最新人教版初中九年级上册数学《二次函数》教案

合集下载

人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案

人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案

人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案一. 教材分析人教版九年级数学上册第22.1.2节《二次函数y=ax^2的图象和性质》是九年级数学的重要内容,主要让学生了解二次函数的图象特征和性质。

通过本节课的学习,学生能理解二次函数的一般形式,掌握二次函数的图象特征,了解二次函数的增减性和对称性,从而为后续的函数学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,具备了一定的函数知识。

但对于二次函数的图象和性质,可能还存在一定的困惑。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,引导学生理解和掌握二次函数的图象和性质。

三. 教学目标1.让学生理解二次函数的一般形式,掌握二次函数的图象特征。

2.让学生了解二次函数的增减性和对称性,能运用二次函数的性质解决实际问题。

3.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.二次函数的一般形式和图象特征。

2.二次函数的增减性和对称性。

五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的图象和性质。

2.利用多媒体辅助教学,直观展示二次函数的图象,帮助学生理解。

3.采用小组合作学习,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.二次函数图象和性质的相关教学素材。

3.学生分组合作学习的材料。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾一次函数和正比例函数的图象和性质,为新课的学习做好铺垫。

同时,教师可以利用多媒体展示二次函数的图象,让学生初步感受二次函数的特点。

呈现(10分钟)教师给出二次函数的一般形式y=ax^2,让学生观察并分析二次函数的图象特征。

学生通过观察多媒体展示的二次函数图象,总结出二次函数的开口方向、顶点坐标等特征。

操练(10分钟)教师给出几个二次函数的实例,让学生分析其图象特征。

学生通过小组合作学习,探讨并分析二次函数的增减性和对称性。

人教版九年级数学上册22.1.1二次函数(教案)

人教版九年级数学上册22.1.1二次函数(教案)
另外,在小组讨论环节,我发现学生们在讨论二次函数在实际生活中的应用时,想法非常丰富,但有时候会偏离主题。针对这一点,我考虑在今后的教学中,可以适当引导学生们聚焦主题,同时鼓励他们发挥创意,将所学知识应用到更广泛的领域。
此外,我也注意到,在解答学生疑问时,需要更加耐心和细致。有些学生对于二次函数的理解可能还不够深入,这就需要我在课后给予他们更多的关注和指导,帮助他们真正掌握这部分内容。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛物线形状的情况?”(如篮球投篮的轨迹)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数的奥秘。
5.二次函数的实际应用:求解最值问题。
二、核心素养目标
1.理解并掌握二次函数的定义、图像与性质,培养直观想象和逻辑推理能力;
2.学会运用二次函数顶点式及其图像变换,提高问题解决能力和数学建模素养;
3.通过二次函数的实际应用,培养数据分析、数学抽象及数学应用素养,增强解决实际问题的能力;
4.在探索二次函数图像与性质的过程中,培养数学运算和数学探究素养,提高合作交流与反思评价的能力。
人教版九年级数学上册22.1.1二次函数(教案)
一、教学内容
人教版九年级数学上册22.1.1二次函数:
1.二次函数的定义:形如y=ax^2+bx+c(a、b、c为常数,a≠0)的函数;
2.二次函数的图像与性质:开口方向、顶点、对称轴、最小(大)值;
3.二次函数的顶点式:y=a(x-h)^2+k;
4.二次函数的图像变换:平移、伸缩;

人教版数学九年级上册《二次函数》第一课时教案

人教版数学九年级上册《二次函数》第一课时教案
四、展示点评点拨升华达成反思
例1、下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.
例2、函数
(1)当m为何值时,y是x的二次函数?
(2)当m为何值时,y是x的一次函数?
【反思节点2】怎么判定一个函数是否为二次函数?
五、整合提高建构体系内化反思
【生活问题数学化】:一农民用40m长的篱笆围成一个一边靠墙的长方形菜园,和墙垂直的一边长为 ,菜园的面积为 ,

二、学案引导自主学习目标反思
问题2n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?
问题3某种产品现在的年产量是20 t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?
3.等式的右边最高次数为__________,可以没有一次项和常数项,但不能没有二次项.
4.没有特殊要求的话,x的取值范围是________.
二次函数的特殊形式:
当b=0时,y=_________
当c=0时,y=_________
当b=0,c=0时,y=__________
【反思节点1】二次函数必须满足的条件是什么?
(1)求y与x之间的函数关系式,并说出自变量的取值范围。
(2)当x=12m时,计算菜园的面积。
(3)当菜园的面积是 时,求x。
【反思节点3】如何求函数值及自变量的值?
【小结】知识网络
六、达标检测反馈矫正总结反思
1.下列函数中是二次函数的是()
A. B. C. D.
2.若函数 是关于x的二次函数,则()
思考:函数有什么共同特点?板书二次函数
一般地,形如

九年级《二次函数》全章教案

九年级《二次函数》全章教案

教学目标:1.了解二次函数的概念及特点。

2.掌握二次函数的图像、顶点、轴对称、零点等基本性质。

3.学会利用函数图像解决实际问题。

教学重点:1.理解二次函数的相关概念。

2.掌握二次函数图像的绘制方法。

3.能够运用二次函数解决实际问题。

教学难点:1.掌握二次函数的顶点和轴对称的概念及求解方法。

2.学会利用函数图像解决实际问题。

教学准备:1.教材《二次函数》的教学课件及习题。

2.计算器、直尺、笔记本等教学工具。

3.多媒体设备及相关教学资源。

教学过程:一、导入(10分钟)1.通过展示一副二次函数的图像和实际应用问题,引起学生兴趣。

2.复习一次函数的相关内容,引出二次函数的定义及特点。

二、概念讲解与示例演示(25分钟)1.讲解二次函数的定义,即形如f(x)=ax²+bx+c(a≠0)的函数。

2.介绍二次函数图像的最简形式,即顶点形式f(x)=a(x-h)²+k。

3.示例演示:给出一个二次函数式,通过变换得到最简形式,并通过求顶点等方式解决具体问题。

三、绘制二次函数图像(40分钟)1.讲解如何绘制二次函数图像的步骤,包括求顶点、确定轴对称、绘制图像等。

2.分组活动:将学生分成小组,每组选择一道习题,并利用求顶点和绘图方法解答。

3.展示小组成果,让每个小组派学生来展示解题过程和图像结果。

四、实际应用问题(30分钟)1.引导学生思考如何利用二次函数图像解决实际问题。

2.提供一些实际应用问题,如物体抛射问题、面积最大问题等,让学生结合所学知识进行求解。

3.组织学生进行小组合作讨论,并将解题思路和结果展示给全班。

五、拓展与总结(15分钟)1.通过讨论、展示和总结,让学生理解二次函数的基本性质和应用方法。

2.布置课后作业,要求学生进一步巩固所学知识,并解决一些拓展问题,如不等式问题、复合函数问题等。

3.回顾本节课的主要内容和思路,澄清学生对二次函数的理解和掌握程度。

教学反思:通过本节课的教学,学生对二次函数的定义和特点有了更深入的了解。

九年级数学上册二次函数教案模板优秀8篇

九年级数学上册二次函数教案模板优秀8篇

九年级数学上册二次函数教案模板优秀8篇二次函数教案篇一一、由实际问题探索二次函数某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。

根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。

(1) 问题中有哪些变量?其中哪些是自变量?哪些因变量(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式。

果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产量y=(100+z)(6005x)=-5x2+100x+ 60000.二、想一想在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?我们可以列表表示橙子的总产量随橙子树的增加而变化情况。

你能根据表格中的数据作出猜测吗 ?自己试一试。

x/棵y/个三。

做一做银行的储蓄利率是随时间的变化而变化的。

也就是说,利率是一个变量。

在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的。

设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。

如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).四、二次函数的定义一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function)注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为零。

例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函数。

我们以前学过的正方形面积A与边长a的关系A=a2,圆面积s与半径r的关系s=Try2等也都是二次函数的例子。

随堂练习1.下列函数中(x,t是自变量),哪些是二次函数?y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t2.圆的半径是l㎝,假设半径增加x㎝时,圆的面积增加y㎝.(1)写出y与x之间的关系表达式;(2)当圆的半径分别增加lcm、㎝、2㎝时,圆的面积增加多少?五、课时小结1. 经历探索和表示二次函数关系的过程,猜想并归纳二次函数的定义及一般形式。

最新人教版九年级数学上册《二次函数》教学设计(精品教案)

最新人教版九年级数学上册《二次函数》教学设计(精品教案)

22.1.1二次函数教案一教学目标(一)教学知识点1.探索并归纳二次函数的定义.2.能够表示简单变量之间的二次函数关系.(二)能力训练要求1.经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.2.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系.3.能够利用尝试求值的方法解决实际问题.(三)情感与价值观要求1.从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲.2.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用.3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.教学重点1.经历探索和表示二次函数关系的过程.获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数关系.教学难点经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.教学方法讨论探索法.教具准备投影片两张第一张:(记作22.1.1A)第二张:(记作22.1.1B)教学过程Ⅰ.创设问题情境,引入新课[师]对于“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?[生]学过正比例函数,一次函数,反比例函数.[师]那函数的定义是什么,大家还记得吗?[生]记得,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.[师]能把学过的函数回忆一下吗?[生]可以.一次函数y=kx+b (其中k、b是常数,且k≠0) .正比例函数y=kx(k是不为0的常数).k(k是不为0的常数).反比例函数y=x[师]很好.从上面的几种函数来看,每一种函数都有一般的形式.那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱.Ⅱ.新课讲解一、由实际问题探索二次函数关系投影片:(22.1.1A)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量?其中哪些是自变量?哪些是因变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.[师]请大家互相交流后回答.[生](1)变量有树的数量,每棵树上平均结的橙子数,所有的树上共结的橙子数.其中树的数量是自变量,每棵树上平均结的橙子数以及所有的树上共结的橙子数是因变量.(2)假设果园增种x棵橙子树,那么果园共有(x+100)棵树,平均每棵树就会少结5x个橙子,则平均每棵树结(600-5x)个橙子.(3)如果果园橙子的总产量为y个,则y=(x+100)(600-5x)=-5x2+100x+60000.[师]大家根据刚才的分析,判断一下上式中的y是否是x的函数?若是函数,与原来学过的函数相同吗?[生]因为x是自变量,y是因变量,给x一个值,相应地就确定了一个y的值,因此根据函数的定义,y是x的函数.但是从函数形式上看,它不同于正比例函数、一次函数与反比例函数,自变量的最高次数是2,所以我猜测可能是二次函数.二、想一想在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?[师]请大家发表自己的看法.[生甲]在函数y=-5x2+100x+60000中,因为一次项系数100大于二次项系数-5,因此当x越大时,y的值越大.[生乙]我不同意他的观点.因为x2的增长速度比x的增长速度要快,因此-5x2的绝对值要大于100x的绝对值,因此x应取比较小的数才能使y的值大.[师]大家说的都有道理,究竟是如何呢?我们不妨取一些特殊的数字验证一下.我们可以列表表示橙子的总产量随橙子树的增加而变化的情况.你能根据表格中的数据作出猜测吗?自己试一试.1 2 3 4 5 6 7 8 9 10 11 12 13 14x(棵)y(个)请大家先填表,再猜测.[生]从左到右依次填60095,60180,60255,60320,60375,60420,60455,60480,60495,60500,60495,60480,60455,60420.可以猜测当x逐渐增大时,y也逐渐增大.当x取10时,y 取最大值.x大于10时,y的值反而减小,因此当增种10棵橙子树时,橙子的总产量最多.[师]大家的猜想很有道理,推理能力日渐增长,究竟猜想结果如何,我们将要在后面的学习中专门进行研究.三、做一做投影片:(22.1.1B)银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量.在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的.设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是100元,那么请你写出两年后的本息和y(元)与年利率之间的表达式(不考虑利息税).[师]首先我们要回顾一下有关名词:本金、利息、本息和,如何计算利息,在前面的学习中我们已接触过,大家还记得吗?[生]记得.本金是存入银行时的资金,利息是银行根据利率和存的时间付给的“报酬”,本息和就是本金和利息的和.利息=本金×利率×期数(时间).[师]根据利息的公式,大家可以计算出一年后的本息和.[生]一年后的本息和为100+100x·1=100(1+x).[师]再计算出两年后的本息和,这时,一年后的本息和将作为第二年的本金.[生]y=100(1+x)+100(1+x)x×1=100(1+x)+100(1+x)x=100(1+x)(1+x)=100(1+x)2=100x2+200x+100.[师]在这个关系式中,y是x的函数吗?是x的什么函数?请猜想.[生]因为年利率x是一个变量,两年后的本息和y是随着x 的变化而变化的,因此x是自变量,y是x的函数,再从函数的形式来看,y是x的二次函数.四、二次函数的定义[师]从我们刚才推导出的式子y=-5x2+100x+60000和y =100x2+200x+100中,大家能否根据式子的形式,猜想出二次函数的定义及一般形式呢?[生]一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数(quadratic function).[师]很好.上面说的只是一般形式,并不是每个二次函数关系式必须如此.有时没有一次项,有时没有常数项,有时这两项都不存在,只要有二次项存在即为二次函数.如正方形面积A与边长a的关系A=a2,圆面积S和半径r的关系S=πr2也都是二次函数的例子.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课我们学习了如下内容:1.经历探索和表示二次函数关系的过程.猜想并归纳二次函数的定义及一般形式.2.利用尝试求值的方法解决种多少棵橙子树,可以使果园橙子的总产量最多.Ⅴ.课后作业教材P29练习1、2Ⅵ.活动与探究若y=(m2+m)mmx 2是二次函数,求m的值.分析:根据二次函数的定义,只要满足m 2+m ≠0,且m 2-m =2,y =(m 2+m)m mx -2就是二次函数.解:由题意得⎪⎩⎪⎨⎧=-≠+.,2022m m m m 解得⎩⎨⎧-==-≠≠,或,或1210m m m m∴m =2.故若y =(m 2+m)m mx -2是二次函数,则m 的值等于2.板书设计22.1.1 二次函数一、1.由实际问题探索二次函数关系2.想一想3.做一做4.二次函数的定义二、课堂练习随堂练习三、课时小结四、课后作业。

最新人教版初中九年级上册数学《二次函数》说课稿

最新人教版初中九年级上册数学《二次函数》说课稿

22.1.1 二次函数说课稿(一)一、教材分析:1、教材所处的地位:二次函数是人教版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及一次函数的内容,对于函数已经有了初步的认识。

从一次函数的学习来看,学习一种函数大致包括以下内容:通过具体实例认识这种函数;探索这种函数的图象和性质,利用这种函数解决实际问题;探索这种函数与相应方程不等式的关系。

本章“二次函数”的学习也是从以上几个方面展开的。

本节课的主要内容在于使学生认识并了解两个变量之间的二次函数的关系,为二次函数的后续学习奠定基础2、教学目的要求:(1)学生经历从实际问题中抽象出两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;(3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。

(4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。

3、教学重点和难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:重点:(1)二次函数的概念(2)能够表示简单变量之间的二次函数关系.难点:具体的分析、确定实际问题中函数关系式二.教法、学法分析:下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:1、教法研究教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。

本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。

教学过程中,注重学生探究能力的培养。

还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。

人教版数学九年级上册教案22.1.1《二次函数》

人教版数学九年级上册教案22.1.1《二次函数》

人教版数学九年级上册教案22.1.1《二次函数》一. 教材分析人教版数学九年级上册第22章是关于二次函数的学习。

二次函数是中学数学中的重要内容,也是高考中的热点之一。

本章内容主要包括二次函数的定义、图象与性质,以及二次函数的应用。

在学习本章之前,学生已经掌握了函数、方程等基础知识,为本章的学习打下了基础。

二. 学情分析九年级的学生已具备一定的逻辑思维能力和抽象思维能力,但对于二次函数这一复杂的概念,仍需要通过具体实例和实际操作来理解和掌握。

在学习过程中,学生可能对二次函数的图象与性质产生困惑,需要教师进行引导和解释。

三. 教学目标1.了解二次函数的定义和一般形式;2.掌握二次函数的图象与性质,并能运用其解决实际问题;3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.二次函数的定义和一般形式;2.二次函数的图象与性质;3.二次函数的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的知识;2.使用多媒体辅助教学,展示二次函数的图象与性质;3.学生进行小组讨论和合作交流,提高学生的动手能力和团队协作能力。

六. 教学准备1.多媒体教学设备;2.教学PPT;3.练习题和测试题;4.教学课件。

七. 教学过程导入(5分钟)教师通过一个实际问题引入二次函数的概念,如:一个物体从地面抛出,其高度与时间的关系可以表示为一个二次函数。

引导学生思考:这个二次函数是什么样子?它的图象是什么样的?呈现(10分钟)教师通过PPT展示二次函数的一般形式和图象,解释二次函数的定义和性质。

同时,教师可以通过举例来说明二次函数的应用,如:抛物线、顶点坐标的计算等。

操练(10分钟)教师布置一些练习题,让学生动手计算和绘制二次函数的图象。

教师可以学生进行小组讨论,共同解决问题。

巩固(10分钟)教师通过一些实际问题,让学生运用二次函数的知识来解决问题。

教师可以引导学生进行思考和讨论,帮助学生巩固所学知识。

拓展(10分钟)教师可以引导学生思考:二次函数的图象和性质与其他函数有什么不同?如何判断一个函数是否为二次函数?教师可以学生进行小组讨论,引导学生进行拓展思考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二章二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
【知识与技能】
1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.
2.能够表示简单变量之间的二次函数关系.
【过程与方法】
通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.
【情感态度】
在探究二次函数的学习活动中,体会通过探究发现的乐趣.
【教学重点】
结合具体情境体会二次函数的意义,掌握二次函数的有关概念.
【教学难点】
1.能通过生活中的实际问题情境,构建二次函数关系;
2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.
一、情境导入,初步认识
问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x之间的关系式可表示为,y是x的函数吗?
问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n 有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?
问题3 某种产品现在的年产量为20t ,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 值而确定,y 与x 之间的关系应怎样表示?
二、思考探究,获取新知
全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给予个
别指导.在同学们基本完成情形下,教师再针对问题2,解释m=12
n(n-1)而不是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t ,第三年产量为20(1+x)(1+x)t ,得到y=20(1+x)2.
【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.
思考函数y=6x 2,m=12n 2-12
n,y=20x 2+40x+20有哪些共同点? 【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.
【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax 2+bx+c(a,b,c 为常数,a ≠0)的函数,叫做二次函数.其中x 是自变量,a 、b 、c 分别是二次项系数,一次项系数和常数项.
【教学说明】
针对上述定义,教师应强调以下几个问题:(1)关于自变量x 的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a ≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax 2,二次项系数则仅是指a 的值;同样,一次项与一次项系数也不同.
教师在学生理解的情况下,引导学生做课本P29练习.
三、运用新知,深化理解
1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:
(1)y=(x+2)(x-2);
(2)y=3x(2-x)+3x 2; (3)y=2
1x -2x+1;
(4)y=1-3x 2.
2.若y=(m+1)xm 2+1-2x+3是y 关于x 的二次函数,试确定m 的值或取值范围.
3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x (元)满足一次函数关系m=162-2x ,试写出商场销售这种商品的日销售利润y (元)与每件商品的销售价x (元)之间的函数关系式,y 是x 的二次函数吗?
4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:
(1)在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示);
(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数关系式(不要求写自变量n 的取值范围).
【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成.
【答案】1.解:(1)y=(x+2)(x-2)=x 2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4.
(2)y=3x(2-x)+3x 2=6x,该函数不是二次函数.
(3)该函数不是二次函数.
(4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1.
2.解:∵()21123m y m x x +=+-+是y 关于x 的二次函数.
∴m+1≠0且m 2+1=2,
∴m ≠-1且m 2=1,
∴m=1.
3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得:
y=(162-3x)(x-30)
即y=-3x2+252x-4860
由此可知y是x的二次函数.
4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;
(2)y=(n+3)(n+2)即y=n2+5n+6.
四、师生互动,课堂小结
1.二次函数的定义;
2.熟记二次函数y=ax2+bx+c中a≠0,a、b、c为常数的条件.
【教学说明】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾.
1.布置作业:教材习题2
2.1第1、2、7题;
2.完成创优作业中本课时练习的“课时作业”部分.
本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.
教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.。

相关文档
最新文档