2020年北师大版九年级数学上册全册教案
北师大新版九年级数学上册教案带教学反思

北师大新版九年级数学上册教案带教学反思一、内容概览本章节是北师大新版九年级数学上册的一部分内容,围绕核心数学主题进行展开,涉及重要的数学概念和应用技能的培养。
教学计划结合教学目标以及学生的实际认知发展水平和学习需求精心设计,目的是提高学生解决实际问题的能力。
这一章的主题包括了代数、几何、概率与统计等关键数学领域的内容。
每个小节都将包含新的知识点和关键技能,并围绕这些知识点展开一系列的学习活动。
代数部分将涵盖二次方程、不等式及其求解技巧等。
几何部分将探讨复杂的几何图形及其性质,包括三角形、四边形、圆的性质等。
概率与统计也将是本章节的重要部分,包括数据的收集、整理和分析方法,以及概率的基本概念和计算方法等。
本章节还将注重数学知识的实际应用,通过解决一系列实际问题来加强学生对数学知识的理解和应用能力的提升。
在现实生活中运用数学知识解决实际问题,以及如何利用数学模型预测未来的趋势等。
这种实践导向的教学方式将极大地提高学生解决问题的能力。
每一课都会根据新课标的要求进行设计,保证知识深度、难度的递进关系处理得当,有助于提高学生综合分析问题解决问题的能力。
通过这个过程,学生可以深化对数学的理解和认识,进而对更高层次的数学学习产生积极的影响。
对于这一阶段的教学过程,教师会进行详细的反思和总结,以便更好地调整教学策略和方案。
1. 介绍北师大新版九年级数学上册的教学目标和重要性。
北师大新版九年级数学上册的教学目标是全面提升学生的数学素养和综合能力。
该教材紧扣国家课程标准,遵循学生的认知规律,注重知识与能力、过程与方法、情感态度与价值观的有机结合。
主要教学目标包括:知识与能力:使学生掌握初中数学的基本概念、原理和方法,包括代数、几何、概率统计等领域的基础知识。
注重培养学生的计算能力、推理能力、空间想象能力和数据处理能力等。
过程与方法:引导学生通过探究、合作、实践等多种方式学习,培养学生的自主学习能力、创新意识和实践能力。
北师大版九年级数学上册教案全册

北师大版九年级数学上册教案全册第一章特殊平行四边形 1.1 菱形的性质与判定(一)学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。
②通过学生间的交流、计论、分析、类比、归纳、运用已学过的知识总结菱形的特征。
教学重点:菱形的概念和菱形的性质,菱形的面积公式的推导。
教学难点:菱形的性质的理解及菱形性质的灵活运用。
学习过程:活动一:自学课本例题以上的内容,完成下列问题:? 1. 如何从一个平行四边形中剪出一个菱形来?菱形平行四边形的四边形叫做菱形,生活中的菱形有。
2. 按探究步骤剪下一个四边形。
①所得四边形为什么一定是菱形?②菱形为什么是轴对称图形?有对称轴。
图中相等的线段有:图中相等的角有:③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?自己完成证明。
性质:证明:活动二:对比菱形与平行四边形的对角线菱形的对角线:平行四边的对角线:活动三:菱形性质的应用 1.菱形的两条对角线的长分别是6cm和8cm,求菱形的周长和面积。
2.如图,菱形花坛ABCD的边长为20cm,∠ABC=60° 沿菱形的两条对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积。
课效检测:一、填空(1)菱形的两条对角线长分别是12cm,16cm,它的周长等于,面积等于。
(2)菱形的一条边与它的两条对角线所夹的角比是3:2,菱形的四个内角是。
(3)已知:菱形的周长是20cm,两个相邻的角的度数比为1:2,则较短的对角线长是。
(4)已知:菱形的周长是52 cm,一条对角线长是24 cm,则它的面积是。
二、解答题已知:如图,在菱形ABCD中,周长为8cm,∠BAD=1200 对角线AC,BD 交于点O,求这个菱形的对角线长和面积。
教学设计反思本节课的主要教学内容为菱形的定义和性质。
学生已经学习了平行四边形的性质,这是本节的知识基础。
关于菱形的定义和性质,就是在平行四边形的基础上,进一步强化条件得到的。
1.1 菱形的性质与判定(二)教学目标:1.探索并掌握菱形的判定方法,积累经验,并能综合运用,形成解决问题的能力;2.经历菱形的判定方法的探索过程,在活动中发展合情推理意识和主动探究的习惯,初步掌握说理的基本方法,发展有条理表达的能力. 3.通过设置问题情境丰富学生的生活经验,激发学生学习数学和应用数学的兴趣和意识. 教学重点:菱形的判定方法. 教学难点:菱形的判定方法的综合运用. 教学设计:模仿-猜想-论证-运用教学过程:一、知识回顾菱形的定义:有一组邻边相等的平行四边形叫做菱形菱形的性质:1.四条边都相等;2.两条对角线互相垂直;3.菱形是轴对称图形。
北师大版九年级上册数学教案

北师大版九年级上册数学教案北师大版九年级上册数学教案1学习目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题学习过程一、温故知新:(学生活动)同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?二、自主学习:自学教材P90---P93,思考下列问题:1、什么叫圆周角?圆周角的两个特征: 。
2、在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。
通过圆周角的概念和度量的方法回答下面的问题.(1)一个弧上所对的圆周角的个数有多少个?(2).同弧所对的圆周角的度数是否发生变化?(3).同弧上的圆周角与圆心角有什么关系?3、默写圆周角定理及推论并证明。
4、能去掉"同圆或等圆"吗?若把"同弧或等弧"改成"同弦或等弦"性质成立吗?5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?三、典型例题:例1、(教材93页例2)如图, ⊙O的直径AB为10cm,弦AC 为6cm,,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。
例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?四、巩固练习:1、(教材P93练习1)解:2、(教材P93练习2)3、(教材P93练习3)证明:4、(教材P95习题24.1第9题)五、总结反思:达标检测1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于( ).A.140°B.110°C.120°D.130°(1) (2) (3)2.如图2,∠1、∠2、∠3、∠4的大小关系是( )A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠23.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于( )A.100°B.110°C.120°D.130°4.半径为2a的⊙O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是________.5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.(4) (5)6.(中考题)如图5, 于 ,若 ,则7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.拓展创新1.如图,已知AB=AC,∠APC=60°(1)求证:△ABC是等边三角形.(2)若BC=4cm,求⊙O的面积.3、教材P95习题24.1第12、13题。
北师大版九年级上册数学全册教案集

北师大版九年级上册数学全册教案集第一章特殊平行四边形1.1 菱形的性质与判定第1【教学目标】1.掌握菱形的概念、性质。
2.掌握菱形的性质定理“菱形的四条边相等”。
3.掌握菱形的性质定理“菱形的对角线互相垂直,并且每条对角线平分一组对角”。
4.探索菱形的对称性。
【教学重难点】重点:菱形的性质.难点:菱形的轴对称需要用折叠和推理相结合的方法,是本节的教学难点.【教学过程】一、复习引入观察以下由火柴棒摆成的图形,议一议:(2)与图一相比,图二与图三有什么共同的特点?目的是让学生经历菱形的概念,性质的发现过程,并让学生注意以下几点:(1)要使学生明确图二、图三都为平行四边形;(2)引导学生找出图二、图三与图一在边方面的差异.二、探究新知再用多媒体教科书中有关菱形的美丽图案,让学生感受菱形具有工整,匀称,美观等许多优点.菱形也是特殊的平行四边形,所以它除具有一般平行四边形的性质外还具有一些特殊的性质.定理1:菱形的四条边都相等.这个定理要求学生自已完成证明,可以根据菱形的定义推出,课堂上只需让学生说说理由就可以了,不必写证明过程.定理2:菱形的对角线互相垂直,并且每条对角线平分一组对角. 课时例:已知:在菱形ABCD中,对角线AC、BD相交于点O.求证:AC⊥BD,AC平分∠BAD和∠BCD,BD平分∠ABC和∠ADC.分析:由菱形的定义得ΔABD是什么三角形?BO与OD有什么关系?根据什么?由此可得AC与BD有何关系?与∠BAD有何关系?根据什么?证明:∵四边形ABCD是菱形,∴AB=AD(菱形的定义),BO=OD(平行四边形的对角线互相平分)∴AC⊥BD,AC平分∠BAD(等腰三角形三线合一的性质).同理,AC平分∠BCD,BD平分∠ABC和∠ADC,∴对角线AC和BD分别平分一组对角.由定理2可以得出菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴.另外,还可以从折叠来说明轴对称性.同时指出以上两个性质只是菱形不同于一般平行四边形的特殊性质.菱形还具有平行四边形的所有共性,比如:菱形是中心对称图形,对称中心为两条对角线的交点.三、范例点击例:在菱形ABCD中,对角线AC、BD相交于点O, ∠BAC=30°,BD=6,求菱形的边长和对角线AC的长.分析:本题是菱形的性质定理2的应用,由∠BAC= 30°,得出ΔABD为等边三角形,就抓住了问题解决的关键.解:∵四边形ABCD是菱形∴AB=AD(菱形的定义),AC平分∠BAD(菱形的每条对角线平分一组对角)又∵∠BAC= 30°,∴∠BAD=60°,∴ΔABD为等边三角形,∴AB=BD=6.又∵OB=OD=3 (平行四边形的对角线互相平分), AC⊥BD (菱形的对角线互相垂直).由勾股定理得AO²+BO²=AB²,∴AO=3√3AC=2AO=6√3.第2【教学目标】1.经历菱形的判定定理的发现过程.2.掌握菱形的判定定理“四边相等的四边形是菱形”.3.掌握菱形的判定定理“对角线互相垂直的平行四边形是菱形”.4.通过运用菱形知识解决具体问题,提高分析能力和观察能力,并根据平行四边形、矩形、菱形的从属关系,向学生渗透几何思想.【教学重难点】重点:菱形的判定定理.难点:菱形判定方法的综合应用.课本“做一做”既需要一定的空间想象力,又要有较强的逻辑思维能力. 【教学过程】一、复习引入教师提问:菱形的定义和性质.定义:一组邻边对应相等的平行四边形叫做菱形.性质:除具备一般平行四边形的性质外,还具备四条边相等,对角线互相垂直,并且每条对角线平分一组对角判定一个四边形是不是菱形可根据什么来判定?定义,此外还有两种判定方法,今天我们就要学习菱形的判定.(板书课题)二、创设情境,引入新课学生拿出准备好的长方形纸片,按P6“做一做”中的图的方法对折两次,并沿第3个图中的斜线剪开,展开剪下的部分,猜想这个图形是哪一种四边形?一定是菱形吗?为什么?剪出的图形四条边都相等,根据这个条件首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形. 四、巩固练习教材P4随堂练习五、课堂小结:本节课应掌握:一个定义(菱形的定义),二条定理(菱形的性质定理),二个结论(菱形是轴对称图形,又是中心对称图形).六、布置作业教材P4~5习题1. 1课时结论:菱形判定定理1:四边都相等的四边形是菱形.(板书)三、探究新知例1:已知:如图,在ABCD中,BD⊥AC,O为垂足.求证:四边形ABCD是菱形.分析:在已知是平行四边形的情况下,要证明是菱形,只要证明一组邻边相等.证明:∵四边形ABCD是平行四边形,∴AO=CO(平行四边形的对角线互相平分).∵BD⊥AC,∴AD=CD,∴四边形ABCD是菱形(菱形的定义).结论:菱形判定定理2:对角线互相垂直的平行四边形是菱形.猜想:对角线互相垂直平分的四边形是不是菱形?启发:通过四个直角三角形的全等得到四条边相等结论:对角线互相垂直平分的四边形是菱形.例2:如图,在矩形ABCD中,对角线AC的垂直平分线与AD,BC分别交于点E,F,求证:四边形AFCE 是菱形.北师大版九年级上册数学全册教案集启发:已知对角线互相垂直,还需什么条件就能说明四边形是菱形?证明:∵四边形ABCD是矩形,∴AE//FC(矩形的定义),∴∠1=∠2.又∵∠AOE=∠COF,AO=CO,∴ΔAOE≌ΔCOF,∴EO=FO,∴四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形).又∵EF⊥AC,∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).四、巩固练习1.教材P7、P9随堂练习.2.思考题:如图,ΔABC中,∠A=90°,∠B的平分线交AC于D,AH、DF都垂直于BC,H、F为垂足,求证:四边形AEFD为菱形.五、课堂小结本节课应掌握:1.菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):(1)一组邻边相等的平行四边形.(2)四条边相等的四边形.(3)对角线互相垂直的平行四边形.(4)对角线互相垂直平分的四边形.2.想一想:说明平行四边形、矩形、菱形之间的区1. 教材P7习题1.22.教材P9〜10习题1. 31.2矩形的性质与判定第1课时【教学目标】1.了解矩形的有关概念,理解并掌握矩形的有关性质.2.经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.【教学重难点】重点:掌握矩形的性质,并学会应用.难点:理解矩形的特殊性.把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.【教学过程】一、联系生活,形象感知【显示投影片】教师活动:将收集来的有关长方形图片播放出来,让学生进行感性认识,然后定义出矩形的概念.矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形)教师活动:介绍完矩形概念后,为了加深理解,也为了继续研究矩形的性质,拿出教具,同学生一起探究下面问题:问题1:改变平行四边形活动框架,将框架夹角α变为90°,平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)学生活动:观察教师的教具,研究其变化情况,可以别与联系.发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质.问题2:既然它具有平行四边形的所有性质,那么矩形是否具有它独特的性质呢?(教师提问)学生活动:由平行四边形对边平行以及刚才α变为90°,可以得到α的补角也是90°从而得到:矩形的四个角都是直角.评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).学生活动:观察发现:矩形的两条对角线相等.口述证明过程是:充分利用(SAS)三角形全等来证明.口述:∵四边形ABCD是矩形,∴∠ABC=∠DCB= 90°,AB=DC.又∵B C为公共边,∴ΔABC≌ΔDCB(SAS),∴AC=BD.教师提问:AO=AC, BO=BD呢?BO是RtΔABC的什么线?由此你可以得到什么结论?学生活动:观察、思考后发现AO=1/2AC,BO=1/2BD,BO是RtΔABC的中线.由此归纳直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.直角三角形中,30°角所对的边等于斜边的一半(师生回忆).【设计意图】采用观察、操作、交流、演绎的手法来解决重点,突破难点.二、范例点击例1:如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2. 5,这个矩形对角线的长. (投影显示)分析:利用矩形对角线相等且平分得到OA=OB,由于∠AOB=60°,因此,可以发现ΔAOB为等边三角形,这样可求出OA=AB=2. 5,∴AC=BD= 2OA=5.【活动方略】教师活动:板书例1,分析例1的思路,教会学生解题分析法,然后板书解题过程(课本P13).学生活动:参与教师讲例,总结几何分析思路. 【问题探究】(投影显示)如图,ΔABC中,∠A=2∠B,CD是ΔABC的高,E 是AB的中点,求证::D E=1/2AC.分析:本题可从E是AB的中点切入,考虑应用三角形中位线定理.应用三角形中位线必需找到另一个中点.分析可知:可以取BC中点F,也可以取AC的中点G为尝试.教师活动:操作投影仪,引导、启发学生的分析思路,教会学生如何书写辅助线.学生活动:分四人小组,合作探索,想出几种不同北师大版九年级上册数学全册教案集的证法.证法一:取BC的中点F,连接EF、DF,如图(1).【设计意图】补充这道演练题是训练学生的应用能力,提高一题多解的意识,形成几何思路.三、随堂练习教材P13随堂练习四、应用拓展已知:如图,从矩形ABCD的顶点C作对角线BD的垂线与∠BAD的平分线相交于点E,求证:AC=CE. ∠FAB .现在只要证明∠BAF=∠DAC即可,而实际上,∠BAF=∠BDA=∠DAC,问题迎刃而解.五、课堂小结本节课应掌握:1.矩形定义:有一个角是直角的平行四边形叫做矩形,因此矩形是平行四边形的特例,具有平行四边形所有性质。
北师大版九年级上期数学教案

一、教学目标1.知识与能力目标:掌握九年级上学期数学的基础知识,能够运用所学知识解决实际问题。
2.过程与方法目标:培养学生的数学思维能力和解决问题的能力,提高学生的学习兴趣。
3.情感与态度目标:培养学生对数学的积极态度,培养学生的合作精神和责任意识。
二、教学内容1.数和代数II(10课时):开方运算、二次根式、二次根式的乘法、二次根式的除法、用方程解决问题。
2.数据分析II(9课时):统计的意义和方法、统计调查、统计图的制作与解读。
3.几何II(13课时):相交线、制作三角形、三角形的判定、相似三角形。
三、教学重难点1.教学重点:掌握二次根式的运算法则,学会使用方程解决实际问题;了解统计的意义和方法,能够制作和解读统计图;掌握三角形的判定方法,能够制作三角形。
2.教学难点:对于一些抽象的概念(如二次根式、统计调查)的理解和应用;三角形的判定方法的运用。
四、教学过程一、数和代数II1.开方运算教学目标:了解开方运算的基本概念,掌握开方运算的基本性质,能够求解简单的开放运算。
教学步骤:(1)引入:通过生活中的例子引导学生了解开方运算的概念。
(2)对比:通过对比开方运算和平方运算的异同点,引导学生理解开方运算的基本性质。
(3)练习:布置一些简单的开方运算题目,让学生独立完成并解答。
(4)拓展:展示一些开方运算在实际生活中的应用例子,引导学生理解开方运算的实际意义。
2.二次根式教学目标:了解二次根式的概念和性质,学会进行二次根式的化简和计算。
教学步骤:(1)引入:通过实例引导学生认识二次根式的概念。
(2)归纳:总结二次根式的性质,如同底数与指数的运算规律。
(3)练习:布置一些二次根式的练习题,让学生独立完成并解答。
北师大版九年级上期数学教案

最新北师大版九年级上期数学教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章特殊平行四边形1.菱形的性质与判定(一)一、学生知识状况分析“菱形的性质与判定”是继八年级下册“第三章图形的平移与旋转”和“第六章平行四边形”之后的一个学习内容。
九年级的学生在学习菱形之前,已经掌握了简单图形平移旋转和平行四边形的性质和判定,学生完全能够借助图形的旋转平移和轴对称直观的理解菱形的定义和性质。
其次,经历了七年级下册“第二章相交线与平行线”、“第三章三角形”和八年级下册“第六章平行四边形”的学习,通过推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。
再次,在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析教科书基于学生在平行四边形相关知识的基础上,提出了本课的具体学习任务:①掌握菱形的定义;②探索并掌握菱形是轴对称图形;③探索并证明菱形“四条边相等”、“对角线互相垂直”等性质,并能应用这些性质计算线段的长度。
在教学过程中,要利用学生对图形的直观感知、已掌握的平行四边形的相关知识和已有的逻辑推理能力为基础,探索菱形的定义和性质,又要尝试利用它们解题。
所以在本节课的教学中,要帮助学生学会运用观察,分析,比较,归纳,概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的乐趣,体会到成功的喜悦。
综上所述,本节的教学目标为:1.经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系;2.体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力;3.在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力三、教学过程设计本节课设计了六个教学环节:第一环节:课前准备;第二环节:设置情境,提出课题;第三环节:猜想、探究与证明;第四环节:性质应用与巩固;第五环节:课堂小结;第六环节:布置作业。
九年级数学上册教案(北师大版)

九年级数学上册教案(北师大版)一、教学目标1. 知识与技能:使学生掌握九年级数学上册的基本概念、公式、定理,提高学生的数学运算能力和解决问题的能力。
2. 过程与方法:通过自主学习、合作探究、实践操作等活动,培养学生独立思考、创新能力和团队协作精神。
3. 情感态度与价值观:激发学生对数学的兴趣,培养积极的学习态度,提高学生的自主学习能力。
二、教学内容1. 第一章:实数与方程1.1 实数的概念与性质1.2 一元一次方程1.3 不等式与不等式组2. 第二章:多边形的计算2.1 三角形的面积计算2.2 四边形的面积计算2.3 多边形的面积计算3. 第三章:数据的整理与分析3.1 数据的收集与整理3.2 数据的描述与分析3.3 数据的处理与展示4. 第四章:函数的初步认识4.1 函数的概念与性质4.2 一次函数的图象与性质4.3 二次函数的图象与性质5. 第五章:几何图形的证明5.1 平行线的性质与判定5.2 三角形的性质与判定5.3 四边形的性质与判定三、教学方法1. 启发式教学:通过问题引导,激发学生的思考,培养学生的创新能力和解决问题的能力。
2. 合作学习:组织学生进行小组讨论、探究,培养学生的团队协作精神和沟通能力。
3. 实践操作:引导学生动手操作,提高学生的实践能力和数学运算能力。
4. 信息技术辅助教学:利用多媒体课件、网络资源等,丰富教学手段,提高教学效果。
四、教学评价1. 过程性评价:关注学生在学习过程中的表现,如态度、参与度、合作能力等。
2. 终结性评价:通过考试、测验等方式,检测学生对知识与技能的掌握程度。
3. 自我评价:鼓励学生进行自我反思,提高学生的自主学习能力。
五、教学资源1. 教材:九年级数学上册(北师大版)2. 教辅资料:习题集、解析、教学课件等。
3. 网络资源:相关数学教学网站、视频、论坛等。
4. 教学仪器:黑板、粉笔、多媒体设备等。
六、教学计划1. 第六章:概率初步6.1 随机事件与概率6.2 排列组合6.3 概率的计算与应用2. 第七章:初中数学综合应用7.1 数学与生活7.2 数学与科学7.3 数学与社会科学3. 第八章:数学阅读与写作8.1 数学阅读8.2 数学写作8.3 数学语言表达4. 第九章:数学思想方法9.1 化归思想9.2 数形结合思想9.3 分类讨论思想5. 第十章:总复习10.1 复习要点与方法10.2 中考数学考试大纲解析10.3 模拟测试与真题演练七、教学策略1. 第六章:概率初步运用实例引入概率的概念,通过实践活动让学生体验概率的计算过程,培养学生的实际应用能力。
北师大版数学九年级上册全册教案

(2)解:如图,
∵对角线AC=8,BD=6,
∴对角线的一半分别为4、3,
∴菱形的边长为 =5,
菱形的面积=5BE= ×8×6,
解得BE= .
点评:本题主要考查菱形的性质和三角形全等的证明,同时还考查了菱形面积的两种求法.
例3、(2011•广安)如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.
4、每条对角线平分一组对角的四边形是菱形.(对角线和角的关系)
四、讲课过程:
1、例题、
例1.(2006•大连)已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).
6.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(20分)
A 1个 B 2个 C 3个 D 4个
7.如图,四边形ABCD是菱形,∠ABC=120°,AB=6cm,则∠ABD=_____, ∠DAC的度数为______;对角线BD=_______,AC=_______;菱形ABCD的面积为_______.(20分)
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用,从而培养学生的思维能力和应变能力。
在《直角三角形的边角关系》中,探索30度、45度、60度角的三角函数值从中发展学生观察、分析、发现的能力。能用锐角三角函数解直角三角形,并会解决与直角三角形有关的实际问题。
三、概念:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题 1、你能证明它们吗(一) 课型新授课教学目标 1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。
能够用综合法证明等腰三角形的关性质定理和判定定理。
教学重点了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
教学难点能够用综合法证明等腰三角形的关性质定理和判定定理。
教学方法观察法教学后记教学内容及过程学生活动一、复习
1、什么是等腰三角形?
2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。
3、试用折纸的办法回忆等腰三角形有哪些性质?二、新课讲解
在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。
同学们和我一起来回忆上学期学过的公理 w 本套教材选用如下命题作为公理 : w 两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; w 两条平行线被第三条直线所截,同位角相等; w 两边夹角对应相等的两个三角形全等; (SAS) w 两角及其夹边对应相等的两个三角形全等; (ASA) w 三边对应相等的两个三角形全等; (SSS) w 全等三角形的对应边相等,对应角相等. 由公理5、3、4、6可容易证明下面的推论
推论两角及其中一角的对边对应相等的两个三角形全等。
(AAS)证明过程
已知∠A=∠D,∠B=∠E,BC=EF 求证△ABC≌△DEF 证明∵∠A=∠D,∠B=∠E(已知)∵∠A+∠B+∠C=18°,∠D+∠E+∠F=18°(三角形内角和等于18°)∠C=18°-(∠A+∠B) ∠F=18°-(∠D+∠E) ∠C=∠F(等量代换) BC=EF(已知)△ABC≌△DEF(ASA)这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备。
三、议一议
(1)还记得我们探索过的等腰三角形的性质吗?(2)你能利用已有的公理和定理证明这些结论吗?等腰三角形(包括等边三角形)的性质学生已经探索过,这里先让学生尽可能回忆出来,然后再考虑哪些能够立即证明。
定理等腰三角形的两个底角相等。
这一定理可以简单叙述为等边对等角。
已知如图,在ABC中,AB=AC。
求证∠B=∠C 证明取BC的中点D,连接AD。
∵AB=AC,BD=CD,AD=AD,∴△ABC△≌△ACD (SSS) ∴∠B=∠C (全等三角形的对
应边角相等) 四、想一想
在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?应让学生回
顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论,这一结合通常简述为“三
线合一”。
推论等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
五、随堂练习
做教科书第4页第1,2题。
六、课堂小结
通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格
式。
经历“探索-发现-猜想-证明”的过程。
能够用综合法证明等腰三角形的关性质定理
和判定定理。
探体会了反证法的含义。
七、课外作业
教科书第5页第1,2题。
板书设计
§1、你能证明它们吗(一) 公理SAS ASA SSS 推论AAS 三线合一对应相等的两个三角形全等。
(AAS)这个推论虽然简单,但也应让学生进行证明,
以熟悉的基本要求和步骤,为下面的推理证明做准备。
学生充分讨论问题1,借助等腰三角形纸片回忆有关性质让学生尽可能回忆出来,然
后再考虑哪些能够立即证明让同学们通过探索、合作交流找出其他的证明方法学生回顾
前面的证明过程,思考线段AD具有的性质和特征,讨论图中存在的相等的线段和相等的角,
发现等腰三角形性质定理的推论,从而得到结论,这一结合通常简述为“三线合一”。
课题 1、你能证明它们吗(二) 课型新授课教学目标 1、掌握证明的基本步骤和书
写格式。
2、经历“探索-发现-猜想-证明”的过程。
能够用综合法证明等腰三角形的关性质定
理和判定定理。
3、结合实例体会反证法的含义。
教学重点等腰三角形的关性质定理和判定定理。
教学难点能够用综合法证明等腰三角形的关性质定理和判定定理。
教学方法教学后记教学内容及过程教师活动学生活动一、等腰三角形性质的探究 1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。
2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。
E D C B A 3.分别演示
中,∠ABD=∠ABC, ∠ACE=∠ACB,k=,时,BD是否与CE相等。
引导学生探究、猜测当k为其他整数时,BD与CE的关系。
引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。
5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立要求学生说明理由或给出证明。
6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。
7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。
适时地引导学生思考可以用哪些方法证明培养学生的推理能力。
8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。
9.启发学生思考在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立如果成立,能否证明。
这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力。
1.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。
11.小结这两个课时的内容。
作业
1、基础作业P9页习题2 1、
2、3。
2、拓展作业《目标检测》
3、预习作业P1-12页做一做板书设计
§1、你能证明它们吗(二) 探索——发现——猜想——证明 1.积极思考,回忆以前所学知识,联想新问题。
2.认真观看例1图形中线段的关系,积极思考,认真听讲。
3.对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。
基于前面例题的启发,想要给出证明。
一部分学生可以自己给出证明,一部分学生需要老师的帮助。
4.在已经探究了角的大小的改变对于BD,CE的等长性没有影响,有了一些成就感之后,又面临新的任务BD=CE吗因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。
5.兴致高涨,凭直觉猜测结论仍然成立。
但有些学生给出全部证明可能会有困难。
6.认真听讲,在掌握结论的同时受到老师的鼓励,有很高的热情进行后续学习。
7.较少接触这样的命题,因此会感到新鲜,有用已知公理和定理对命题的真假性进行判断的欲望。
在老师指导下完成证明。
8,积极动脑思考,认真听讲,获得对演绎证明的初步体会。
9.可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。
遇到认知上的冲突,激起学习欲望。
1.怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。
11.体会老师的讲解,并根据小结记忆掌握知识。
(学生小结掌握证明的基本步骤和书写格式。
经历“探索-发现-猜想-证明”的过程。
能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。
等腰三角形的判定定理。
了解反证法的推理方法。
)课题1、你能证明它们吗(三) 课型新授课教学目标 1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。
能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。
教学重点等边三角形的判定定理和直角三角形的性质定理。
教学难点能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。
教学方法教学后记教学内容及过程教师活动学生活动一、定理一。