频谱、帧结构、信道
《通信原理》模拟题+答案

《通信原理》模拟题+答案、单选题(共50题,每题1分,共50分)l、()是能在接口端口间提供可控的VC(虚容器)的透明连接和再连接的设备,其端口速率既可以是SDH速率,也可以是PDH速率。
此外,它还具有一定的控制、管理功能。
A、T MB、SDHC、SDX CD、ADM正确答案:C2、能够发现错误并能纠正错误码叫做()A、差错码B、纠删码C、纠错码D、检错码正确答案:C3、帧结构由信息净负荷(P ay load) 、段开销CS O H和()三个区域组成A、POHB、管理指针单元C、RSOHD、SDI-l复接结构正确答案:B4、信源又称为信息源或发终端,是()的产生地,是各种消息转换成电信号的转换器,信源输出的信号称为基带信号。
A、信息B、信号C、消息D、信道正确答案:A5、调制信道分为恒参信道和()A、变参信道B、有线信道C、调制信道D、无线信道正确答案:A6、()完成数字分接功能的设备A、数字分接器B、复接器C、数字D、字母正确答案:A7、频率调制又分为调频F M脉冲载频调制PF M和()A、PSKB、ASKC、频率键控FSKD、P AM正确答案:C8、噪声的分类按照来源划分分为人为噪声、自然噪声和()A、单频噪声B、脉冲噪声C、起伏噪声D、内部噪声正确答案:D9、()通信是通过人力或畜力或烽火台传递完成的A、现代B、原始C、近代D、未来正确答案:B10、信道分为狭义信道和()A、有线信道B、调制信道C、无线信道D、广义信道正确答案:D11、()的基本思想是利用相邻样值信号幅度的相关性,以相邻样值信号幅度的差值变化来描述模拟信号的变化规律,即将前一样值点与当前样值点之间的幅值之差编码来传递信息A、增量调制B、调制C、多调制D、改调制正确答案:A12、以下那个英文代表的是局域网()A、W ANB、MANC、J AND、L AN正确答案:D13、在信道上传输的是()的通信系统称为数字通信系统A、任何信号B、模拟信号C、数字信号D、以上均不对正确答案:C14、()输出信噪比。
华为公司LTE知识点整理

了解
PRACH(物理随机接入信 道)
频域:1.08MHz带宽(72个子载波) 时域:位于UpPTS(format 4)及普通上行 子帧中(format 0~3)。每10ms无线帧接入 0.5~6次,每个子帧采用频分方式可传输多 个随机接入资源。 PRACH配置格式如右图,目前采用format0
掌握
应用场景
无线知识 无线知识 无线知识 无线知识 无线知识
掌握 掌握
了解 了解
LTE下行同步
LTE随机接入(右图为基 于竞争的接入)
LTE上行功率控制
LTE下行功率控制 频率选择性调度
第一步:UE用3个已知的主同步序列和接收 信号做相关,找到最大相关峰值,从而获得 该小区的主同步序列以及主同步信道位置, 达到OFDM符号同步。PSC每5ms发射一次,所 以UE此时还不能确定哪里是整个帧的开头。 另外,小区的主同步序列是构成小区ID的一 部分。 第二步:UE用已知的辅同步序列在特定位置 和接收信号做相关,找到该小区的辅同步序 列。SSC每5ms发射一次,但一帧里的两次 SSC发射不同的序列。UE据此特性获得帧同 步。辅同步序列也是构成小区ID的一部分。 第三步:到此,下行同步完成。同时UE已经 PRACH信道可以承载在UpPTS上,但因为 UpPTS较短,此时只能发射短Preamble码。 短Preamble码能用在最多覆盖1.4公里的小 区。 PRACH信道也可承载在正常的上行子帧。这 时可以发射长preamble码。长preamble码有 4种可能的配置,对应的小区覆盖半径从14 公里到100公里不等。 PRACH信道在每个子帧上只能配置一个。考 虑到LTE中一共有64个preamble码,在无冲 突的情况下,每个子帧最多可支持64个UE同 时接入。 实际应用中,64个preamble码有部分会被分 配为仅供切换用户使用(叫做:非竞争 preamble码),以提高切换用户的切换成功 控制信道:PUSCH/PUCCH/SRS/PRACH 开环功控 (补偿路径损耗和阴影衰落) 确定UE发射功率的一个起始发射功率,作为 闭环功控调整的基础; 闭环功控(适应信道变化) eNodeB通过测量PUCCH/PUSCH/SRS信号的 SINR,和目标值SINRtarget比较,调整相应 子帧的上行发送信号的发射功率; 外环功控 根据BLER的统计值动态调整闭环功控中使用 的目标值SINRtarget 下行采用CRS,若进行功控,则会补偿某些RB 的路径损耗会扰乱下行CQI的测量,影响下 行调度的准确性(仅对业务信道)。 功率分配信道:PDSCH 功率控制信道:PBCH\PDCCH\PCFICH\PHICH 功率分配方式: 静态 对于公共控制信息,功率分配是通过链路预 算得出的,固定支持小区边缘的覆盖。 半静态 分配RS和PDSCH的功率比值,保证在总功率 相同的条件下,RS和PDSCH的功率分配合理 OFDM系统作为多子载波系统,可以通过频率 选择性调度,为用户分配信道质量较好的频 率资源,从而获得频率分集增益。
LTE帧结构

一、协1、UMPTb2 单板面板如下图1-1接口UMPT 面板接口含义如下表所示。
表1-1 UMPT 面板接口指示灯UMPT 面板上有3个状态指示灯,含义如下表所示。
表1-2 UMPT 状态指示灯议知识1. LTE帧结构及物理资源基本概念RE/RB/CCE/REG/RBG帧结构Type1:FDD(全双工和半双工)(FDD上下行数据在不同的频带里传输;使用成对频谱)每一个无线帧长度为10ms,由20个时隙构成,每一个时隙长度为T slot = 15630 x Ts = 0.5ms。
对于FDD,在每一个10ms中,有10个子帧可以用于下行传输,并且有10个子帧可以用于上行传输。
上下行传输在频域上进行分开。
帧结构Type2:TDD (TDD上下行数据可以在同一频带内传输;可使用非成对频谱)一个无线帧10ms,每个无线帧由两个半帧构成,每个半帧长度为5ms。
每一个半帧由8个常规时隙和DwPTS、GP和UpPTS三个特殊时隙构成,DwPTS和UpPTS的长度可配置,要求DwPTS、GP以及UpPTS的总长度为1ms。
DwPTS: Downlink Pilot Time SlotGP: Guard Period (GP越大说明小区覆盖半径越大)UpPTS: Uplink Pilot SlotTs = 1 / (15000x2048) sFrame 帧的长度:Tf = 307200 x Ts = 10msSubframe 子帧的长度:Tsubframe = 30720 x Ts = 1msSlot 时隙的长度:Tslot = 15360 x Ts = 0.5ms1 Sub-Carrier = 15 kHz;1 TTI = 1 ms => 1 sub-frame =>2 slots (0.5 ms *2) # for one user, min 2 RB allocation.1 RB = 12 sub-carriers during 1 slot (0.5 ms) =>12 * 15kHz = 180kHz (Bandwidth); => 12 * 7 symbols= 84 REs1RE = 1 sub-carrier x 1 symbol period (Each symbol is QPSK, 16QAM or 64QAM modulated.)LTE支持可变带宽:1.4MHz, 3, 5, 10, 15 和 20MHz一个小区最少使用6个RB, 即最少包含72个sub-carriers: 6 RB * 12 sub-carriers = 72 sub-carriers特殊帧格式7:DwPTS:GP:UpPTS => (21952Ts-32Ts) : 4384Ts : 4384Ts=> 10:2:2最小分配单位为:2192T⋅sConfigure TDD: 上下行配置(下图) + 特殊帧格式(上图) (e.g.: 2:71:7)=> 10ms转换周期:一个帧分成上下半帧,下半帧的特殊帧为DwPTS=1ms,用于DL传输(如上图3,4,5所示)RE:Resource Element,称为资源粒子,是上下行传输使用的最小资源单位。
移动通信复习题,第四版。

第 1 章移动通信是指通信双方至少有一方处在移动情况下(或临时静止)的相互信息传输和交换.移动通信的特点:1.必须利用无线电波进行信息的传输2.是在复杂的干扰环境中运行的3.可以利用的频谱资源非常有限,而移动通信的业务量的需求却是与日俱增4.移动通信系统的网络结构是多样化的,网络管理和控制必须有效5.移动通信设备必须适于在移动环境中使用数字移动通信系统的优点:1. 频谱利用率高,有利于提高系统容量2. 能提供多种业务服务,提高通信系统的通用性3. 抗噪声、抗干扰和抗多径衰落的能力强4. 能实现更有效、灵活的网络管理和控制5. 便于实现通信的安全保密6. 课降低设备成本以及减小用户手机的体积和重量第2章1. 移动通信信道的基本特征:第一,带宽有限,取决于使用的频率资源和信道的传播特征;第二,干扰和噪声影响大,这主要是移动通信工作的电磁环境决定的;第三,存在着多径衰落。
要求:已调信号应具有高的频谱利用率和较强的抗干扰、抗衰落的能力。
恒定包络调制:可采用限幅器、低成本的非线性高效功率放大器件非恒定包络调制:需要采用成本相对较高的线性功率放大器件2. GSM中,尽管MSK信号已具有较好的频谱和误比特率性能,但仍不能满足功率谱在相邻频道取值低于主瓣峰值60db以上的要求。
这就要求在保持MSK基本特性的基础上,对MSK的带外频谱特性进行改进,使其衰减速度加快。
3.π/4 - DQPSK的相位跳变规则决定了再码元转换时刻的相位跳变量只有+-π/4和+-3π/4四种取值。
4.. 扩频调制扩频通信的定义:一种信息传输方式,在发端采用扩频码调制,是信号所占的频带宽度远大于所传信息必需的带宽,在收端采用相同的扩频码进行相关解扩以恢复所传信息数据。
扩频系统的处理增益 Gp = 10 lg B/Bm 各种扩频系统的抗干扰能力大体上都与扩频信号带宽B与信息带宽Bm之比成正比。
扩频通信抗干扰性能强,唯一能工作在负信噪比之下。
LTE知识点整理

了解 下行参考信号
1、CRS(公共参考信号):用于下行信道估 计,及非beamforming模式下的解调;调度上 下行资源;用作切换测量 2、DRS(专用参考信号):仅出现于波束赋型 模式,用于UE解调
了解 上行参考信号
1、DMRS:用于上行控制和数据信道的相关解 调,在PUCCH、PUSCH上传输,用于PUCCH和 PUSCH的相关解调 2、SRS:用于估计上行信道频域信息,做频率 选择性调度;用于估计上行信道,做下行波束 赋形,可以在普通上行子帧上传输,也可以在 UpPTS上传输,位于上行子帧的最后一个SCFDMA符号,eNB配置UE在某个时频资源上发送 sounding以及发送sounding的长度。包括一次 性SRS和周期性SRS两种方式
无线知识
掌握 LTE空口协议
无线知识
掌握 TD-LTE帧结构
帧长10ms,半帧5ms,子帧1ms,时隙0.5ms, 一个时隙包含7个OFDM符号,特殊子帧 DwPTS + GP + UpPTS = 1ms(7个OFDM符号是对普通 CP来讲,如果说是拓展CP,则有6个OFDM符 号)
无线知识
掌握 TD-LTE上下行配比
无线知识
无线知识
掌握 掌握 掌握 掌握
掌握
掌握
RSRP RSRQ RSSI SINR LTE下行同步
LTE随机接入(右图为基 于竞争的接入)
LTE上行功率控制
Reference Signal Received Power 参考信号的接收功率 Received Signal Received Quality 接收信号质量 RSSI因为既包含RS的功率,又包含那些PDSCH 的RE的功率,所以事实上RSRQ并不能准确无误 的指示RS的信号质量。 Received Signal Strength Indicator 接收信号强度——有RS的那些symbol的平均功 真正的RS信号质量,一定程度上可以表征 PDSCH(业务信道)信号质量 第一步:UE用3个已知的主同步序列和接收信 号做相关,找到最大相关峰值,从而获得该小 区的主同步序列以及主同步信道位置,达到 OFDM符号同步。PSC每5ms发射一次,所以UE此 时还不能确定哪里是整个帧的开头。另外,小 区的主同步序列是构成小区ID的一部分。 第二步:UE用已知的辅同步序列在特定位置和 接收信号做相关,找到该小区的辅同步序列。 SSC每5ms发射一次,但一帧里的两次SSC发射 不同的序列。UE据此特性获得帧同步。辅同步 序列也是构成小区ID的一部分。 第三步:到此,下行同步完成。同时UE已经获 取了该小区的小区ID PRACH信道可以承载在UpPTS上,但因为UpPTS 较短,此时只能发射短Preamble码。短 Preamble码能用在最多覆盖1.4公里的小区。 PRACH信道也可承载在正常的上行子帧。这时 可以发射长preamble码。长preamble码有4种 可能的配置,对应的小区覆盖半径从14公里到 100公里不等。 PRACH信道在每个子帧上只能配置一个。考虑 到LTE中一共有64个preamble码,在无冲突的 情况下,每个子帧最多可支持64个UE同时接入 。 实际应用中,64个preamble码有部分会被分配 为仅供切换用户使用(叫做:非竞争preamble 码),以提高切换用户的切换成功率。所以小 区内用户用于初始随机接入的preamble码可能 控制信道:PUSCH/PUCCH/SRS/PRACH 开环功控 (补偿路径损耗和阴影衰落) 确定UE发射功率的一个起始发射功率,作为闭 环功控调整的基础; 闭环功控(适应信道变化) eNodeB通过测量PUCCH/PUSCH/SRS信号的 SINR,和目标值SINRtarget比较,调整相应子 帧的上行发送信号的发射功率; 外环功控 根据BLER的统计值动态调整闭环功控中使用的 目标值SINRtarget
现代通信系统复习题

现代通信系统复习题一、填空题20×2=40分,50题选20个1.数字通信具有数字信号便于存储加密等、数字信号便于交换和传输、数字信号便于组成数字多路通信系统、便于组成数字网的特点;2.数字通信的主要质量指标有:有效性、可靠性、适应性、经济性、保密性、标准性、维修性、工艺性,其中有效性和可靠性是最重要的两个质量指标;3.通信系统按传输媒介和系统组成特点可分为:短波通信系统、微波中继通信系统、卫星通信系统、光纤通信系统、移动通信系统;4.现代通信系统的基本概念:现代通信技术的基础——微电子技术、现代通信技术的核心——计算机技术、光通信的基础——光子技术、卫星通信技术的基础——空间技术、现代通信的基本特征——数字化;5.现代通信的特点有:综合化、宽带化、智能化、个人化、网络全球化;6.数字通信按照是否采用调制分为数字基带传输系统和数字频带传输系统;7.数字交换技术有:电路交换、分组交换、帧中继、A TM 、IP交换;8.电路交换具有呼叫建立、传输信息和呼叫拆除严格的的3个阶段;9.接口电路的功能有B馈电、O过压保护、R振铃控制、S监视、C编译和滤波、H混合电路、T测试;10.IUT-T建议的数字用户接口电路有5种,从V1~V5,其中V1 、V3 、V5 是常用的标准; V1 是综合业务数字网ISDN中的基本速率2B+D 的接口,其中B为64Kb/s ,D为16Kb/s ;V3是综合业务数字网ISDN中的基群速率接口,以30B+D 或者23B+D其中B、D均为64Kb/s 的信道分配方式去连接数字用户群设备;V5接口是交换机与接入网AN之间的数字接入类型;11.数字程控交换机软件系统由操作系统、应用程序、交换所需要的数据3部分组成;12.信令系统是通信网的神经系统,它可以指导终端、交换系统及传输系统协同运行;在指定的终端之间建立临时的通信信道,并维护网络本身正常运行,是通信网必不可少的非常重要的组成部分;13.信令按工作区域可分为用户信令和局间信令;按传输通路与用户信息传送通路的关系可分为随路信令和公共信道信令;14.信令在多段路由上的传送方式有端到端方式、逐段转发方式和混合方式;15.抽样定确定了每帧长度不能长于125µs ;传输路数越多,每路样值8bit 码占用的时间就越小,每个比特的时宽就越小,对应的频宽传输速率就越大;16.微波通信是指用微波频率作载波携带信息,通过无线电电波空间进行通信的方式,主要有散射通信、卫星通信、微波通信3种;17.微波波段的波长范围为1m~1mm ,频率范围为300MHz~300GHz ;18.微波中继通信的特点有通信频段的频带宽、适用传输宽频带信号、受外界干扰的影响小、通信灵活性大、天线增益高、方向性强;19.微波传输中要解决的问题主要有辐射损耗和电波衰落;20.数字微波通信系统使用了抗衰落技术、分集接收、调制解调技术、信源编码技术、信道编码技术等关键技术来保证系统性能指标的提高;21.数字微波通信的新技术主要有:多级编码调制技术、微波帧复用技术、交叉极化干扰抵消XPIC技术、自适应频域和时域均衡技术;22.卫星通信是指利用人造地球卫星作为中继站,转发无线电信号,在两个或者多个地球站之间进行的通信;23.所谓卫星通信体制,是指通信系统的工作方式,即采用的信号传输方式、信号处理方式和信号交换方式等;24.“信道”一词的含义在FDMA中是指各地球站占用的转发器频段;在TDMA中是指各站占用的时隙;在CDMA中是指各站实用的正交码组;25.卫星通信中应用的基本多址方式有:频分多址FDMA 、时分多址TDMA 、码分多址CDMA 和空分多址SDMA ;26.卫星按轨道倾角不同可分为:赤道轨道卫星、极轨道卫星、倾斜轨道卫星;27.静止通信卫星主要由:天线分系统、通信分系统、控制分系统、跟踪遥测指令分系统和电源分系统5个分系统组成;28.大多数卫星选择如下频段:C波段6/4GHz、X波段8/7Ghz、Ku波段14/11GHz 14/12GHz 、Ka波段30/20GHz ;29.卫星通信的新技术包括:VSAT卫星通信系统、卫星移动通信系统、宽带多媒体卫星移动通信系统;30.光纤通信是指用光作为信息的载体,以光纤作为传输介质的一种通信方式;31.光纤按照其剖面折射率的分布可分为:阶跃型光纤SIF 、渐变型光纤GIF ;按照传导模的数量可分为:多模光纤MM-Multi mode fiber 、单模光纤SM-Single mode fiber ;32.光纤的损耗大致可分为:吸收损耗、散射损耗和辐射损耗;33.在石英光纤中有两个低损耗区域;分别在µm和µm附近,µm光纤的损耗值在km以下,而µm的损耗值为km以下;34.从机理上说,光纤的色散可分为:模式色散、色度色散和偏振模色散;35.根据光缆芯结构的特点,光缆可分为层绞式、骨架式、中心束管式和带状式;36.光接收机的灵敏度可以用满足给定的误码率指标条件下可靠工作所需要的最小平均光功率Pmin 来表示,工程上常用光功率的相对值分贝毫瓦来表示;37.光纤通信系统设计中工程上常用的设计方法有:最坏值设计法、统计设计法和联合设计法;38.在中继距离的设计中应考虑衰减和色散这两个限制因素,对应的也就有损耗受限系统和色散受限系统;39.光纤通信的新技术有:波分复用WDM系统的演进、干光纤通信、长距离中继光纤通信、光孤子通信、全光通信网络和量子光通信系统;40.典型的移动通信系统有:无线电寻呼系统、蜂窝移动通信系统、集群移动通信系统、个人无线电话系统、公用无绳电话系统、移动卫星通信系统; 41.数字移动通信的基本技术有:多址技术、功率控制、蜂窝组网技术、调制技术、分集接收技术、语音编码技术、交织技术;42.CMDA系统的主要优点有:大容量、软容量、软切换、高话音质量和低发射功率、语音激活;43.CDMA蜂窝系统在基站至移动台的传输方向正向传输上设置了导频信道、同步信道、寻呼信道和正向业务信道;在移动台至基站的传输方向反向传输上设置了接入信道和反向业务信道;44.第三代移动通信的主流技术是:宽带码分多址技术,现有的三种主流标准是:WCDMA 、CDMA2000 、TD-SCDMA ;45.第三代移动通信的新技术有:新型调制技术、智能天线技术、多用户信号检测技术、无线A TM 、软件无线电;46.通信网的物理拓扑结构有:网形网、星形网、环形网、线形网、总线形网、复合形网;47.业务网也就是用户信息网,是现代通信网的主体,它按功能分为用户接入网、交换网和传输网;48.目前,通信系统的仿真一般分为两个层面:一个是链路级仿真,一个是系统级仿真;49.仿真工具有:程序设计语言、商业仿真软件、教学科研型软件;二、名词解释题3×5=15分,5题选3个1.频带利用率ƞf:指单位频带内所能实现的信息速率,单位是比特/秒·赫兹,或b/s·Hz;常用来衡量传输系统的有效性;2.信令:是人们实现信息传输所实用的操作指令,信令系统是通信网的神经系统,它可以指导终端、交换系统及传输系统的协同运行,在指定的终端之间建立临时的通信信道,并维护网络本身的正常运行,是通信网必不可少的非常重要的组成部分;3.帧结构:就是把多路话音数字码以及插入的各种标记码按照一定的时间顺序排列的数字码流组合;我国采用30/32路的PCM基群结构,每一路信号占用不同的时间位置,成为时隙;其中TS0用于传同步码、监视码和对端告警码组,TS16用于传信令码,TS1~TS15传前15话路的话音数字码,TS17~TS31传后15个话路的话音数字码,这32路只有30个时隙传话音,故成为30话路32时隙,记作PCM30/32;4.色散光纤色散为例:光纤色散是指不同频率成分或不同模式成分在光纤中以不同的群速度传播,这些频率和模式成分到达光纤终端有先有后,使得光脉冲发生展宽,这就是光纤的色散;5.扩频通信:即扩展频谱通信Spread Spectrum Communication,是一种把信息的频谱展宽之后再进行传输的技术;频谱的扩展是通使待传送的信息数据被一个带宽远大于信号带宽的伪随机码序列也称为扩频序列调制来实现的,与所传信息数据无关;在接收端则采用相同的扩频码进行相关同步接收、解扩,将宽带信号恢复成原来的窄带信号,从而获得原有数据信息;三、简答题3×10=30分,5题选31.数字程控交换机的组成及各部分功能;答:1话路子系统中:中央级交换网络主要完成交换的功能;用户级交换网络主要完成话务量集中和语音编译码的功能;接口电路主要完成外部信号与数字程控交换机内部信号的转换;信号收发设备主要完成这些数字音频信号的产生、发送和接收;2控制子系统:是交换机的“指挥系统”,交换机的所有功能都是在控制系统下完成的;2.数字微波通信系统的组成及工作过程;图84页图答:中间站甲地乙地工作工程:从甲地终端站送来的数字信号,经过数字基带信号处理数字多路复用或数字压缩处理后,形成数字中频调制信号70MHz 或140MHz,再送入发送设备,进行射频调制变成微波信号,通过发射天线向微波中间站微波中继站发送;微波中间站收到信号后经过再处理,是数字信号再生后又恢复为微波信号向下一站再发送,这样一直传送到乙地收端站,收端站把微波信号经过混频、中频调解恢复出数字基带信号,再分路还原为原始的数字信号;3. 卫星通信系统的组成及工作过程;图119页图答:卫星通信系统是一个非常复杂的系统,它由地面部分和空中部分组成吗,主要包括:通信地球站分系统、跟踪遥测指令分系统、监控管理分系统及空间分系统4大工作过程:在一个卫星通信系统中,各地球站经过卫星转发可以组成多条卫星通信线路,整个系统的全部通信任务就是利用这些线路分别组成;在静止卫星通信系统中,卫星通信线路大多数是单跳工作线路,但是也有双跳工作线路;4. 光纤通信系统的组成及工作过程;图150页图答:光纤通信系统由发射机、光纤线路和光接收机、监控设备、公务链路设备;供电电源等组成;基本光纤传输系统工作过程:在发射端,发射机把带有信息的电信号转为光信号,对光源的光载波进行调制,经过调制的光信号耦合到光纤内,完成光波的传输,接收端进行光电转换,恢复出原信号5. GSM 系统的结构及个部分功能;图197页图答:组成:移动台MS :GSM 数字移动网中用户使用的设备,通过用户识别卡实现对用户的识别;无线基站子系统BS :它保障无线发送和管理无线资源;网络子系统NSS:它包括对呼叫的建立和必要的移动性管理等功能;;ISDNPLMNPSTNPSPDN四、论述题1×15=15分论述通信系统、通信网、支撑网之间的关系;答:通信系统是用以完成信息传输过程的技术系统的总称,可分为模拟通信系统和数字通信系统,组成要素为:信源、信宿收信者、发端设备、收端设备和传输媒介等;通信网是一种使用交换设备,传输设备,将地理上分散用户终端设备互连起来实现通信和信息交换的系统,组成要素为:移动终端设备、传输链路及交换设备;支撑网是利用电信网的部分设施和资源组成的,相对独立于电信网中的业务网和传送网的网络,组成要素为:同步网、公共信道、传输监控和网路管理网;其三者关系为:用通信系统来构架,通信网即为通信系统的集,通信网是各种通信系统综合应用的产物,通信网来源于通信系统又高于通信系统,但其不论网的种类功能和技术如何复杂,从物理上的硬件设施分析,通信系统是各种网不可缺少的物质基础,通信网是通信系统发展的必然结果,通信系统可以独立存在,然而一个通信网是通信系统的扩充,是多节点各通信系统的综合,通信网不能离开系统而独立存在;。
帧结构学习笔记

帧结构学习笔记上、下⾏信息如何复⽤有限的⽆线资源,这是所有⽆线制式必须考虑的双⼯技术问题。
以往的⽆线制式要么⽀持时分双⼯(TDD)要么⽀持频分双⼯(FDD),⽽LTE标准即⽀持TDD,⼜⽀持FDD,分别对应着不同的帧结构设计。
1.两种双⼯模式LTE⽀持两种双⼯模式:TDD和FDD,于是LTE定义了两种帧结构:TDD帧结构和FDD帧结构。
LTE标准制定之初就充分考虑了TDD和FDD双⼯⽅式在实现中的异同,增⼤两者共同点、减少两者差异点。
两种帧结构设计的差别,会导致系统实现⽅⾯的不同,但主要的不同集中在物理层(PHY)的实现上,⽽在媒介接⼊控制层(MAC)、⽆线链路控制(RLC)层的差别不⼤,在更⾼层的设计上⼏乎没有什么不同。
从设备实现的⾓度来讲,差别仅在于物理层软件和射频模块硬件(如滤波器),⽹络侧绝⼤多数⽹元可以共⽤,TDD相关⼚家可以共享FDD 成熟的产业链带来的便利。
但终端射频模块存在差异,这样终端的成熟度决定了LTE TDD和LTE FDD各⾃⽹络的竞争⼒。
1.1 FDD和TDDFDD的关键词是“共同的时间、不同的频率”。
FDD在两个分离的、对称的频率信道上分别进⾏接收和发送。
FDD必须采⽤成对的频率区分上⾏和下⾏链路,上下⾏频率间必须有保护频段。
FDD的上、下⾏在时间上是连续的,可以同时接收和发送数据。
TDD的关键词是“共同的频率、不同的时间”。
TDD的接收和发送是使⽤同⼀频率的不同时隙来区分上、下⾏信道,在时间上不连续。
⼀个时间段由移动台发送给基站(UL),另⼀个时间段由基站发送给移动台(DL)。
因此基站和终端间对时间同步的要求⽐较苛刻。
FDD和TDD的上、下⾏复⽤原理如图所⽰。
FDD上、下⾏需要成对的频率,⽽TDD⽆须成对频率,这使得TDD可以灵活地配置频率,使⽤FDD不能使⽤的零散频段。
TDD的上下⾏时隙配⽐可以灵活调整,这使得TDD在⽀持⾮对称带宽业务时,频谱效率有明显优势。
FDD在⽀持对称业务时,能充分利⽤上、下⾏的频谱,但在⽀持⾮对称业务时,频谱利⽤率将⼤⼤降低。
LTE入门介绍-基本原理

2014年
4
技术。
LTE-A开始商用,可以提供更高的数据传 输速度和更加稳定的网络连接。
LTE的优点和特点
1 高速率
2 低延迟
LTE的下行峰值速率可达到300Mbps,上行 可达到75Mbps,是目前流行的移动通信制式 中速度最快的。
LTE的往返时延较短,支持实时传输,适合 高速数据交互和视频通话等应用场景。
3 灵活的频谱分配
LTE的频域和时域资源分配非常灵活,可根 据网络流量需求自适应地调整资源的使用。
4 全球统一标准
LTE是全球通信技术领域的统一标准,确保 了各厂商之间设备的互通性。
4G与LTE 的区别
4G
泛指第四代移动通信技术,是包括LTE在内的多种技 术的概括性称呼。
LTE
是4G移动通信技术中的一种,是现在最为常用和流 行的4G通信技术。
LTE在新兴业务领域中的应用
LTE在新兴业务领域中的应用,包括了虚拟现实,云计算,远程教育和远程办 公等多个方面,为现代社会的科技创新和进步提供了无限的潜力和可能性。
LTE在5G商用初期的应用前景
LTE在5G商用初期的应用前景包括了共存和过渡,在向5G技术的转型和适应 过程中,继续发挥着重要的支撑作用。
LTE的通信标准
LTE的通信标准针对不同的移动通信网络和技术,主要包括FDD-LTE、TDDLTE、VoLTE等。
LTE的物理层和信道结构
LTE的物理层和信道结构决定了移动通信中的数据传输速率和稳定性,主要包括LTE帧结构、子帧结构、信道 带宽、全球时隙和凸形电平等。
MIMO技术在LTE中的应用
LTE的无线接入技术
LTE的无线接入技术可以根据网络流量的需求智能调整时间、空间和频谱资源, 进一步提高了网络的稳定性和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考信号
• RS 参考信号
• 作用:信道质量测量,信道的解调。
• 分上下行。
• 下行:CRS:小区专用参考信号(不管是否有业务始终在全频带固 定功率发射)
•
下行信道质量测量,调度下行资源
•
DRS:终端专用参考信号(仅在用户调度的RB上发射)
•
下行BF模式下的业务信道的解调。
• 上行: DM RS :解调参考信号
REG:RE group,资源粒子组。REG = 4 RE
RB(资源块),最常见的调度单位, 上下行业务信道都以RB为单位进行调度。 RB = 84RE 时域:一个时隙(7个OFDM符号) 频域:12个连续子载波
载波带宽 [MHz]
RE数目 (每个OFDM符号)
RB数目 (每个slot)
1.4
3
5
10
单站验证目的:保证各个小区的基本功能(PING、
上传下载,覆盖等)正常,验证工程安装和参数配 置等与规划方案是否一致。
Page 1
38,39,40国际频频段段 的实际使用情况
特点: 1.D频:容量大覆盖范围小,一般用于市区内, 2.F频:容量小范围大,一般用于郊区或农村。 3.E频段:用于室内。 • D频段的频点 37900,38098 • F频段的频点 38400,38496,38544 ( 高铁是专用F频段) • E频段的频点:38950 (39250) 中国移动实际使用频段: (D) 2575~2635MHZ (F) 1880~1900MHZ (E) 2320~2370MHZ 联通,电信TDD的实际使用频段: 联通:2300~2320MHZ,2555~2575MHZ 电信:2370~2390MHZ,2635~2655MHZ
0123456789 DSUUUDSUUU DSUUDDSUUD DSUDDDSUDD DSUUUDDDDD DSUUDDDDDD DSUDDDDDDD DSUUUDSUUD
上下行资源单位
频率
1个子 载波
时间 1个OFDM
符号 LTE RB资源示意图
RE(资源单元/资源粒子)。 LTE最小的时频资源单位。 频域:一个子载波 时域:一个OFDM符号
DL/S/UL 常规子帧(时隙)配比关系
Uplinkdownlink configuration
0 1 2 3 4 5 6
Downlink-to-Uplink
Switch-point periodicity 5 ms 5 ms 5 ms 10 ms 10 ms 10 ms 5 ms
Subframe number
FDD支持频段: FDD-LTE:1755~1780/1850~1875(MHZ)
Page radio frame , Tf = 10ms One slot , Tslot= 0.5ms
#0
#1
#2
#3
One subframe
Type1帧结构 每个10ms无线帧,分为20个时隙,10个子帧 每个子帧1ms,包含2个时隙,每个时隙0.5ms 上行和下行传输在不同频率上进行
用于上下行资源调度、功控等控制信令的传输
用于上行数据传输ACK/NACK信息的反馈
用于时频同步和搜索小区
上行物理信道
物理信道小结
信道名称
功能简介
PRACH
物理随机接入信道
用于用户随机接入网络请求申请资源信息
PUSCH
物理上行共享信道
用来承载上行用户数据
PUCCH
物理上行控制信道
用于HARQ反馈、CQI反馈、调度请求指示等L1/L2控制 信令
# 18
# 19
TDD类型无线帧结构
One radio fra,mTfe = 10ms One ha-lffram, e Ts = 5 ms
One slot,
Subfram#e0 ,
Subfram#e2
Subfram#e3
Subfram#e4
Subfram#e5
Subfram#e7
Subfram#e8
•
做业务时上行信道的检测和解调
•
SRS :Sounding参考信号SRS
•
空闲时上行信道的估计
Page 12
15
20
72
180
300
600
900
1200
6
15
25
50
75
100
基本概念
LTE系统提供504个物理小区标识(即PCI),0~503,共504个。
小区ID获取方式
• UE需要分别解读出两个信号: • PSS(主同步信号),共有3种可能性(0,1,2) • SSS(辅同步信号),共有168种可能性(0~167) • PCI=3*SSS+PSS,即可获取该小区ID
下行物理信道
信道名称 PBCH PDSCH PCFICH PDCCH PHICH SCH
物理广播信道 物理下行共享信道 物理控制格式指示信道 物理下行控制信道 物理HARQ指示信道 同步信道
功能简介 用于承载系统的广播消息(MIB)
相关信令、SIB、paging 消息、下行用 户数据
用于指示PDCCH所使用的资源大小。
Subfram#e9
DwPTS GP UpPTS
DwPTS GP UpPTS
Type2帧结构
一个无线帧10ms,每个无线帧由两个半帧构成,每个半帧长度为5ms。
每一个半帧由8个常规时隙(4个常规子帧)和三个特殊时隙(1个特殊子帧)构成。
DwPTS和UpPTS的长度可配置,要求DwPTS、GP以及UpPTS的总长度为1ms。