组合的计算公式为 nCr=n!/(r!(n-r)!),其中n 为总元素个数,r为要取出 的元素个数。
排列组合的复杂应用
排列与组合的应用
另一个应用是解决组合问题,例如,在从n个不同元素中 选出m个元素的所有组合的问题中,可以使用排列组合的 方法来解决。
排列组合在物理中的应用
排列组合在物理中也有着广泛的应用,其中最常见的是在量子力学和统计物理中 。例如,在量子力学中,波函数的对称性和反对称性可以通过排列组合来描述。
在统计物理中,分子和原子的分布和运动可以通过排列组合来描述。例如,在理 想气体中,分子的分布和运动可以通过组合数学的方法来描述。

排列组合问题17种方法ppt课件

排列组合问题17种方法ppt课件

C
6 9














30
将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素 排成一排的n-1个空隙中,所有分法数为
C m 1 n 1
31
练习题
1. 10个相同的球装5个盒中,每盒至少一 有多少装法?
C4 9
2 .x+y+z+w=100求这个方程组的自然数解 的组数
A
5 5
A A A
2 4
1 4
5 5
一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.
前排
后排
20
练习题
有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并 且这2人不左右相邻,那么不同排法的种数是______
346
21
重排问题求幂策略
把6名实习生分配到7个车间实习,共有 多少种不同的分法
解:完成此事共分六步:把第一名实习生分配 到车间有 种分法.
7
把第二名实习生分配
到车间也有7种分法,
依此类推,由分步计
7 6 数原理共有 种不同的排法
允许重复的排列问题的特点是以元素为研究 对象,元素不受位置的约束,可以逐一安排 各个元素的位置,一般地n不同的元素没有限 制地安排在m个位置上的排列数为 种
一个盒子装1个 (6)每个盒子至少1个
25
练习题 一个班有6名战士,其中正副班长各1人 现从中选4人完成四种不同的任务,每人 完成一种任务,且正副班长有且只有1人 参加,则不同的选法有________ 种 192

排列与组合ppt课件

排列与组合ppt课件
数。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。

排列组合的ppt课件免费

排列组合的ppt课件免费

题目2:从7个不同元素 中取出4个元素的组合数 ,其中某特定元素可以 不被取出。
答案1:$A_{7}^{4} A_{6}^{3} = 7 times 6 times 5 times 4 - 6 times 5 times 4 = 336$
答案2:$C_{7}^{4} C_{6}^{3} = frac{7 times 6 times 5 times 4}{4 times 3 times 2 times 1} - frac{6 times 5 times 4}{3 times 2 times 1} = 28$
排列组合问题的变种与拓展
排列组合问题的变种
如“带限制的不同元素的排列组合” 、“重复元素的排列组合”等,需要 进一步拓展学生的思路。
拓展方法
通过变种问题的解析,引导学生深入 思考排列组合问题,并掌握其变化规 律,为解决更复杂的问题打下基础。
04
CATALOGUE
排列组合的数学原理
排列组合的数学原理简介
数学教育的核心
排列组合是数学教育中的 重要内容,对于培养学生 的数学素养和解决问题的 能力具有重要意义。
解决排列组合问题的方法与技能
乘法原理
加法原理
乘法原理是解决排列组合问题的基础,通 过将各个独立事件的产生概率相乘,可以 计算出复合事件的产生概率。
加法原理用于计算具有互斥性的事件的概 率,通过将各个互斥事件的产生概率相加 ,可以得到总的产生概率。
解析方法
通过实例演示和讲授,帮助学生理解排列组合的基本概念和计算方法,同时引导 学生思考如何解决实际问题。
实际问题的排列组合解决方案
实际问题的排列组合
如“安排会议”、“排定演出节目单”、“安排生产计划” 等,需要结合具体情境进行分析。

高中数学排列与组合课件(经典)

高中数学排列与组合课件(经典)

或 A120 10 9 90
例3.(1)凸五边形有多少条对角线? (2)凸n( n>3)边形有多少条对角线? 解:(1) (5 3) 5 5
2
(2) (n 3) n
2
例4、在100件产品中有98件合格品,2件次品。产品 检验时,从100件产品中任意抽出3件。 (1)一共有多少种不同的抽法? (2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?
m个元素的组合数,用符号 Cnm表示.
注意: Cnm 是一个数,应该把它与“组合”区别开来.
如:从 a , b , c三个不同的元素中取出两个元素的所
有组合个数是: C32 3
如:已知4个元素a 、b 、 c 、 d ,写出每次取出两个
元素的所有组合个数是:C42 6
练一练
1.写出从a,b,c,d 四个元素中任取三个元素的所有组合。
(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 乙甲、丙甲、丁甲、丙乙、丁乙、丁丙
例1、一位教练的足球队共有17名初级学员,按照足球 比赛规则,比赛时一个足球队的上场队员是11人。问:
(1)这位教练从这17名学员中可以形成多少种学员上 场方案?
(2)如果在选出11名上场队员时,还要确定其中的守 门员,那么教练员有多少种方式做这件事情?
从7位同学中 选出3位同学 构成一个组合
剩下的4位同 对应 学构成一个组

从7位同学中 选出3位同学
从7位同学中 选出4位同学
的组合数
C
3 7
的组合C数74
即:C73 C74
思考二:上述情况加以推广可得组合数怎样的性质?
一般地,从n个不同元素中取出m个不同元素后,剩下n–m个元素, 因此从n个不同元素中取出m个不同元素的每一个组合,与剩下的n– m个元素的每一个组合一一对应,所以从n个不同元素中取出m个不同 元素的组合数,等于从这n个元素中取出 n-m个元素的组合数.即

种排列组合方法PPT课件.ppt

种排列组合方法PPT课件.ppt
同的盒内有_A__44种方法.
C 根据分步计数原理装球的方法共有__52_A__44 种方法.
练习:从6个男同学和4个女同学中,选出3个男同学和 2个女同学,分别担任五项不同的工作,一共有多少 种不同的分配方法?
四.相邻元素捆绑策略 例2.7人站成一排 ,其中甲乙相邻且丙丁相邻, 共 有多少种不同的排法.
C C C C C C C ____32__32_+___15__13 __42 _+____52 __52 _种.
三.排列组合混合问题先选后排策略
例.有5个不同的小球,装入4个不同的盒内,每盒 至少装一个球,共有多少不同的装法?
解:第一步从5个球中选出2个组成复合元共有C__52 种
方法.再把5个元素(包含一个复合元素)装入4个不
解:可先将甲乙两元素捆绑成整体并看成一个复合元 素,同时丙丁也看成一个复合元素,再与其它元素进 行排列,同时对相邻元素内部进行自排.
甲乙 丙丁
由分步计数原理可得共有
A
5 5
A
2 2
A
2 2
=480
种不同的排法
五.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞 蹈节目不能连续出场,则节目的出场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共
A 个有元A 素55 中种间,包第含二首步尾将两4舞个蹈空插位入共第有一种步排好4 的不6
同的方法.由分步计数原理,节目的不同顺6序
A 共有
A
5 5
4 6

相 独 独独相
六.固定顺序问题用除法策略
例4.7人排队,其中甲乙丙3人顺序一定,共有多少不 同的排法?
分法?
C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3号球装4号盒时,则4,5号球有只有1种
装法 5
3
4
3号盒
4号盒 5号盒
十一.实际操作穷举策略
例15.设有编号1,2,3,4,5的五个球和编号1,2
3,4,5的五个盒子,现将5个球投入这五
个盒子内,要求每个盒子放一个球,并且
恰好有两个球的编号与盒子的编号相同,.
有多少投法
解:从5个球中取出2个与盒子对号有__C_52__种
n个元素排成一排的
数为
C m一1 n班1
二 班
三n个-1空四隙中五 ,所六有分七法
班班班 班 班
练习题
10个相同的球装5个盒中,每盒至少一
C 个,有多少装法? 4 9
八.平均分组问题除法策略
例8. 6本不同的书平均分成3堆,每堆2本共有
多少分法?
解:
分三步取书得
C C C 2 2 2 642
种方法,但这里出现
好的6个元素中间包含首尾两个空位共有
种 A64不同的方法 由分步计数原理,节目的 不同顺序共有A55 A64 种
元素不相邻问题可先把没有位置要求的元素 进行排队再相把不相独邻元独素插入独中间相和两端
练习题
某班新年联欢会原定的5个节目已排成节目单, 开演前又增加了两个新节目.如果将这两个新节 目插入原节目单中,且两个新节目不相邻,那么 不同插法的种数为( )
1.排列的定义: 从n个不同元素中,任取m个元素,按照一定的 顺序排成一列,叫做从n个不同元素中取出m 个元素的一个排列.
2.组合的定义: 从n个不同元素中,任取m个元素,并成一组, 叫做从n个不同元素中取出m个元素的一 个组合.
3.排列数公式: Anm n(n 1)(n 2) (n m 1)
C C A 2 2 2 4 2 6 90 A22
九. 合理分类与分步策略
例9.在一次演唱会上共10名演员,其中8人能
够唱歌,5人会跳舞,现要演出一个2人唱
歌2人伴舞的节目,有多少选派方法? 解:10演员中有5人只会唱歌,2人只会跳舞
3人为全能演员。以只会唱歌的5人是否
选上唱歌人员为标准进行研究 只会唱 的5人中没有人选上唱歌人员共有_C_32C__32 种,只会唱的5人中只有1人选上唱歌人
解:由于末位和首位有特殊要求,应该优先安
排,以免不合要求的元素占了这两个位置 先排末位共有_C_31_ 然后排首位共有_C_41_
最后排其它位置共有_A_43_C
1 4
A43
C31
位置由分分析步法计和数元原素理分得析C法31C是41 A解43 决=2排88列组合问
题最常用也是最基本的方法。
练习题
7种不同的花种在排成一列的花盆里,若两
员__C_15C__13C__24 _种,只会唱的5人中只有2人
选上唱歌人员有_C_52_C_52 种,由分类计数
原理共有___C__32C_32_+__C__15C__13C__24 +__C_52_C_52__种。
本题还有如下分类标准: *以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果
30
四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多
少种不同的排法 解(: 空位法)设想有7把椅子让除甲乙丙以外
的四人就坐共有 A74 种方法,其余的三个 位置甲乙丙共有 1 种坐法,则共有 A74 种 方法
思考:可以先让甲乙丙就坐吗?
(插入法)先排甲乙丙三个人,共有1种排法,再 把其余4四人依次插入共有 4*5*6*7 方法
五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有
多少种不同的分法
解:完成此事共分六步:把第一名实习生分配 到车间有7种分法. 把第二名实习生分配 到车间也有7种分法,依此类推,由分步计
数原理共有76种不同的排法
一般地n不同的元素没有限制地安排在m 个位置上的排列数为 种mn
练习题
练习题
1. 同一寝室4人,每人写一张贺年卡集中起来, 然后每人各拿一张别人的贺年卡,则四张 贺年卡不同的分配方式有多少种? (9)
2.给图中区域涂色,要求相邻区
域不同色,现有4种可选颜色,则
不同的着色方法有_7_2__种
3
14 2
5
练习题 我们班里有43位同学,从中任抽5人,正、 副班长、团支部书记至少有一人在内的 抽法有多少种?
重复计数的现象,不妨记6本书为ABCDEF
若第一步取AB,第二步取CD,第三步取EF
该分法记为(AB,CD,EF),则
C C C 2 2 2 642
中还有
(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)
(EF,CD,AB),(EF,AB,CD)共有A33种取法 ,而
平均这分些成分的法组仅,是不(管A它B,C们D的,E顺F)序一如种何分,都法是,故一共
种葵花不种在中间,也不种在两端的花盆
里,问有多少不同的种法?
A2 4
A5 5
1440
二.相邻元素捆绑策略
例2. 7人站成一排 ,其中甲乙相邻且丙丁相 邻, 共有多少种不同的排法.
解:
甲乙 丙丁
由分步计数原理可得共有 A55A22 A22 =480
种不同的排法 要求某几个元素必须排在一起的问题,可以用 捆绑法来解决问题.
解含有约束条件的排列组合问题,可按元素 的性质进行分类,按事件发生的连续过程分 步,做到标准明确。分步层次清楚,不重不 漏,分类标准一旦确定要贯穿于解题过程的 始终。
练习题
从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则
不同的选法共有__3_4____
十.先把这几个元素与其他元素一起
进行排列,然后用总排列数除以这几个元
素之间的全排列数,则共有不同排法种数 定是序:问AA73题73 可以用倍缩法,还可转化为占位插 入模型处理
练习题
期中安排考试科目9门,语文要在数学之前
考,有多少种不同的安排顺序?
1 2
A99
种情有况C,62所C42以C22分A组33 后种要分一法定。要除以
分的组数)避免重复计数。
A(nnn 为均
练习题
1. 将13个球队分成3组,一组5个队,其它两组4
个队, 有多少分法?
C C C 5
4
4
13 8
4
A2 2
2.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每 班安排2名,则不同的安排方案种数为______
n! (n m)!
4.组合数公式:
Cn m
An m Am m
n(n 1)(n 2) m!
(n m 1)
n!
m!(n m)!
排列与组合的区别与联系:与顺序有关的
为排列问题,与顺序无关的为组合问题.
一.特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.
还剩下3球3盒序号不能对应,利用实际
操作法,如果剩下3,4,5号球, 3,4,5号盒
3号球装4号盒时,则4,5号球有只有1种
装法, 同理3号球装5号盒时,4,5号球有也
只有1种装法,由分步计数原理有2
C
2 5

对于条件比较复杂的排列组合问题,不易用 公式进行运算,往往利用穷举法或画出树状 图会收到意想不到的结果
某8层大楼一楼电梯上来8名乘客人,他们
到各自的一层下电梯,下电梯的方法
( 78

六.排列组合混合问题先选后排策略
例6.有5个不同的小球,装入4个不同的盒内, 每盒至少装一个球,共有多少不同的装 法.
解:第一步从5个球中选出2个组成复合元共
有C__52种方法.再把5个元素(包含一个复合
元素)装入4个不同的盒内有_A__44__种方法.
练习题
1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则
不同的选法共有__3_4____
2. 3成人2小孩乘船游玩,1号船最多乘3人, 2 号船最多乘2人,3号船只能乘1人,他们任选 2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法.
27
练习题
某排共有10个座位,若4人就坐,每人左右 两边都有空位,那么不同的坐法有多少种?
120
小结: 解排列组合的常用策略 作业: 课时作业
小结
本节课,我们对有关排列组合的几种常见的 解题策略加以复习巩固。排列组合历来是学 习中的难点,通过我们平时做的练习题,不 难发现排列组合题的特点是条件隐晦,不易 挖掘,题目多变,解法独特,数字庞大,难 以验证。同学们只有对基本的解题策略熟练 掌握。根据它们的条件,我们就可以选取不同 的技巧来解决问题.对于一些比较复杂的问题, 我们可以将几种策略结合起来应用把复杂的 问题简单化,举一反三,触类旁通,进而为 后续学习打下坚实的基础。
练习题
5个男生3个女生排成一排,3个女生 要排在一起,有多少种不同的排法?
共有A
6 6
A
3 3
=4320种不同的排法.
三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个
独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共 有 A55 种,第二步将4舞蹈插入第一步排
十一.实际操作穷举策略
例15.设有编号1,2,3,4,5的五个球和编号1,2
3,4,5的五个盒子,现将5个球投入这五
个盒子内,要求每个盒子放一个球,并且
恰好有两个球的编号与盒子的编号相同,.
有多少投法
相关文档
最新文档