碳纤维及其复合材料
碳纤维复合材料的制备及其力学性能研究

碳纤维复合材料的制备及其力学性能研究碳纤维复合材料是由一种或多种纤维材料和一种或多种基体材料构成的。
其中,碳纤维作为一种高性能纤维材料,可以与多种基体材料组合成复合材料。
碳纤维复合材料具有高强度、高模量、低密度、耐腐蚀、耐磨损等优异性能,是一种重要的结构材料。
一、碳纤维复合材料的制备碳纤维复合材料的制备过程包括纤维预处理、基体材料制备、复合制备三个部分。
1. 纤维预处理纤维预处理是指将原始的碳纤维通过一系列化学和物理方法处理,以改善其表面性质,为后续复合制备提供良好的界面性能。
纤维预处理过程包括氧化、活化、电化学处理等。
2. 基体材料制备基体材料是复合材料的支撑结构,主要起支撑、保护纤维的作用,因此需要选择一种合适的基体材料。
金属、聚合物、陶瓷等材料都可以用作基体材料。
选择的基体材料需与碳纤维具有良好的界面相容性。
3. 复合制备复合制备是指将预处理好的纤维与制备好的基体材料进行复合,形成碳纤维复合材料。
复合制备的过程包括浸涂、压制、硬化等步骤。
其中,在浸涂过程中,最关键的是要确保纤维和基体材料之间的均匀浸润。
在硬化过程中,要保证温度和压力控制良好,以成品的物理性能。
二、碳纤维复合材料的力学性能研究碳纤维复合材料的力学性能是其能否应用的基础。
因此,需要进行力学性能研究,以验证其性能是否符合要求。
1. 本构模型本构模型是指根据材料的各项力学性能,建立材料模型,用以描述材料力学行为的理论。
碳纤维复合材料的本构模型可以分为弹性本构模型和塑性本构模型两种。
弹性本构模型适用于低应变区,并且不能反应出材料的非线性特征。
而塑性本构模型适用于高应变区,并且可以反应出材料的非线性特征。
选择合适的本构模型可以更准确地描述碳纤维复合材料的力学行为。
2. 材料力学性能测试材料力学性能测试包括拉伸、弯曲、剪切等多种测试方法。
其中,拉伸测试是最常用的性能测试方法。
拉伸测试可以得到材料的初始模量、极限拉伸强度、断裂应变等数据。
碳纤维复合材料的种类、环境应用及其发展趋势

碳纤维复合材料是一种由碳纤维和树脂组成的复合材料,具有轻质、高强度、耐腐蚀等特点,被广泛应用于航空航天、汽车制造、运动器材、建筑材料等领域。
随着对环境友好材料的需求不断增加,碳纤维复合材料的环境应用也呈现出日益重要的趋势。
一、碳纤维复合材料的种类1.碳纤维布碳纤维布是由碳纤维经过编织或无纺工艺而成的材料,具有高强度、高模量、轻质等特点,常用于航空航天领域。
2.碳纤维复合材料板碳纤维复合材料板是由碳纤维布经过树脂浸渍、层叠、压制而成的板状材料,具有优异的机械性能和耐腐蚀性能,常用于汽车制造领域。
3.碳纤维增强复合材料碳纤维增强复合材料是将碳纤维与树脂等材料复合而成的新型材料,具有强度高、耐高温等特点,常用于航空航天、船舶制造领域。
二、碳纤维复合材料的环境应用1.减少能源消耗碳纤维复合材料具有轻质、高强度的特点,能够降低汽车、航空器等交通工具的重量,减少燃料消耗,有利于环境保护。
2.提高能源利用效率碳纤维复合材料具有优异的机械性能和耐腐蚀性能,能够延长设备的使用寿命,提高能源利用效率,减少资源浪费。
3.降低环境污染碳纤维复合材料具有优异的耐腐蚀性能和抗老化性能,能够降低设备的维护成本,减少环境污染。
三、碳纤维复合材料的发展趋势1.环保可持续随着环保意识的提高,碳纤维复合材料的环保性能将越来越受到重视,未来发展将更加偏向于环保可持续。
2.多领域应用碳纤维复合材料将逐渐应用于更多的领域,包括建筑材料、新能源领域等,拓展发展空间。
3.优化性能未来碳纤维复合材料将通过技术创新和工艺改进,进一步优化性能,满足不同领域的需求。
个人观点和理解作为一种高性能复合材料,碳纤维复合材料在环境应用方面具有巨大潜力。
通过不断的技术创新和工艺改进,碳纤维复合材料的性能将得到进一步提升,应用领域也将得到拓展,为环境保护和可持续发展作出更大的贡献。
总结回顾通过本文的介绍,我们了解了碳纤维复合材料的种类、环境应用及其发展趋势。
碳纤维复合材料具有轻质、高强度、耐腐蚀等特点,在减少能源消耗、提高能源利用效率和降低环境污染方面具有重要的作用。
碳纤维及其复合材料的优劣势解析

碳纤维及其复合材料的优劣势解析江苏卜式科技:在复合材料家族中,纤维增强材料一直是关注的焦点,碳纤维增强复合材料更是其中的佼佼者。
碳纤维是由含碳量高的合成化学纤维制成,在热处理过程中不熔化,经过热稳定氧化处理、碳化处理和石墨化处理而成。
碳纤维是一种力学性能优异的新型材料。
一般不单独作为材料使用,主要与树脂、金属、陶瓷等基材复合制成结构材料。
碳纤维增强环氧树脂复合材料的比强度和比模量等综合指标是现有结构材料中最高的。
在对密度、刚度、重量和疲劳特性有严格要求的领域,以及要求高温和高化学稳定性的场合,碳纤维复合材料具有相当的优势,主要表现在以下几个方面。
1、高强度(是钢铁的5倍);2、出色的耐热性(可以耐受2000℃以上的高温);3、出色的抗热冲击性;4、低热膨胀系数(变形量小);5、热容量小(节能);6、比重小(钢的1/5);7.优异的耐腐蚀性和辐射性能。
当然,目前碳纤维的生产技术还掌握在日美等发达国家手中,国内对这一块的研究还比较薄弱,无法实现大规模量产。
由于碳纤维复合材料出现时间短,应用相对复杂。
所以目前它的应用还存在很多缺陷,主要表现在几个方面。
1.成本高,零件的量产效率和金属有明显的区别。
零件整体成型,损坏了就整件报废更换;2.难以回收,由于碳纤维制件是含碳纤维,树脂的复合材料,目前还没有办法在热固性树脂固化之后做到既经济又稳定的碳纤维回收;3.碳纤维原丝生产过程中边角料的回收也只可再用作短纤维复合材料,没有连续纤维复合材料的应用面广;4.因为大部分树脂体系不阻燃,而阻燃树脂的研究和应用难度大,成本高。
综合起来看,碳纤维复合材料虽然存在着一些缺陷,但所具有的的突出优势必将会得到人们的认可,应用也会逐渐增多,江苏博实碳纤维科技是一家实力雄厚的碳纤维制品生产商 ,拥有先进的纤维增强复合材料板材、管材、模压、热压罐、数控加工等生产线,坚持为客户提供高品质碳纤维产品。
碳纤维及其复合材料

碳纤维及其复合材料碳纤维具有优秀的力学性能,比强度高,比重轻,具有优异的抗拉、抗压和抗弯强度。
它的比强度约为钢铁的10倍,比重则只有钢铁的1/4、这使得碳纤维特别适用于高强度和轻量化要求较高的领域,如航空航天、航空发动机、车辆轻量化等。
此外,碳纤维还具有良好的耐腐蚀性、热稳定性和低热膨胀系数,使其在高温环境下能够保持较好的性能。
碳纤维的制备主要有干法和湿法两种方法。
干法制备主要是通过将聚丙烯腈(PAN)等聚合物纤维进行氧化、碳化处理制成。
湿法制备则是通过炭化纤维进行碳化处理得到碳纤维。
无论是干法还是湿法制备,都需要在高温下进行炭化处理,通常在1000℃以上。
碳纤维的复合材料是将碳纤维与树脂等基体材料复合而成的材料。
碳纤维复合材料综合了碳纤维的高强度和树脂的良好的塑性和可加工性,具有更优越的性能。
常见的碳纤维复合材料有碳纤维增强聚合物复合材料、碳纤维增强陶瓷基复合材料以及碳纤维增强金属基复合材料。
碳纤维复合材料在航空航天领域中的应用广泛。
例如,制造飞机的机身、机翼等部件时,碳纤维复合材料可以替代传统的金属材料,实现减重和提高结构强度的目的。
而在汽车行业,碳纤维复合材料的轻量化优势可以提高汽车的燃油经济性,降低碳排放量。
此外,碳纤维复合材料还广泛应用于体育器材、建筑领域等。
然而,碳纤维及其复合材料也存在一些问题和挑战。
首先,碳纤维复合材料的成本较高。
由于制备工艺的复杂性和原材料的昂贵性,使得碳纤维复合材料的成本较高,限制了其在一些领域的应用。
其次,碳纤维复合材料的环保性仍然是一个问题。
目前,碳纤维的废弃物处理和回收利用仍然存在一定的困难。
综上所述,碳纤维及其复合材料是一种具有优异性能的材料,在航空航天、汽车、体育器材等领域有广泛的应用前景。
随着技术的不断进步,碳纤维复合材料的制备工艺和成本将得到进一步改善,有望在更多领域发挥重要作用。
碳纤维复合材料的分类

碳纤维复合材料的分类
以下是 7 条关于碳纤维复合材料分类的内容:
1. 短纤维碳纤维复合材料呀,就好像是一群小士兵紧密地排列在一起执行任务!你想想看,那些汽车的内饰件很多不就是用它来制造的嘛,让车子更轻便又结实。
2. 连续纤维碳纤维复合材料呢,这可牛了,就如同坚韧的绳索一样强大!飞机的某些部件不就是用这个嘛,保证了飞行的安全和高效,厉害吧!
3. 编织碳纤维复合材料呀,这不就像是精心编织的布一样嘛!在高端的体育器材里经常能看到它的身影,让运动员们如虎添翼呀!
4. 颗粒增强碳纤维复合材料,嘿,这就好似给材料里加了一份特别的力量调料!一些耐用的工具上就用了它,能更耐用哦!
5. 层合碳纤维复合材料,哇哦,就好像是一层层叠起来的坚固堡垒!在航天器上经常用到呢,助力探索浩瀚宇宙,这多牛啊!
6. 纳米碳纤维复合材料,听着就很高科技对不对,简直就是微观世界里的小能手啊!某些电子设备可少不了它,让科技更酷炫呢!
7. 混杂碳纤维复合材料,这可有趣了,就像是各种厉害角色的大融合!在一些特殊的工程领域中大展身手呢,起到意想不到的效果呀!
我觉得碳纤维复合材料的这些分类真的是各有千秋,都为我们的生活和科技发展带来了巨大的助力呀!。
碳纤维复合材料论文

碳纤维复合材料论文导言碳纤维复合材料(CFRP)是一种由碳纤维和树脂基体组成的高性能材料。
随着科技的进步,CFRP在航空航天、汽车工业、体育用品等领域中得到了广泛的应用。
本论文将就CFRP的制备方法、性能特点以及应用前景进行详细探讨。
1. CFRP的制备方法CFRP的制备方法通常包括纺丝、预浸料、固化和成型四个步骤。
1.1 碳纤维纺丝碳纤维是由多个碳纤维丝束组成的。
纺丝过程中,先将碳纤维丝束在高温下拉伸,然后进行表面处理,以增加纤维与树脂的粘合性能。
1.2 预浸料制备预浸料是将纺丝得到的碳纤维与树脂基体进行浸渍得到的材料。
树脂基体一般采用环氧树脂。
预浸料制备过程中需要控制纤维的含量、纤维间的排列方式以及树脂的渗透性。
1.3 固化固化是指通过加热或加压将树脂基体中的单体或低分子量聚合物转变为高分子量聚合物的过程。
固化可以提高CFRP的强度和刚度。
1.4 成型成型是将固化后的预浸料经过特定形状的模具加热或加压成型,得到最终的CFRP产品。
2. CFRP的性能特点CFRP具有许多优良的性能特点,使其成为许多领域的首选材料。
2.1 高强度和高刚度相比于传统的金属材料,CFRP具有更高的强度和刚度。
其拉伸强度可以达到2000 MPa,弹性模量可以达到150 GPa以上。
2.2 轻质CFRP的密度大约为1.6 g/cm³,相比于钢材(7.8 g/cm³)和铝材(2.7g/cm³),CFRP具有更轻的重量优势。
2.3 抗腐蚀性由于CFRP的主要组成部分是碳纤维和树脂基体,它具有优良的抗腐蚀性能,不易受潮湿环境、化学物质和气候变化的影响。
2.4 热稳定性CFRP具有较高的热稳定性,可以在高温环境下长期使用而不发生形变或脆化。
2.5 高耐疲劳性由于CFRP的高强度和高刚度,它具有出色的耐疲劳性能,适用于长期受到重复加载的应用场景。
3. CFRP的应用前景随着CFRP技术的不断发展,其在各个领域的应用前景十分广阔。
碳纤维及其复合材料讲解 ppt课件

➢ 碳纤维制造工艺
1、聚丙烯腈PAN配液->纺丝(湿法/干喷湿纺) ->表面处理->收丝(PAN原丝)
2.
➢ 树脂基复合材料(CFRP/CFRTP)
1、基体树脂CFRP:环氧树脂EP、双马酰亚胺树脂BMI、 热固聚酯亚胺PI、氰酸脂.
2.CFRTP热塑性树脂:聚醚醚酮、聚苯硫醚和聚醚砜主要 生产预浸带料。
总结
➢ 碳纤维复合材料(CFRP)具有轻质、高强度、高刚度、抗疲 劳和耐腐蚀等优异性能。为了解决全球气候变暖、温室气 体排放的环境问题,碳纤维复合材料在大型飞机、风力发电 叶片、汽车部件、石油开采抽油杆、电力输送电缆等领域 的应用将推动节能减排的实现。碳纤维复合材料的使用实 现了材料的轻量化,从而达到了节能减排的目的,碳纤维复合 材料在这些领域的实际应用代表了其技术的成熟度和水平。 随着国产化碳纤维制造关键技术的成熟,通过突破碳纤维复 合材料的低成本制造技术,实现国产碳纤维复合材料在节能 减排方面的应用是现实的。
CARBON FIBER AND ITS COMPOSITE MATERIALS
碳 纤维及其复合材料
张慧 冯浩辉 车腾伟
19 60
用当爱源世 的时迪于界 是的生 上 碳白发世最 纤炽明纪早 维灯电 的 。灯灯年碳
丝的代纤 时,维 期,
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
(2) C/C 复合材料
它是由碳纤维或织物、编织物等增强碳基复合材料构成, 主要由各类碳组成,即纤维碳、树脂碳和沉积碳。
这种材料除具备高强度、高刚性、尺寸稳定、抗氧化和耐 磨损等特性外,还具有较高的断裂韧性和假塑性。在高温 环境中,强度高、不熔不燃,广泛应用于导弹弹头,固体 火箭发动机喷管以及飞机刹车盘等领域。
碳纤维与碳纤维复合材料

功能材料1401 孙朋亮
碳纤维与碳纤维复合材料
我们通常所说的碳纤维是一个模糊的总称, 不同种类碳纤维的性能其实千差万别。要注意, 我们所说的「碳纤维」,其实是「碳纤维增强 复合材料」的简称和俗称,与真正的「碳纤维」 是有区别的。简单理解,真正的「碳纤维」就 像是一根一根的毛线,而我们通常所说的「碳 纤维」则是这些毛线织成的各种毛衣、围巾、 手套等等
• 对于工程中使用的碳纤维来说,纤维的排 布既可以是单一方向的,也可以是多方向 交叉叠加的。其中最常用的当然是多方向 交叉的,这也就是我们常见的那种碳纤维 的外观。
• 比如这就是单一方向的
• 这个就是多方向交叉的,我们常见的碳纤维的外观就是这
种双向交叉的纹理。原始的碳纤维材料就是这样的,其实 更像布料,可以弯折,可以卷成一卷。
•
所谓的碳纤维增强复合 材料,其实就是用很多碳纤 维,按照一定的方向排布, 然后用树脂或者其它黏合材 料紧密的连接成一体。如图 所示,这一根一根的圆柱体 就是碳的纤维,而这些圆柱 体被中间填充的树脂填充在 一起。这些纤维的分布密度 直接影响最终的材料性能。 正因为这样,我们可以通过 调整纤维体积比,来控制碳 纤维材料的最终性能。简单 说,
碳纤维编织
• 编织是一种基本的纺织工艺,能够使两条 以上纱线在斜向或纵向互相交织形成整体 结构的预成形体。这种工艺通常能够制造 出复杂形状的预成形体,但其尺寸受设备 和纱线尺寸的限制.该工艺技术一般分为两 类,一类的二维编织工艺,另一类是三维 编织工艺 。
• 传统的二维编织工艺能用于制造复杂的管状、 凹陷或平面零件的预成形体,它与其它纺织技 术相比成本相对较低。它的研究主要集中在研 发自动化编织机来减少生产成本和扩大应用范 围。它的关键技术包括质量控制、纤维方向和 分布、芯轴设计等。 • 三维编织复合材料是近二十年来诞生的一种新 型复合材料,它以三维整体织物为增强体,其 优良的结构性显著改善了复合材料多方面的力 学特性,从根本上克服了传统层合板层间剪切 强度低而且易分层的缺点在航空、航天、军工、 汽车、疗以及高级体育用品等领域得到了广泛 应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.24
289.9
2.03
300.6
1.93
343.7
1.89
408.1
1.79
418.6
断裂伸长 密度 (%) (g/cm3)
1.60
1.721
1.03
1.751
0.79
1.770
0.69
1.761
0.66
1.817
0.49
1.919
0.48
1.962
电阻率 (106Ω•m)
12.12 7.63 6.93 6.36 5.34 4.24 3.70
6.2 碳纤维的制备
在惰性气氛中将小分子有机物(如 烃或芳烃等)在高温下沉积成纤维。 此法用于制造晶须或短纤维,不能用 于制造长纤维。
将有机纤维经过稳定化处理变成耐焰纤维, 然后再在惰性气氛中于高温下进行焙烧碳化,使 有机纤维失去部分碳和其他非碳原子,形成以碳 为主要成分的纤维状物。此法用于制造连续长纤 维。
6.3.2 根据碳纤维功能分类 (1)受力结构用碳纤维 (2)耐焰碳纤维 (3)活性碳纤维(吸附活性) (4)导电用碳纤维 (5)润滑用碳纤维 (6)耐磨用碳纤维
6.3 碳纤维的分类
6.3.3 根据碳纤维性能分类
性能分类
高性能碳纤维 高强度(HS),超高强度(VHS), 高模量(HM),中模量(MM)
碳纤维产品
碳纤维及预浸料
碳绳
抗拉强度:3600MPa 拉伸模量:220GPa 层间剪切强度:85MPa 断裂伸长率:1.5%
防弹板
6.1 碳纤维(Carbon Fiber----CF)
6.1.2 碳纤维概述 碳纤维的开发历史可追溯到19世纪末期,美
国科学家爱迪生发明的白炽灯灯丝。
而真正作为有使用价值并规模生产的碳纤维, 则出现在二十世纪50年代末期。
和沥青(Pitch)等。 无论用哪一种原丝纤维来制造碳纤维,都要
经过五个阶段:
拉丝
牵伸
稳定
碳化
石墨化
制造高强度、高模量碳纤维多选用聚丙烯腈为原料
6.2 碳纤维的制备
经过五个阶段: 1)拉丝:湿法、干法或熔融纺丝法。 2)牵伸:在100 300 C范围内进行,控制着最终纤维的模量。 3)稳定:在200-400 C加热氧化,脱氢、环化、氧化,使碳化 时原丝不熔融。 4)碳化:在10002000 C 范围内氮气氛围进行,脱去非碳原子 5)石墨化:在2000 3000C范围内进行,六角碳平面环增加, 转化为类石墨结构
低性能碳纤维 耐火纤维,碳质纤维,石墨纤维等
短纤维
长纤维
6.4 碳纤维的结构与性能
6.4.1 碳纤维的物理结构(层状平面环) 碳纤维的结构决定于原丝结构与碳化工艺。 对有机纤维进行预氧化、碳化等工艺处理的目的 是,除去有机纤维中除碳以外的元素,形成聚合多环 芳香族平面结构。
材料的性能主要决定于材料的结构。结构有两 方面的含义:一是化学结构,二是物理结构。
在制备碳纤维的过程中,无论采用什么原材 料,都要经过上述五个阶段,即原丝预氧化(拉 丝、牵伸、稳定)、碳化以及石墨化等,所产生 的最终纤维,其基本成分为碳。
6.2 碳纤维的制备
PAN基碳纤维制备工艺流程:
PAN原丝200300C 1150惰气 碳纤维 2100C石墨化 石墨纤维
空气中预氧化, 中碳化1 h, 低模 惰气中1分钟, 高模高强
石墨化: 结晶碳含量不断提高,可达99%以上、纤维结构不断
完善。
碳纤维是乱层石墨结构 石墨纤维是近层状结晶结构
热处理温度对石墨纤维性能的影响
温度 (℃)
原碳纤维 2000 2200 2400 2600 2800 3000
拉伸强度 拉伸模量 (GPa) (GPa)
3.49
227.6
2.69
268.0
6.4.1 碳纤维的物理结构
在碳纤维形成的过程中,随着原丝的不同,重量 损失可达10%--80%,因此形成了各种微小的缺陷。
但是,无论用哪种原料,高模量碳纤维中的碳分 子平面总是沿纤维轴平行地取向。
理想的石墨点阵 结构属六方晶系
用X射线、电子衍射和电子显微镜 研究发现,真实的碳纤维结构并不 是理想的石墨点阵结构,而是属于 乱层石墨结构。
施加张力的作用:
限制纤维收缩,使环状结构在较高温度下择优取向 (相对纤维轴),可显著提高碳纤维的模量。
预氧化过程中可能发生的反应: 环化反应 脱氢反应 吸氧反应
环化反应
梯形,六元环 耐热
脱氢反应
未环化的聚合物链或环化后的杂环可由于氧的作用 而发生脱氢反应,形成以下结构:
CC CC C NNNN
在乱层石墨结构中,石墨层片是基本的结构单元,若干层片 组成微晶,微晶堆砌成直径数十纳米、长度数百纳米的原纤,其 直径约数微米。原纤呈现弯曲、彼此交叉的许多条带状结构组成, 条带状的结构之间存在针形空隙,大体沿纤维轴平行排列。
石墨层片的缺陷 及边缘碳原子
基本结构单元
石墨微晶 二级结构单元
原纤维构成碳纤维单丝 碳纤维的三级结构单元
6.1.2 碳纤维概述
目前世界碳纤维总生产能力为10054吨/年,其中聚 丙烯腈基碳纤维78%。其它的是以沥青基碳纤维为 主。日本是最大聚丙烯腈基碳纤维生产国,生产能 力约3400吨/年,占聚丙烯腈基碳纤维总量的43%。
美国的碳纤维主要用于航空航天领域,欧洲在 航空航天、体育用品和工业方面的需求比较均衡, 而日本则以体育器材为主。
PAN
湿纺
PAN 纤维
干湿纺
预氧化 空气介质 200-300oC 数十至数百分钟
碳化
OFห้องสมุดไป่ตู้
惰性气氛
CF
1200-1500 oC
数分至数十分钟
石墨化 惰性气氛 2000-3000 oC 数秒至数十秒
CF 系列产品
深加工
GrF 表面处理
PAN原丝制备碳纤维的过程分为三个阶段:
预氧化:200℃~300℃的氧化气氛中,原丝受张力情况 下进行
只有在碳化过程中不熔融,不剧烈分解的有机纤维才能 作为碳纤维的原料。
一般以有机纤维为原料制造
有机纤维
预氧化处理
高温碳化
原丝
原丝的选择条件: 强度高,杂质少,纤度均匀等。
基本条件: 加热时不熔融,可牵伸,且CF产率高。
常用的碳纤维原丝: 聚丙烯腈纤维、粘胶纤维、沥青纤维
6.2 碳纤维的制备
制备碳纤维的主要原材料有: 人造丝(粘胶纤维)、聚丙烯腈(PAN)纤维
拉伸模量较高的中间相沥青基碳纤维(蝶状液晶 材料)--各向异性沥青基碳纤维。
6.3 碳纤维的分类
6.3.1 根据原丝类型分类: (1)聚丙烯腈基纤维 (2)粘胶基碳纤维 (3)沥青基碳纤维 (4)木质素纤维基碳纤维 (5)其他有机纤维基碳纤维 各种天然纤维、再生纤维、缩合多环芳香族合成纤维
6.3 碳纤维的分类
含碳量95%左右的称为碳纤维; 含碳量99%左右的称为石墨纤维。
优点:碳纤维比重小、比强度、比模量大,耐热性 和耐腐蚀性好,成本低,批量生产量大,是一 类极为重要的高性能增强剂。
用碳纤维制成的树脂基复合材料比模量比钢和铝 合金高5倍,比强度高3倍以上; 同时耐腐蚀、耐热冲击、耐烧蚀性能均优越
因而在航空和航天工业中得到应用并得到迅速 发展。
6. 碳纤维及其复合材料
Carbon Fibers and Composites
6. 碳纤维及其复合材料 什么是碳纤维 碳纤维的制备 碳纤维的种类 碳纤维的结构与性能 碳纤维的表面改性 碳纤维复合材料
6.1 碳纤维(Carbon Fiber----CF)
6.1.1 定义:
由有机纤维或低分子烃气体原料在惰 性气氛中经高温(1500ºC)碳化而成的纤 维状碳化合物,其碳含量在90%以上。
含碳量大于70%,化学组成及结构千变万化,结构变化 范围极宽的有机化合物的混合物,分子质量分布很宽, 400~800,软化点100℃~200℃ 。
6.2.2 以沥青为原料制造碳纤维
原料丰富,且属于综合利用,可以降低成本,在民用 方面有很大潜力。 沥青基碳纤维目前主要有两种类型:
力学性能较低的所谓通用级沥青基碳纤维--各 向同性沥青碳纤维;
HCN、N2)的瞬间排除。 如不及时排除,将造成纤维表面缺陷,甚至断裂。
解决措施: 一般采用减压方式进行碳化。
石墨化
在2500℃~3000℃的温度下,密封装置,施加压力, 保护气体中进行。
目的是使纤维中非碳原子进一步排除,芳环平面逐 步增加,使之与纤维轴方向的夹角进一步减小,排列较 规则,取向度显著提高,由二维乱层石墨结构向三维有 序结构转化,以提高碳纤维的弹性模量。
直径 (μm)
6.28 6.07 6.07 5.86 5.70 5.23 5.52
热处理温度越高,张力越大,模量越大,层间距越小,伸 长率下降,直径下降。
PAN纤维热处理温度与强度和弹性模量的关系
6.2.2 以沥青为原料制造碳纤维
沥青:除天然沥青外,一般将有机化合物在隔绝空气或在 情性气体中热处理,在释放出氢、烃类和碳的氧化物的同 时,残留的多环芳烃的黑色稠状物质称为沥青。
PAN的Tg低于100℃,分解前会软化熔融,不能 直接在惰性气体中进行碳化。 先在空气中进行预氧化处理,使PAN的结构转 化为稳定的梯形六元环结构,就不易熔融。 另外,当加热足够长的时间,将产生纤维吸氧作 用,形成PAN纤维分子间的化学键合。
碳化:
在400℃~1900℃的惰性气氛中进行,是碳纤维生
成的主要阶段。
一般采用高纯 氮气N2
除去大量的非碳元素(氮、氢、氧等),预氧化
时形成的梯形大分子发生脱N交联,转变为稠环状,形
成了碳纤维。
碳化收率40%~45%,含碳量95%左右。
施加张力: 不仅使纤维的取向度得到提高,而且使纤维致密化