人教版九年级数学上册教案:22.3 实际问题与二次函数(2)
人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计

5.总结:对本节课的内容进行总结,强调二次函数在实际问题中的应用。
6.课后作业:布置与最大利润问题相关的作业,让学生在课后进一步巩固所学知识。
教学评价:
1.课堂表现:关注学生在课堂上的参与程度,积极思考、提问的表现。
2.作业完成情况:评价学生对最大利润问题解决方法的掌握程度。
(2)鼓励学生尝试用不同的方法解决同一问题,提高他们的思维灵活性和创新意识。
3.拓展作业:
(1)引导学生关注生活中的最大利润问题,如超市促销、工厂生产等,要求学生运用所学知识进行分析,并提出解决方案。
(2)鼓励学生查找相关资料,了解二次函数在其他领域的应用,如经济学、管理学等。
4.作业要求:
(1)要求学生在作业本上规范书写,保持卷面整洁。
4.通过对最大利润问题的探讨,培养学生的数感和运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作探究、解决问题的能力。
2.引导学生运用数学建模的思想,从实际问题中抽象出数学模型,提高学生的数学思维能力。
3.运用数形结合的方法,让学生在解决最大利润问题的过程中,深入理解二次函数的性质和图像。
(2)新课:讲解二次函数在实际问题中的应用,通过例题让学生体会最大利润问题的解决方法。
(3)练习:设计不同难度的练习题,让学生在解决最大利润问题的过程中,巩固所学知识。
(4)总结:对本节课的重点知识进行总结,强调二次函数在实际问题中的应用。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点
人教版数学九年级上册:22.3 实际问题与二次函数 第2课时 二次函数与最大利润问题 教案

22.3实际问题与二次函数第2课时二次函数与最大利润问题【知识网络】典案二导学设计一、阅读课本:二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x上市时间x/(月份) 1 2 3 4 5 6市场售价P(元/千克)10.5 9 7.5 6 4.5 3这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?。
九年级数学上册22.3实际问题与二次函数教案2(新版)新人教版

根据所学内容解答习题
2、总结归纳
谈谈本节课的收获?
3、作业:课堂
必做:教材第52页3、题
选做:教材第52页8题
家庭
同步轻松练习
板书设计
教后记
聆听、思考、回答
四、总结提高
1、出示精选习题
⑴向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
A.第8秒B.第10秒C.第12秒D.第15秒
⑵平面直角坐标系中,若平移二次函数y=(x-2009)(x-2010)+4的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为
(2)在自变量取值范围内,运用公式或配方法求出二次函数的最大值和最小值。
回忆
2、出示学习目标
会综合运用二次函数和其他数学知识解决如有关距离等函数最值问题。
明确目标
出示自学提纲
⑴阅读教材51页探究3
⑵以抛物线顶点为原点建立坐标系
⑶根据已知条件如何求出这条抛物线表示的二次函数的解析式呢?
⑷水面下降1m,水面的纵坐标为多少?此时水面宽度为多少m?与原来的4m比增加了多少m?
实际问题与二次函数
教学目标
知识与技能
使学生掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题。
过程与方法
会综合运用二次函数和其他数学知识解决如有关距离等函数最值问题。
情感态度与价值观
发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。
重点
利用二次函数的知识解决实际问题,并对解决问题的策略进行反思
2020九年级数学上册 第二十二章 二次函数 22.3 实际问题与二次函数(2)教案 (新版)新人教版

(1)我们先看涨价的情况.
设每件涨价x元,每星期则少卖l0 x件,实际卖出(30 0-l0x)件,销售额为(60 +x) (300-l0x)元,买进商品需付40(300-10x)元.因此,所得利润y=(60+x)(300-l0x)一40(300-l0x),即y=-l0x2+100x+6 000.
教
学
反
思
课
时
教
学
目
标
1.会求二次函数y=ax2+bx+c的最小(大)值.
2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题.
3.根据不同条件设自变量x求二次函数的关系式.
重点
1.根据不同条件设自变量x求二次函数的关系式.2.求二次函数y=ax2+bx+c的最小(大) 值.
实际问题与二次函数Leabharlann 课时1课时教学设计
课标
要求
能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题.
教
材
及
学
情
分
析
1、教材分析:二次函数的实际应用加强了方程等内容与函数的联系,在本章的学习中,教材已通过二次函数及其图象和性质,让学生初步了解了求特殊二次函数最大(小)值的一些方法。本节课在巩固二次函数性质的同时,进一步让学生掌握利用二次函数知识求一些简单实际问题最大(小)值的方法,培养学生运用所学知识解决实际问题 的能力,学会用建模的思想去解决其它和函数有关应用问题。并通过实践体会到数学来源于生活又服务于生活。此部分内容具有承上启下的作用。
人教初中数学九上 22.3 实际问题与二次函数(第2课时)教案

随 S 出发时间如何变化?写出函数关系式及 t 的取值范围.
作业:1.必做:课本第 52 页,4、5 题.
作业设必做题
【例题】 1.一块三角形废料如图 26.3.2—2 所示,∠A=30°, 教师出示例题.
∠C=90°,AB=12.用这块废料剪出一个长方形 CDEF,其中,点 D、 请一位学生板练,其
E、F 分别在 AC,AB,BC 上,要使剪出的长方形 CDEF
他学生练习.完成练
面积最大,点 E 应选在何处?
习后,先在小组内进
入
2.一个圆柱的高等于底面半径,写出它的表面积 S 与半径 r 之 及表面积公式.
间的函数关系式
思考解答写出关系
3.一个长方形的长是宽的 2 倍,写出长方形的面积与宽之间的 式.
函数关系式
4.已知一个矩形的周长为 12 米,设矩形的一边长为 xm,面积为 Sm2,求 S 与 x 之间的函数关系式,并确定自变量的取值范围
态度
重点 用二次函数的知识分析解决有关面积问题的实际问题.
难点 通过图形之间的关系列出函数解析式.
【教学环节安排】
环节
教学问题设计
教学活动设计
情 创设情景 引入新课
首先让学生明确矩
境
1.正方体的六个面是全等的正方形,设正方形的棱长为 x,表面 形、圆、三角形、正
引 积为 y,求 y 与 x 之间的函数关系式,并求出自变量 x 的取值范围 方体、圆柱的面积以
行交流、讨论.
图 26.3.2—2
【分析】师生共同分析:长方形 CDEF 面积是大三角形的面积减
去两个小三角形的面积.
解:(略)
用一段长 30m 的篱笆,围城一个一边靠墙
1. 抓 住 图 形 的 特
人教版九年级上册数学22.3实际问题与二次函数(教案)

1.教学重点
-二次函数在实际问题中的应用:本节课的核心是让学生掌握如何将实际问题转化为二次函数模型,从而利用数学工具解决具体问题。例如,通过分析物体的抛物线运动,建立速度与时间的关系,进而求解物体的最大高度或最远距离。
-二次函数的性质及其图像:重点讲解二次函数的开口方向、顶点、对称轴等性质,并通过图像加深理解,使学生能够熟练运用这些性质解决实际问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y=ax²+bx+c的函数,它能够描述许多抛物线形状的现象。它在物理学、经济学等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设一个物体以抛物线轨迹运动,我们要计算它的最大高度和飞行距离。这个案例将展示二次函数在实际中的应用,以及它如何帮助我们解决问题。
五、教学反思
在今天的课堂上,我们探讨了实际问题与二次函数的关联,尝试将抽象的数学概念应用到具体的生活实例中。我注意到,在理论介绍环节,学生对二次函数的基本概念掌握得还算扎实,但在案例分析时,一些学生在构建数学模型上遇到了困难。这让我意识到,将实际问题转化为数学语言,对他们来说是一个不小的挑战。
在实践活动和小组讨论中,学生们的参与度很高,大家积极讨论、动手实践,课堂氛围相当活跃。我特别高兴看到他们在讨论中互相启发,共同解决问题。然而,我也发现有些小组在分析问题时,还是局限于表面的理解,未能深入挖掘问题背后的数学原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
《实际问题与二次函数(第2课时)》教学设计【初中数学人教版九年级上册】
第二十二章二次函数22.3实际问题与二次函数教学设计第2课时一、教学目标1.学会将利润问题转化为利润问题.2.掌握用二次函数的知识解决有关的利润问题.二、教学重点及难点重点:利用二次函数的知识对现实问题进行数学分析,即用数学的方式表示问题以及用数学的方法解决问题.难点:从现实问题中建立二次函数模型.三、教学用具多媒体课件。
四、相关资源《市场调查》动画。
五、教学过程【创设情景,揭示课题】问题某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出18件.已知商品的进价为每件40元,如何定价才能使利润最大?【合作探究,形成新知】(1)题目中有几种调整价格的方法?师生活动:教师提出问题,学生回答.小结:调整价格包括涨价和降价两种情况.(2)题目涉及哪些变量?哪一个量是自变量?哪一个量随自变量的变化而变化?哪个量是函数?师生活动:小组合作交流,教师引导学生根据题意设未知数,找出各个量的关系.小结:题目涉及涨价(或降价)与利润两个变量,其中涨价(或降价)是自变量;设每件涨价(或降价)x元,则每星期售出商品的利润y随之变化而变化;y是x的函数.(3)当每件涨价1元时,售价是多少?每星期的销售量是多少?成本是多少?设每件涨价x元,销售额是多少?利润呢?最多能涨多少钱呢?师生活动:一学生回答,全班订正.教师边聆听边板演,不足地方补充总结.小结:当每件涨价1元时,售价是60+1=61元;每星期销售量是300-10=290件,成本是40元;设涨价x元,销售额是(60+x)(300-10x)元,利润是y=(60+x)(300-10x)-40(300-10x)元,即y=-10x2+100x+6 000,其中,0≤x≤30,最多能涨30元.(4)当每件降x元时,售价是多少?每星期的销售量是多少?成本是多少?销售额是多少?利润y呢?师生活动:师生一起完成解答.设每件降价x元时,利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300+18x)元.因此,所得利润y=(60-x)(300+18x)-40(300+18x).(5)由以上四个问题,你能解决问题了吗?请试试看.解:设每件涨价x元,则每星期少卖10x件,实际卖出(300-10x)件,销售额为(60+x)(300-10x)元,买进商品需付40(300-10x)元.因此,所得利润为y=(60+x)(300-10x)-40(300-10x),即y=-10x2+100x+6000,其中,0≤x≤30.当定价为60+5=65元时,y有最大值6 250元.设每件降价x元时,利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300+18x)元,因此,所得利润y=(60-x)(300+18x)-40(300+18x),即y=-18x2+60x+6 000,其中0≤x≤20.当定价为x=51605833-=元时,y有最大值6 050元.故要使利润最大,应每件定价为65元.设计意图:通过层层设问,引导学生不断思考,积极探索,让学生感受到数学的应用价值.【例题分析,深化提高】例一件工艺品进价为100元,标价135元售出,每天可售出100件.市场调查发现:一件工艺品每降价1元出售,则每天可多售出4件.要使每天获得的利润最大,每件需降价的钱数为( ).A.5元B.10元C.0元D.36元【解析】设每件降价的钱数为x元,每天获利y元,则y=(135-x-100)(100+4x),即y=-4(x-5)2+3600.∵-4<0,∴当x=5时,每天获得的利润最大.故选A.【练习巩固,综合应用】1.出售某种手工艺品,若每个手工艺品获利x元,一天可售出(8-x)个,则当x=元时,一天的利润最大.2.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?3.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,每天可全部租出;当每辆车的日租金每增加50元时,每天未租出的车将增加1辆;公司平均每日的各项支出共4 800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入-平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);(2)当每日租出多少辆车时,租赁公司的日收益最大?最大是多少元?(3)当每日租出多少辆车时,租赁公司的日收益不盈也不亏?参考答案1.4 2.每件65元3.(1)400+50(20-x )=1 400-50x (0<x ≤20).答案:1 400-50x (0<x ≤20).(2)根据题意,得y =x (-50x +1 400)-4 800=-50x 2+1 400x -4 800=-50(x -14)2+5 000.当x =14时,y 有最大值5 000.∴当每日租出14辆车时,租赁公司的日收益最大,最大值为5 000元.(3)要使租赁公司的日收益不盈也不亏,即y =0.也就是-50(x -14)2+5 000=0.解得x 1=24,x 2=4.∵x =24不合题意,应舍去.∴当每日租出4辆车时,租赁公司的日收益不盈也不亏.设计意图:通过练习,及时反馈学生的学习情况,培养学生把实际问题转化为数学问题的能力,并使学生从中获得成功的体验.六、课堂小结1.一般地,当a >0时,抛物线y =ax 2+bx +c 的顶点是最低点,也就是说,当2b x a=-时,二次函数y =ax 2+bx +c 有最小值244ac b a -. 当a <0时,抛物线y =ax 2+bx +c 的顶点是最高点,也就是说,当2b x a=-时,二次函数y =ax 2+bx +c 有最大值244ac b a -. 2.解决二次函数最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,求出二次函数的最大值或最小值.设计意图:总结、归纳学习内容,帮助学生加深对数形结合思想的理解,培养学生的数学应用意识.七、板书设计22.3 实际问题与二次函数(2)1.用二次函数的知识解决利润问题。
人教版-数学-九年级上册-22.3 实际问题与二次函数(2) 教案
22.3 实际问题与二次函数(2)一、教学目标(一)学习目标1. 能根据具体几何问题中的数量关系,列出二次函数关系式2.会利用二次函数求几何图形中的周长、面积等的最值3.体会利用二次函数求面积其中所蕴含的数学思想和方法(二)学习重点应用二次函数解决几何图形中有关的最值问题(三)学习难点函数特征与几何特征的相互转化以及讨论最值在何处取得二、教学设计(一)课前设计预习任务1.22(3)2y x =--+;对称轴3x =、顶点坐标()3,2、当3x =时,y 取最大值为2 2.21322y x x =--;对称轴1x =、顶点坐标()1,2-、当1x =时,y 取最小值为-23.(1)(3)y x x =-+对称轴1x =-、顶点坐标()1,4--、当1x =-时,y 取最小值为4- 预习自测 1. 已知二次函数的解析式为22813y x x =++ (1)当33x -≤≤,该函数的最大和最小值分别是_________和_____________;(2)当03x ≤≤,该函数的最大和最小值分别是_________和_____________.【知识点】求二次函数的区间最值【数学思想】数形结合【思路点拨】先化成顶点式或是利用顶点坐标公式求出顶点,再看对称轴和区间的位置关系,进而求解.【解题过程】解:把原式化为顶点式为2228132(2)5y x x x =++=++,可知此函数的顶点坐标是(2,5)-,对称轴为2x =-当33x -≤≤时可知,max 355x y ==时,2x =-时min 5y =;(2)当03x ≤≤,对称轴2x =-时在所给的区间左侧,此时y 随x 的增大而增大,因此可知max 355x y ==时,min 013x y ==时【答案】(1)55,5;(2)55,13.【设计意图】通过做练习复习区间最值的求解以及应该注意的问题,实际问题中有时会涉及到区间最值,学生很容易出问题.设计此题就是为了提醒学生注意求解函数问题不能离开定义域这个条件才有意义,因为任何实际问题的定义域都受现实条件的制约,为学习新课做好知识铺垫.2.在一幅长80cm,宽50cm的矩形风景画的四周镶上一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5000cm2,设金色纸边的宽为xcm,那么满足的方程是().A.x2+130x-1400=0 B.x2-130x-1400=0C.x2+65x-250=0 D.x2-65x-250=0【知识点】矩形性质,矩形面积【数学思想】数形结合【思路点拨】挂图长为(80+2x)cm,宽为(50+2x)cm,根据整个挂图的面积是5000cm2,即长×宽=5000,列方程进行化简即可.【解题过程】解:挂图长为(80+2x)cm,宽为(50+2x)cm;所以(80+2x)(50+2x)=5000,即4x2+160x+4000+100x=5000,所以4x2+260x-1000=0.即x2+65x-250=0.故选C.【答案】C.【设计意图】根据矩形的面积公式本题易得解.3.用长16 m的绳子围成如图所示的矩形框,使矩形框的面积最大,那么这个矩形框的最大面积是_______ 2m.【知识点】矩形性质,矩形周长,求二次函数最值【数学思想】数形结合【思路点拨】设竖边为x,用x表示横边,再表示面积,再求最值【解题过程】设竖边为x,则横边为1623x21622(4)32333x xs x--==-+当4x=时,y取最大值为323【答案】323【设计意图】把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础.4.如图,点C是线段AB上的一个动点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是( )A.当C是AB的中点时,S最小 B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小 D.当C是AB的三等分点时,S最大【知识点】正方形性质,求面积最大问题【数学思想】数形结合【思路点拨】把其中的一个主要变量设为x,其它变量用含x的代数式表示,找等量关系,建立函数模型【解题过程】设AC=x则BC= 1x-22211(1)2()22s x x x=-+=-+当12x=时,取最小值为12∴当C是AB的中点时,S最小【答案】A【设计意图】把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础.(二)课堂设计1.知识回顾(1)对于任意一个二次函数的一般式2(0)y ax bx c a =++≠,可以利用配方把它化为顶点式2()y a x h k =-+,进而写出顶点坐标(h,k )和对称轴x=h (2)求二次函数2(0)y ax bx c a =++≠与x 轴的交点,即令y=0即可;其与x 轴交点即为12(,0)(,0)x x ;求二次函数2(0)y ax bx c a =++≠与y 轴的交点,即令x=0即可;其与y 轴交点即为(0,)c(3)将二次函数的一般式2(0)y ax bx c a =++≠转化成顶点式2()y a x h k =-+来求二次函数最值,当x h =时,y 取最值为k2.问题探究探究一 最大面积(★)●活动1 创设情境,发现问题:请你画一个周长为24厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?做一做中,让每一个同学动手画周长固定的矩形,然后比较谁的矩形面积最大.学生通过画周长一定的矩形,会发现矩形长、宽、面积不确定,从而回想起常量与变量的概念,最值又与二次函数有关,进而自己联想到用二次函数知识去解决.【设计意图】做一做中,让每一个同学动手画周长固定的矩形,然后比较谁的矩形面积最大,目的一是为激发学生的学习兴趣,二是为了引出想一想.周长固定、要画一个面积最大的矩形,这个问题本身对学生来说具有很大的趣味性和挑战性,学生既感到好奇,又乐于探究它的结论,从而很自然地从复习旧知识过渡到新知识的学习.●活动2 师生共研,探索解法例1. 李老师计划用长为24米的篱笆,围成长方形花圃,他想请同学们帮他思考一下如何围才能使围成的花圃面积最大,最大值是多少?让学生讨论,得出解法.点拨:先用未知数表示面积问题中的各个量,再利用矩形面积公式列出表达式,然后根据表达式,利用二次函数求最值.生答:设矩形宽为x 厘米,则长为2422x-=(12-x )厘米. 12S x x =-(),当x=6时,S 取最大值为36.【设计意图】把前面矩形的周长24厘米改为24米,变成一个实际问题,目的在于让学生体会其应用价值——数学来源于生活也服务于生活.学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础.解决完想一想之后及时让学生总结方法,为后面阶段打下思想方法基础.练习1.用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长的变化而变化.当为多少米时,场地的面积S最大?【知识点】矩形性质,矩形周长,求二次函数最值【数学思想】数形结合【思路点拨】能用未知数表示清楚面积问题中的各个量,列出面积的关系式是本题关键.【解题过程】设矩形一边长,则长为602302ll-=-()厘米.()30S l l=-,当15l=时,S取最大值为225【答案】当15l=时,S取最大值为225【设计意图】一个实际问题,目的在于让学生体会其应用价值——数学来源于生活也服务于生活.学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为,其它变量用含的代数式表示,找等量关系,建立函数模型●活动3 变式应用例2.(例1变式)后来李老师惊喜的发现有一面长度为8米的墙可以靠,则他怎样围可以使花圃的面积最大?最大面积是多少?学生根据例1的解法,独立求解【知识点】矩形性质,矩形面积,求二次函数最值【数学思想】数形结合【思路点拨】能用未知数表示清楚面积问题中的各个量,列出面积的关系式是本题关键.考虑实际问题中靠墙所造成的易错点.最值不是由顶点处取到,学会区间求最值.【解题过程】生答:(1)设矩形长为x厘米,则宽为242x-厘米.(8x≤)241(24)22xS x x x-=⋅=-=()2112722x--+;∵a=12-<0,开口向下,∵8x≤,当8x=时,S取最大值为64【答案】面积S取最大值为64【设计意图】此时有了上一问的方法和技巧,很多学生能够类比的方法建立模型,设出未知数,列出函数关系式.但问题是此时自变量x有取值范围的限制,不能“任性”的取值.从而让学生在不断的探究和合作中感悟,对于实际问题一定需要考虑其自变量x的取值范围才可以求最值.练习2.如图,用一段长为60 m的篱笆围成一个一边靠墙的矩形菜园,墙长32 m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?【知识点】矩形性质,矩形面积,求二次函数最值【数学思想】数形结合【思路点拨】能用未知数表示清楚面积问题中的各个量,列出面积的关系式时考虑实际问题中靠墙所造成的易错点(这道题靠墙依然可以在顶点处取到最值).【解题过程】与墙垂直的一边为x米,则(602)S x x=-∵0≤60-2x≤32. ∴ 14≤x≤30当15x=时,S取最大值为450【答案】当15x=时,S取最大值为450【设计意图】这一阶段,我让学生分组讨论,每一小组指定一名发言人说明小组的思路和解题的过程.这一过程既加强了学生之间合作和探究的能力,形成你追我赶的良好氛围,同时也锻炼学生口头表达能力和板书的能力.小组中每个孩子的数学思维和数学能力都得到了锻炼,使不同层次的学生都能体会到成功的喜悦.小结:在实际问题中求解二次函数的最值问题,不一定都取图象顶点处,要根据自变量的取值范围来确定.通过问题2与问题3的对比,希望学生能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.探究二利用二次函数求几何最值的训练●活动①基础性例题例1. 为了改善小区环境,某小区决定要在一块一边靠墙(墙长 25 m)的空地上修建一个矩形绿化带 ABCD,绿化带一边靠墙,另三边用总长为 40 m 的栅栏围住(如下图).设绿化带的 BC 边长为 x m,绿化带的面积为2 my.(1)求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围.(2)当 x 为何值时,满足条件的绿化带的面积最大?【知识点】一侧靠墙的矩形,周长确定求其面积最大【数学思想】数形结合【思路点拨】利用题目给出的已知条件列出满足题意的式子,进而转化为二次函数求最值.【解题过程】解:(1)24012022xy x x x-==-+,自变量x的取值范围是0<x≤25;(2)()22112020+200 22y x x x=-+=--∵20<25,∴当x=20时,y有最大值200,即当x=20时,满足条件的绿化带面积最大【答案】(1)21202y x x=-+,其中025x≤≤;(2)当x=20时,满足条件的绿化带面积最大【设计意图】这一阶段,我让学生分组讨论,每一小组指定一名发言人说明小组的思路和解题的过程.这一过程既加强了学生之间合作和探究的能力,形成你追我赶的良好氛围,同时也锻炼学生口头表达能力和板书的能力.小组中每个孩子的数学思维和数学能力都得到了锻炼,使不同层次的学生都能体会到成功的喜悦.练习.某窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长为15 m(图中所有线条长度之和),当x 等于多少时,窗户通过的光线最多?此时,窗户的面积是多少?(结果精确到0.01 m)【知识点】周长确定的矩形面积最大问题 【数学思想】数形结合【思路点拨】中间线段用x 的代数式来表示,要充分利用几何关系;要注意顶点的横坐标是否在自变量x 的取值范围内.【解题过程】由题意可知1426152y x x π+⨯+=,化简得1564x x y π--=,设窗户的面积为S m2,则2211561523242x x S x x x x ππ--=+=-+, ∵30a =-<,∴S 有最大值.∴当x =1.25 m 时,S 最大值≈4.69(m2),即当x =1.25 m 时,窗户通过的光线最多.此时,窗户的面积是4.69 m2.【答案】当x =1.25 m 时,窗户通过的光线最多.此时,窗户的面积是4.69 m2.【设计意图】这一阶段,让学生自己通过自己的思考,动手来进行操作解决问题.每一小组指定一名发言人说明小组的思路和解题的过程.这一过程既 加强了学生之间合作和探究的能力,形成你追我赶的良好氛围,同时也锻炼学生口头表达能力和板书的能力.小组中每个孩子的数学思维和数学能力都得到了锻炼,使不同层次的学生都能体会到成功的喜悦.●活动② 提升型例题分组讨论交流解题思路,小组活动后,小组代表展示活动成果.例2.如图,在矩形ABCD 中,AB =2 cm ,BC =4 cm ,P 是BC 上的一动点,动点Q 仅在PC 或其延长线上,且BP =PQ ,以PQ 为一边作正方形PQRS ,点P 从B 点开始沿射线BC 方向运动,设BP =x cm ,正方形PQRS 与矩形ABCD 重叠部分面积为y 2cm ,试分别写出02x ≤≤和24x ≤≤时,y 与x 之间的函数关系式.【知识点】正方形性质,矩形性质,求二次函数最值【数学思想】数形结合,分类讨论【思路点拨】根据题目题意画出相关的图形,充分利用几何关系来求解同时写出自变量x的取值范围内.【解题过程】如图,阴影部分的重叠部分的面积为y当02x≤≤时,如下面的左边的图形所示,PQ BP x==,此时22y PQ x==,其中02x≤≤;当24x≤≤时,如下面的右边的图形所示,PQ BP x==,此时4PC BC BP x=-=-,其中24x≤≤;2(4)28y PC CD PC AB x x=⨯=⨯=-=-+,其中24x≤≤综上所述:2,0228,24x xyx x⎧≤≤=⎨-+≤≤⎩【答案】2,0228,24x xyx x⎧≤≤=⎨-+≤≤⎩【设计意图】让学生自己通过自己的思考,结合题意画出符合题意的图形,根据图形来求解,让学生感受分类讨论的数学思想.练习.如图,从一张矩形纸片较短的边上找一点E,过E点剪下两个正方形,它们的边长分别是AE,DE,要使剪下的两个正方形的面积和最小,点E应选在何处?为什么?【知识点】矩形性质,矩形面积,求二次函数最值【数学思想】数形结合【思路点拨】根据图形之间的关系,表示出两个正方形的边长,进而表示出两个正方形的面积之和,转化为二次函数求最值.【解题过程】令,,DE x AD a AE a x===-,所以面积之和222222()222()22a aS x a x x ax a x=+-=-+=-+,所以当2ax=时,面积最小,即E应选在AD的中点.【答案】E应选在AD的中点.【设计意图】新课程下的数学活动必须建立在学生已有的认知发展水平及知识经验基础之上,充分让学生参与教学,在合作交流的过程中,获得良好的情感体验.例3.如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的总面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米,如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?【知识点】梯形面积,正比例函数,解一元二次方程,二次函数求最值【数学思想】数形结合【思路点拨】想象把所有的阴影部分拼在一起就是一个小梯形.解答抛物线形实际问题的一般思路:1.把实际问题中的已知条件转化为数学问题;2.建立适当的平面直角坐标系,把已知条件转化为坐标系中点的坐标;3.求抛物线的解析式.【解题过程】(1)横向甬道的面积为:21(120180)150()2x x cm⨯+=(2)依题意:2112801502(120180)8028x x x⨯+-=⨯+⨯⨯整理得:21557500x x-+=解得125,150(x x==舍去)故甬道的宽为5米;(3)设建设花坛的总费用为y万元.则210.02(120180)80(2310) 5.72y x x x⎡⎤=⨯⨯+⨯--++⎢⎥⎣⎦20.040.5240x x=-+当6.252bxa=-=时,y的值最小.∵根据设计的要求,甬道的宽不能超过6米,∴当x=6米时,总费用最少.即最少费用为 238.44万元.【答案】(1)横向甬道的面积为:21(120180)150()2x x cm⨯+=(2)故甬道的宽为5米;(3)当x=6米时,总费用最少.即最少费用为 238.44万元.【设计意图】新课程下的数学活动必须建立在学生已有的认知发展水平及知识经验基础之上,充分让学生参与教学,在合作交流的过程中,获得良好的情感体验练习.如图,某水渠的横断面是等腰梯形,底角为120°,两腰与下底的和为4 m,当水渠深x为_______时,横断面面积最大,最大面积是__________.【知识点】梯形面积,二次函数求最值【数学思想】数形结合【思路点拨】根据题目中给定的角度,求出两腰和下底之间的关系式,进而列式转化为二次函数求解.【解题过程】底角为120°,则高和腰之间的夹角为30°,水渠深度为x ,则得到:33AE x=,腰长33AB CD x==两腰与下底的和为4得到:下底为434BC x=所以上底为234AD x=-设横断面的面积为S,则21()342S AD BC BE x x=+=-+∵2330x-<=,对称轴为∴当233x=时,横断面面积最大为433【答案】当233x=时,横断面面积最大为433【设计意图】加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣●活动③探究型例题例4. 在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动.如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,△PBQ的面积等于8平方厘米?(2)设运动开始后第t秒时,五边形APQCD的面积为S平方厘米,写出S与t的函数关系式,并指出自变量t的取值范围;(3) t为何值时S最小?求出S的最小值.【知识点】矩形性质,三角形、五边形面积,求二次函数最值【数学思想】数形结合【思路点拨】能用未知数表示清楚面积问题中的各个边长,列出面积的关系式,再依次解决三个问题.【解题过程】(1)设x秒后△PBQ的面积等于8,则AP=x,QB=2x∴PB=6﹣x.∴12×(6﹣x)2x=8,解得1x=2,2x=4,所以2秒或4秒后△PBQ的面积等于8;(2)第t秒钟时,AP=t cm,故PB=()6t-cm,BQ=2t cm,故212(6)=62PBQS t t t∆=⋅--+∵61272ABCDS=⨯=矩形∴()27267206.PBQS S t t t∆=-=-+<<(3)∵()22672=363S t t t=-+-+,∴当3t=秒时,S取最小值为63.【答案】(1)2秒或4秒后△PBQ的面积等于8;(2)()27267206.PBQS S t t t∆=-=-+<<(3)当3t=时,S取最小值为63【设计意图】此题设计了一个动点最值问题,有前面的方法和思路加上前面基础题作铺垫,大部分学生可以完成.练习. 曾经有这样一道题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?(该题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m²)我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与该例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【知识点】矩形性质,二次函数求最值【数学思想】数形结合【思路点拨】由题意列出式子,转化为二次函数求最值【解题过程】(1)由已知可以得到:161115224AD----==此时窗户的透光面积55144S=⨯=;(2)设AB=x ,则734AD x=- ∵7304x -> ∴1207x <<设窗户的面积为S,由已知可以得到2277769(3)3()44477S AB AD x x x x x ==-=-+=--+当67x =时,max 91.057S =>与前面的例题比较,改变窗户形状后,窗户透光面积的最大值变大【答案】(1)窗户的透光面积55144S =⨯=(2)与前面的例题比较,改变窗户形状后,窗户透光面积的最大值变大 【设计意图】学生在探索这个问题的过程中,将自然地体会到数学来源于生活,同时也服务于生活体验到数学与现实生活的紧密联系,同时加强学生自己的过手能力和计算能力,以课本上的例题为引子,在原来的基础上进行拓展,让学生吃透课本.课堂总结 知识梳理二次函数的三种形式:一般式2(0)y ax bx c a =++≠;顶点式2()(0)y a x h k a =-+≠以及交点式12()()(0)y a x x x x a =--≠.二次函数的三种形式之间的相互转化:一般式2(0)y ax bx c a =++≠可以利用配方化为顶点式2224()(0)24b ac b y ax bx c a x a a a -=++=++≠,进而可以得到顶点坐标公式24(,)24b ac b a a --,对称轴2b x a =-.交点式可以先化为一般式再配方转化为顶点式,有时也可以利用交点式快速的求对称轴122x x x +=.利用二次函数求矩形周长一定的情况下,矩形面积的最大值,在求解的过程中需要标注自变量x 的取值范围,求解的过程中注意是顶点最值还是区间最值,这里往往难度较大.重难点归纳利用二次函数的一般式求最值,有两种思路,第一可以先通过配方2224()(0)24b ac b y ax bx c a x a a a -=++=++≠把一般式化为顶点式,再利用顶点式求函数的最值;第二可以直接利用顶点坐标公式24(,)24b ac b a a --来求解.利用交点式求二次函数的最值,一般是快速的利用对称轴的方程122x x x +=来求对称轴,进而求解.2.实际问题中已知矩形的周长来求解面积最大,此时需要结合题意求解相关的边长,列出方程或是等式转化为二次函数的形式,但需要注意实际问题中往往需要注明自变量x 的取值范围.3. 强化利用二次函数求面积时,应该用一个变量来表示另一个变量,进而表示出面积,写出自变量的取值范围,再结合二次函数求最值的方法来求解,在求解的过程中应该注意是顶点最值还是区间最值,最后还需检验解的合理性.4.数形结合思想特别重要,在思考的过程中需要结合题意画出满足条件的图形,尤其是动态问题中画出图形是解题的关键.。
人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教案
人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教案一. 教材分析本节课是人教版九年级数学上册第22.3节实际问题与二次函数的第2课时,主要内容是销售利润问题。
教材通过引入实际问题,让学生理解和掌握二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣和积极性。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但是,将二次函数应用于实际问题的解决上,可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生运用二次函数解决实际问题的能力。
三. 教学目标1.理解销售利润问题的背景和意义,掌握销售利润问题的解决方法。
2.能够将二次函数知识应用于解决实际问题,提高学生的数学应用能力。
3.培养学生的团队协作能力和问题解决能力,提高学生的数学素养。
四. 教学重难点1.重点:掌握销售利润问题的解决方法,能够将二次函数应用于实际问题的解决。
2.难点:如何引导学生将二次函数与实际问题相结合,提高学生的问题解决能力。
五. 教学方法本节课采用问题驱动的教学方法,通过引入实际问题,引导学生运用二次函数知识进行解决。
同时,采用小组合作学习的方式,鼓励学生积极参与讨论,提高学生的团队协作能力和问题解决能力。
六. 教学准备1.准备相关的实际问题,用于引导学生进行思考和讨论。
2.准备教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的销售利润问题,如商品打折、促销活动等,引导学生关注销售利润问题,激发学生的学习兴趣。
2.呈现(10分钟)呈现一个具体的销售利润问题,如某商品原价为100元,售价为80元,求商品的利润。
引导学生运用二次函数知识进行解决。
3.操练(10分钟)学生分组讨论,每组选取一个销售利润问题进行解决。
教师巡回指导,解答学生的问题,引导学生运用二次函数知识进行解决。
人教版数学九年级上册教案22.3《实际问题与二次函数》
人教版数学九年级上册教案22.3《实际问题与二次函数》一. 教材分析《实际问题与二次函数》这一节是人教版数学九年级上册第22章第三节的内容。
本节课主要让学生学习如何将实际问题转化为二次函数模型,并通过解决实际问题来巩固和提高对二次函数的理解和应用能力。
教材通过引入一些实际问题,让学生学会用二次函数的知识去解决这些问题,从而培养学生的数学应用意识。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但是,将实际问题转化为二次函数模型,并运用二次函数解决实际问题,对学生来说可能还是有一定的难度。
因此,在教学过程中,教师需要引导学生将实际问题与二次函数知识联系起来,让学生在解决实际问题的过程中,加深对二次函数的理解。
三. 教学目标1.理解实际问题与二次函数之间的关系,学会将实际问题转化为二次函数模型。
2.掌握二次函数在实际问题中的应用,提高解决实际问题的能力。
3.培养学生的数学应用意识,提高学生的数学素养。
四. 教学重难点1.教学重点:实际问题与二次函数之间的转化,二次函数在实际问题中的应用。
2.教学难点:如何引导学生将实际问题转化为二次函数模型,如何运用二次函数解决实际问题。
五. 教学方法采用问题驱动的教学法,通过引入一些实际问题,引导学生运用二次函数的知识去解决这些问题。
在解决问题的过程中,教师引导学生总结实际问题与二次函数之间的关系,从而达到巩固知识,提高应用能力的目的。
六. 教学准备1.准备一些实际问题,用于引导学生运用二次函数的知识去解决。
2.准备教学PPT,用于展示和讲解实际问题与二次函数之间的关系。
七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,激发学生的学习兴趣,引导学生思考如何运用二次函数的知识去解决这些问题。
2.呈现(15分钟)教师呈现一些实际问题,让学生独立思考,尝试将实际问题转化为二次函数模型。
教师在这个过程中,给予学生适当的引导和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.3 实际问题与二次函数(2)
教学目标:
1.复习用待定系数法由已知图象上三个点的坐标求二次函数的关系式。
2.使学生掌握已知抛物线的顶点坐标或对称轴等条件求出函数的关系式。
重点难点:
根据不同条件选择不同的方法求二次函数的关系式是教学的重点,也是难点。
教学过程: 一、复习巩固
1.如何用待定系数法求已知三点坐标的二次函数关系式?
2.已知二次函数的图象经过A(0,1),B(1,3),C(-1,1)。
(1)求二次函数的关系式,
(2)画出二次函数的图象; (3)说出它的顶点坐标和对称轴。
答案:(1)y =x 2
+x +1,(2)图略
(3)对称轴x =-12,顶点坐标为(-12,3
4
)。
3.二次函数y =ax 2
+bx +c 的对称轴,顶点坐标各是什么? [对称轴是直线x =-b 2a ,顶点坐标是(-b 2a ,4ac -b2
4a
)]
二、范例
例1.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式。
分析:二次函数y =ax 2+bx +c 通过配方可得y =a(x +h)2
+k 的形式称为顶点式,(-h ,k)为抛物线的顶点坐标,因为这个二次函数的图象顶
点坐标是(8,9),因此,可以设函数关系式为: y =a(x -8)2
+9
由于二次函数的图象过点(0,1),将(0,1)代入所设函数关系式,即可求出a 的值。
练习:练习1.(2)。
例2.已知抛物线对称轴是直线x =2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。
解法1:设所求二次函数的解析式是y =ax 2
+bx +c ,因为二次函数的图象过点(0,-5),可求得c =-5,又由于二次函数的图象过点(3,1),且
对称轴是直线x =2,可以得⎩⎪⎨⎪⎧-b 2a =2
9a +3b =6
解这个方程组,得:⎩⎨⎧a =-2
b =8
所以所求的二次函数的关系式为y =-
2x 2
+8x -5。
解法二;设所求二次函数的关系式为y =a(x -2)2
+k ,由于二次函数的
图象经过(3,1)和(0,-5)两点,可以得到⎩⎨⎧a(3-2)2+k =1
a(0-2)2+k =-5 解这
个方程组,得:⎩⎨⎧a =-2
k =3
所以,所求二次函数的关系式为y =-2(x -2)2
+3,
即y =-2x 2
+8x -5。
例3。
已知抛物线的顶点是(2,-4),它与y 轴的一个交点的纵坐标为4,求函数的关系式。
解法1:设所求的函数关系式为y =a(x +h)2
+k ,依题意,得y =a(x
-2)2
-4
因为抛物线与y 轴的一个交点的纵坐标为4,所以抛物线过点(0,4),
于是a(0-2)2
-4=4,解得a =2。
所以,所求二次函数的关系式为y =2(x
-2)2-4,即y =2x 2
-8x +4。
解法2:设所求二次函数的关系式为y =ax 2
+bx +c?依题意,得⎩⎪⎨⎪⎧-b 2a =24ac -b24a =-4c =4
解这个方程组,
得:⎩⎪⎨⎪⎧a =2
b =-8
c =4
所以,所求二次函数关系式为y =2x 2
-8x +4。
三、课堂练习
1. 已知二次函数当x =-3时,有最大值-1,且当x =0时,y =-3,求二次函数的关系式。
解法1:设所求二次函数关系式为y =ax 2
+bx +c ,因为图象过点(0,3),所以c =3,又由于二次函数当x =-3时,有最大值-1,可以得到:⎩⎨⎧-b
2a =-312a -b24a =-1 解这个方程组,得:⎩⎨⎧a =4
9
b =8
3 所以,所求二次函数的关系式为y =49x 2+8
3
x +3。
解法2:所求二次函数关系式为y =a(x +h)2
+k ,依题意,
得y =a(x +3)2
-1
因为二次函数图象过点(0,3),所以有 3=a(0+3)2
-1 解得a =49
所以,所求二次函数的关系为y =44/9(x +3)2
-1,即y =49x 2+83x +3.
小结:讨论、归纳得到:已知二次函数的最大值或最小值,就是已知
该函数顶点坐标,应用顶点式求解方便,用一般式求解计算量较大。
2.已知二次函数y =x 2
+px +q 的图象的顶点坐标是(5,-2),求二次函数关系式。
简解:依题意,得⎩
⎨⎧-p 2
=54q -p2
4
=-2 解得:p =-10,q =23
所以,所求二次函数的关系式是y =x 2
-10x +23。
四、小结
1,求二次函数的关系式,常见的有几种类型?
[两种类型:(1)一般式:y =ax 2
+bx +c
(2)顶点式:y =a(x +h)2
+k ,其顶点是(-h ,k)] 2.如何确定二次函数的关系式? 五、作业:
1. 已知抛物线的顶点坐标为(-1,-3),与y 轴交点为(0,-5),求二次函数的关系式。
2.函数y =x 2
+px +q 的最小值是4,且当x =2时,y =5,求p 和q 。
3.若抛物线y =-x 2
+bx +c 的最高点为(-1,-3),求b 和c 。
4.已知二次函数y =ax 2
+bx +c 的图象经过A(0,1),B(-1,0),C(1,0),那么此函数的关系式是______。
如果y 随x 的增大而减少,那么自变量x 的变化范围是______。
5.已知二次函数y =ax 2
+bx +c 的图象过A(0,-5),B(5,0)两点,它的对称轴为直线x =2,求这个二次函数的关系式。
6.如图是抛物线拱桥,已知水位在AB 位置时,水面宽46米,水位上升3米就达到警戒线CD ,这时水面宽43米,若洪水到来时,水位以每小时0.25米速度上升,求水过警戒线后几小时淹到拱桥顶?
教后反思:。