人教B数学理一轮复习精品训练 第8章 平面解析几何2 含解析

合集下载

2025版高考数学一轮总复习第8章平面解析几何高考大题规范解答__解析几何pptx课件

2025版高考数学一轮总复习第8章平面解析几何高考大题规范解答__解析几何pptx课件
y=kx+m, 方程(1+2k2)x2+4kmx+2m2-4=0 的判别式 Δ=32k2+16-8m2>0,
x1+x2=-1+4k2mk2, 则x1x2=21m+2-2k42 .
(7 分)
因为 kMA·kMB=1,所以x1y-1 2·x2y-2 2=1, 所以(k2-1)x1x2+(km+2)(x1+x2)+m2-4=0, 整理得(m+2k)(m+6k)=0.(9 分)
[解析] 解法一:(1)依题意,A(-2,0),B(2,0).(1 分) 设 C(x1,y1),则x421+y321=1, 直线 AC 方程为 y=x1y+1 2(x+2), 令 x=4 得 yP=x16+y12,(2 分) 直线 BC 方程为 y=x1y-1 2(x-2), 令 x=4 得 yQ=x12-y12,k=k(x-2), 则直线 l 过定点 M(2,0),与题意矛盾; 若 m=-6k,则 y=kx-6k=k(x-6), 则直线 l 过定点(6,0).(10 分) 因为圆 D 的圆心为(6,0),半径 r=2, 所以直线 l 被圆 D 截得的弦长为 4.(12 分)
2.(2024·福建福州质检)(12 分)已知椭圆 E:x42+y32=1 的右焦点为 F,
左、右顶点分别为 A,B.点 C 在 E 上,P(4,yP),Q(4,yQ)分别为直线
AC,BC 上的点. (1)求 yP·yQ 的值; (2)设直线 BP 与 E 的另一个交点为 D,求证:直线 CD 经过 F.
3.(2024·广东深圳罗湖区模拟)(12 分)已知双曲线 C:xa22-by22=1(a>0, b>0)的左、右焦点分别为 F1,F2,且|F1F2|=4,若 C 上的点 M 满足||MF1| -|MF2||=2 恒成立.

高考数学一轮总复习教学课件第八章 平面解析几何第2节 两条直线的位置关系

高考数学一轮总复习教学课件第八章 平面解析几何第2节 两条直线的位置关系


过点(1, ),和 A,B 等距离的直线与 AB 平行,或过 AB 的中点 M,


所以所求直线的方程为 y- = (x-1)或 x=1,即 21x-28y-13=0 或 x=1.

考点三
对称问题
角度一
轴对称
[例3] 已知点A(0,2),直线l1:x-y-1=0,直线l2:x-2y+2=0.点A关于
则a=
2
,b=
-2
.
解析:将P(2,1)分别代入直线l1:x+ay-4=0与l2:bx-y+5=0的方程可
得a=2,b=-2.
5.两条平行线4x+3y-1=0与8x+6y+3=0之间的距离是


.
解 析 : 直 线 4x+3y-1=0 可 化 为 8x+6y-2=0, 直 线 8x+6y-2=0 与 直 线

B.

C.


D.



解析:由题意3(a-1)+1×(-a)=0,解得 a= .故选B.
3.已知点P(3,1)到直线l:x+ay-3=0的距离为
解析:由点到直线的距离公式得
|+-|
+



,则a=

±
=,解得 a=± .
.
4.若直线l 1 :x+ay-4=0与直线l 2 :bx-y+5=0的交点坐标是P(2,1),
斜率等于零.
(3)直线的一般式中有关结论记忆时要利用直线Ax+By+C=0
(A2+B2≠0)的一个法向量v=(A,B),一个方向向量a=(-B,A),并结合

最新-2021届高考数学理科全国通用一轮总复习课件:第八章 平面解析几何 8.2 精品

最新-2021届高考数学理科全国通用一轮总复习课件:第八章 平面解析几何 8.2 精品

【解析】选D.因为l1∥l2,且l1的斜率为2, 所以l2的斜率为2. 又l2过点(-1,1), 所以l2的方程为y-1=2(x+1), 整理即得:y=2x+3, 令x=0,得y=3, 所以P点坐标为(0,3).
5.(2016·泰安模拟)点P(-1,3)到直线l:y=k(x-2)的距
离的最大值等于
2.已知P(x0,y0)是直线l:Ax+By+C=0外一点,则方程 Ax+By+C+(Ax0+By0+C)=0表示 ( ) A.过点P且与l垂直的直线 B.过点P且与l平行的直线 C.不过点P且与l垂直的直线 D.不过点P且与l平行的直线
【解析】选D.因为P(x0,y0)是直线l:Ax+By+C=0外一 点, 所以Ax0+By0+C=k,k≠0. 所以方程Ax+By+C+(Ax0+By0+C)=0, 即Ax+By+C+k=0. 因为直线Ax+By+C+k=0和直线l斜率相等,但在y轴上 的截距不相等,
第二节 直线的交点坐标与距离公式
【知识梳理】 1.两条直线的交点
唯一解 无解 有无数组解
2.三种距离
三种距离
条件
公式
两点间的 距离
点到直线 的距离
A(x1,y1),B(x2,y2)
P(x0,y0)到直线 Ax+By+C=0的距离为d
|AB|=
__x_1 __x_2 _2___y_1 __y_2_2
两式相减,得(x1-x2)+(y1-y2)=5.

又(x1-x2)2+(y1-y2)2=25,

高考数学(理)一轮复习教师用书: 第八章 平面解析几何 Word版含解析

高考数学(理)一轮复习教师用书: 第八章 平面解析几何 Word版含解析

第1课时直线及其方程1.直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l倾斜角的范围是0,π).2.直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k=tan_θ.(2)计算公式:若由A(x1,y1),B(x2,y2)确定的直线不垂直于x轴,则k=y2-y1 x2-x1.3.直线方程的五种形式4.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)坐标平面内的任何一条直线均有倾斜角与斜率.(×)(2)过点M(a,b),N(b,a)(a≠b)的直线的倾斜角是45°.(×)(3)倾斜角越大,斜率越大.(×)(4)经过点P(x0,y0)的直线都可以用方程y-y0=k·(x-x0)表示.(×)(5)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.(√)(6)直线的截距即是直线与坐标轴的交点到原点的距离.(×)(7)若直线在x 轴,y 轴上的截距分别为m ,n ,则方程可记为x m +yn =1.(×)(8)直线Ax +By +C =0表示斜率为-A B ,在y 轴上的截距为-CB 的直线.(×) (9)直线y =kx +3表示过定点(0,3)的所有直线.(×) (10)直线y =3x +b 表示斜率为3的所有直线.(√)考点一 直线的倾斜角与斜率例1] (1)若直线l PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13B .-13 C .-32D.23解析:设P (x,1),Q (7,y ),则x +72=1,y +12=-1,∴x =-5,y =-3,即P (-5,1),Q (7,-3),故直线l 的斜率k =-3-17+5=-13.答案:B(2)直线x +(a 2+1)y +1=0(a ∈R )的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πD.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π 第八章 平面解析几何大一轮复习 数学(理)解析:由直线x +(a 2+1)y +1=0, 得直线的斜率k =-1a 2+1∈-1,0),设直线的倾斜角为θ,则-1≤tan θ<0. 因此3π4≤θ<π.答案:B(3)已知点A(2,-3),B(-3,-2),直线l过点P(1,1)且与线段AB有交点,则直线l的斜率k的取值范围为________.解析:如图,k P A=1+31-2=-4,k PB=1+21+3=34.要使直线l与线段AB有交点,则有k≥34或k≤-4.答案:k≤-4或k≥3 4方法引航] 1.求倾斜角α的取值范围的一般步骤(1)求出斜率k=tan α的取值范围;(2)利用正切函数的单调性,借助图象,数形结合,确定倾斜角α的取值范围.2.求斜率的常用方法(1)已知直线上两点时,由斜率公式k=y2-y1x2-x1(x1≠x2)来求斜率.(2)已知倾斜角α或α的三角函数值时,由k=tan α(α≠90°)来求斜率.(3)方程为Ax+By+C=0(B≠0)的直线的斜率为k=-A B.1.若将本例(1)改为:直线y=1,x=7与坐标轴的交点分别为P、Q,求直线PQ 的斜率.解:由题意可知P(0,1),Q(7,0),∴k PQ=1-00-7=-17.2.若将本例(2)的直线改为(a2+1)x+y+1=0,其倾斜角的范围如何?解:因直线的斜率k=-a2-1≤-1设直线的倾斜角为α,∴tan α≤-1,α∈(0,π), ∴α∈⎝ ⎛⎦⎥⎤π2,34π.3.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为( ) A.3B .- 3 C .0 D .1+ 3解析:直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所以直线的倾斜角为60°,tan 60°= 3. 答案:A考点二 求直线方程例2] 求适合下列条件的直线方程.(1)经过点A (3,4),且在两坐标轴上截距相等的直线方程是________. 解析:设直线在x ,y 轴上的截距均为a . ①若a =0,即直线过点(0,0)及(3,4), ∴直线的方程为y =43x ,即4x -3y =0. ②若a ≠0,则设所求直线的方程为x a +ya =1, 又点(3,4)在直线上, ∴3a +4a =1,∴a =7, ∴直线的方程为x +y -7=0. 答案:4x -3y =0或x +y -7=0(2)一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是________. 解析:∵直线y =13x 的倾斜角α=30°,所以所求直线的倾斜角为60°, 斜率k =tan 60°= 3. 又该直线过点A (2,-3),故所求直线为y -(-3)=3(x -2), 即3x -y -33=0. 答案:3x -y -33=0(3)过点(-3,4),且在两坐标轴上的截距之和为12的直线方程为________. 解析:由题设知截距不为0,设直线方程为x a +y 12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. 答案:4x -y +16=0或x +3y -9=0(4)一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解:设直线的斜率为k (k ≠0), 则直线方程为y -2=k (x +2), 由x =0知y =2k +2. 由y =0知x =-2k -2k . 由12|2k +2|⎪⎪⎪⎪⎪⎪-2k -2k =1. 解得k =-12或k =-2.故直线方程为x +2y -2=0或2x +y +2=0. 答案:x +2y -2=0或2x +y +2=0 方法引航] 求直线方程的两种方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论.(2)待定系数法,具体步骤为:①设所求直线方程的某种形式;②由条件建立所求参数方程(组);③解这个方程(组)求出参数;④把参数的值代入所设直线方程.1.将本例(1)改为:求经过点A(-5,2),且在x轴上的截距等于在y轴上截距的2倍的直线方程.解:当直线不过原点时,设所求直线方程为x2a+ya=1,将(-5,2)代入所设方程,解得a=-1 2,此时,直线方程为x+2y+1=0.当直线过原点时,斜率k=-2 5,直线方程为y=-25x,即2x+5y=0.故所求直线方程为x+2y+1=0或2x+5y=0.2.将本例(2)改为:经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.求该直线方程.解:由已知:设直线y=3x的倾斜角为α,则所求直线的倾斜角为2α.∵tan α=3,∴tan 2α=2tan α1-tan2α=-34.又直线经过点(-1,-3),∴直线方程为y+3=-34(x+1),即3x+4y+15=0.3.将本例(4)改为:直线l 的斜率为16,且与两坐标轴围成的三角形面积为3.求l 的方程.解:设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.考点三 直线方程的应用例3] (1)已知曲线y =x 4-3ln x 的一条切线的斜率为-12,则切点的横坐标为( ) A .3 B .2 C .1 D.12解析:设切点坐标为(x 0,y 0),且x 0>0, ∵y ′=12x -3x ,∴k =12x 0-3x 0=-12,∴x 0=2.答案:B(2)若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________. 解析:根据A (a,0)、B (0,b )确定直线的方程为x a +yb =1,又C (-2,-2)在该直线上,故-2a +-2b =1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16. 答案:16(3)为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△EF A 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解:如图所示,建立平面直角坐标系, 则E (30,0)、F (0,20),∴直线EF 的方程为x 30+y20=1(0≤x ≤30).易知当矩形草坪的一个顶点在EF 上时,可取最大值, 在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q , PR ⊥CD 于点R ,设矩形PQCR 的面积为S , 则S =|PQ |·|PR | =(100-m )(80-n ). 又m 30+n20=1(0≤m ≤30), ∴n =20-23m .∴S =(100-m )⎝ ⎛⎭⎪⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30). ∴当m =5时,S 有最大值,这时|EP ||PF |=5∶1.所以当草坪矩形的两边在BC、CD上,一个顶点在线段EF上,且这个顶点分有向线段EF成5∶1时,草坪面积最大.方法引航]在求直线方程的过程中,若有以直线为载体的面积、距离的最值等问题,一般要结合函数、不等式或利用对称来加以解决.1.已知函数f(x)=x-4ln x,则曲线y=f(x)在点(1,f(1))处的切线方程为________.解析:由f′(x)=1-4x,则k=f′(1)=-3,又f(1)=1,故切线方程为y-1=-3(x-1),即3x+y-4=0.答案:3x+y-4=02.直线3x-4y+k=0在两坐标轴上的截距之和为2,则实数k=________.解析:令x=0,得y=k4;令y=0,得x=-k3.则有k4-k3=2,所以k=-24.答案:-24易错警示]直线的委屈——被遗忘的特殊情况典例](2017·浙江杭州调研)已知直线l过点P(2,-1),在x轴和y轴上的截距分别为a,b,且满足a=3b.则直线l的方程为________.正解]①若a=3b=0,则直线过原点(0,0),此时直线斜率k=-12,直线方程为x+2y=0.②若a=3b≠0,设直线方程为xa+yb=1,即x3b+yb=1.由于点P(2,-1)在直线上,所以b=-1 3.从而直线方程为-x-3y=1,即x+3y+1=0.综上所述,所求直线方程为x+2y=0或x+3y+1=0.答案] x +2y =0或x +3y +1=0易误] 本题容易忽视直线过原点时的情况.警示] 求直线方程时,要注意斜率是否存在,注意截距是否为0;注意区分截距与距离.高考真题体验]1.(2012·高考湖北卷)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( ) A .x +y -2=0 B .y -1=0 C .x -y =0 D .x +3y -4=0解析:选A.两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点P (1,1)的直径所在直线的斜率为1,所以所求直线的斜率为-1,方程为x +y -2=0.2.(2016·高考北京卷)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( ) A .-1 B .3 C .7 D .8解析:选C.依题意得k AB =5-12-4=-2,∴线段l AB :y -1=-2(x -4),x ∈2,4],即y=-2x +9,x ∈2,4],故2x -y =2x -(-2x +9)=4x -9,x ∈2,4].设h (x )=4x -9,易知h (x )=4x -9在2,4]上单调递增,故当x =4时,h (x )max =4×4-9=7.3.(2015·高考广东卷)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( )A .2x +y +5=0或2x +y -5=0B .2x +y +5=0或2x +y -5=0C .2x -y +5=0或2x -y -5=0D .2x -y +5=0或2x -y -5=0解析:选A.设所求直线的方程为2x +y +c =0(c ≠1),则|c |22+12=5,所以c =±5,故所求直线的方程为2x +y +5=0或2x +y -5=0.4.(2014·高考安徽卷)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,π6B.⎝ ⎛⎦⎥⎤0,π3 C.⎣⎢⎡⎦⎥⎤0,π6D.⎣⎢⎡⎦⎥⎤0,π3 解析:选D.法一:设直线l 的倾斜角为θ,数形结合(图略)可知: θmin =0,θmax =2×π6=π3.法二:因为直线l 与x 2+y 2=1有公共点,所以设l :y +1=k (x +3),即l :kx -y +3k -1=0,则圆心(0,0)到直线l 的距离|3k -1|1+k 2≤1,得k 2-3k ≤0,即0≤k ≤3,故直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.课时规范训练 A 组 基础演练1.直线x +3y +m =0(m ∈k )的倾斜角为( ) A .30° B .60° C .150° D .120°解析:选C.∵直线的斜率k =-33,∴tan α=-33. 又0≤α<180°,∴α=150°.2.如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:选D.直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.3.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1C .-2或-1D .-2或1解析:选D.由题意得a +2=a +2a ,∴a =-2或a =1.4.过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( ) A .x =2 B .y =1 C .x =1 D .y =2解析:选A.∵直线y =-x -1的斜率为-1,则倾斜角为34π.依题意,所求直线的倾斜角为3π4-π4=π2,斜率不存在,∴过点(2,1)的所求直线方程为x =2.5.两条直线l 1:x a -y b =1和l 2:x b -ya =1在同一直角坐标系中的图象可以是( )解析:选A.把直线方程化为截距式l 1:x a +y -b =1,l 2:x b +y-a =1.假定l 1,判断a ,b ,确定l 2的位置,知A 项符合.6.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =________. 解析:因为k AB =7-54-3=2,k AC =x -5-1-3=-x -54.A ,B ,C 三点共线,所以k AB =k AC 即-x -54=2, 解得x =-3.答案:-37.直线l 经过A (2,1),B (1,m 2)(m ∈R )两点.则直线l 的倾斜角的取值范围为________. 解析:直线l 的斜率k =m 2-11-2=1-m 2≤1.若l 的倾斜角为α,则tan α≤1. 答案:⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π8.已知直线l 的倾斜角α满足3sin α=cos α,且它在x 轴上的截距为2,则直线l 的方程是________.解析:∵k l =tan α=sin αcos α=13,且过点(2,0), ∴直线方程为y =13(x -2) 即x -3y -2=0. 答案:x -3y -2=09.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围. 解:(1)当直线过原点时,在x 轴和y 轴上的截距为零. ∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.因此直线l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2, ∴⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0. ∴a ≤-1.综上可知a 的取值范围是a ≤-1.10.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解:由题意设直线方程为x a +y b =1(a >0,b >0),∴3a +2b =1. 由基本不等式知3a +2b ≥26ab ,即ab ≥24(当且仅当3a =2b ,即a =6,b =4时等号成立). 又S =12a ·b ≥12×24=12,此时直线方程为x 6+y4=1,即2x +3y -12=0.∴△ABO 面积的最小值为12,此时直线方程为2x +3y -12=0.B 组 能力突破1.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么l 的斜率为( ) A .-13B .-3 C.13D .3解析:选A.设直线l :Ax +By +C =0,由题意,平移后方程为A (x -3)+B (y +1)+C =0,即Ax +By +C +B -3A =0,它与直线l 重合,∴B -3A =0,∴-A B =-13,即直线l 的斜率为-13,故选A.2.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:选D.因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).3.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0 D .ab <0,bc <0解析:选A.由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -c b .易知-a b <0且-cb >0,故ab >0,bc <0.4.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 解析:当a =-1时,直线l 的倾斜角为90°,符合要求; 当a ≠-1时,直线l 的斜率为-a a +1,只要-a a +1>1或者-a a +1<0即可,解得-1<a <-12或者a <-1或者a >0. 综上可知,实数a 的取值范围是 ⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞). 答案:⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞)5.已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解:(1)设A (a,0),B (0,b )(a >0,b >0). 设直线l 的方程为x a +y b =1,则1a +1b =1,所以|OA |+|OB |=a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a ≥2+2a b ·ba =4,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.(2)设直线l 的斜率为k ,则k <0,直线l 的方程为y -1=k (x -1),则A ⎝ ⎛⎭⎪⎫1-1k ,0,B (0,1-k ),所以|MA |2+|MB |2=⎝ ⎛⎭⎪⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k 2≥2+2k 2·1k 2=4,当且仅当k 2=1k2,即k =-1时,|MA |2+|MB |2取得最小值4,此时直线l 的方程为x +y -2=0.第2课时 两直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2; ②当不重合的两条直线l 1,l 2的斜率都不存在时,l 1与l 2的关系为平行. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则l 1⊥l 2⇔k 1k 2=-1;②如果l 1,l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2的关系为垂直. 2.两条直线的交点设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,将这两条直线的方程联立,得方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0.(1)若方程组有唯一解,则l 1与l 2相交,此解就是l 1、l 2交点的坐标; (2)若方程组无解,则l 1与l 2无交点,此时l 1∥l 2; (3)若方程组有无数组解,则l 1与l 2重合. 3.三种距离4.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.(×)(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(4)l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,当k 1≠k 2时,l 1与l 2相交.(√)(5)过l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ).(×) (6)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(×) (7)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√) (8)直线l 关于点P 对称的直线l ′,则l ∥l ′.(×) (9)A 、B 两点到直线l 的距离相等,则AB ∥l .(×) (10)直线x +(m +1)y +2=0恒过定点(-2,0).(√)考点一 两条直线的平行与垂直例1] (1)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( ) A .平行 B .重合 C .垂直 D .相交但不垂直解析:由正弦定理a sin A =bsin B ,得b sin A -a sin B =0. ∴两直线垂直. 答案:C(2)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0解析:设所求直线方程为x-2y+m=0,由1+m=0得m=-1,所以直线方程为x -2y-1=0.答案:A(3)已知直线l1:(a+2)x+(1-a)y-3=0与直线l2:(a-1)x+(2a+3)y+2=0,则“a =1”是“l1⊥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:l1⊥l2的充要条件是(a+2)(a-1)+(1-a)·(2a+3)=0,即a2-1=0,故有(a-1)(a+1)=0,解得a=±1.显然“a=1”是“a=±1”的充分不必要条件,故“a=1”是“l1⊥l2”的充分不必要条件.故选A.答案:A(4)已知两直线l1:x+y sin α-1=0和l2:2x·sin α+y+1=0,求α的值,使得:①l1∥l2;②l1⊥l2.解:①法一:当sin α=0时,直线l1的斜率不存在,l2的斜率为0,显然l1不平行于l2.当sin α≠0时,k1=-1sin α,k2=-2sin α.要使l1∥l2,需-1sin α=-2sin α,即sin α=±2 2.所以α=kπ±π4,k∈Z,此时两直线的斜率相等.故当α=kπ±π4,k∈Z时,l1∥l2.法二:由A1B2-A2B1=0,得2sin2α-1=0,所以sin α=±2 2.又B 1C 2-B 2C 1≠0,所以1+sin α≠0,即sin α≠-1. 所以α=k π±π4,k ∈Z . 故当α=k π±π4,k ∈Z 时,l 1∥l 2.②因为A 1A 2+B 1B 2=0是l 1⊥l 2的充要条件,所以2sin α+sin α=0,即sin α=0,所以α=k π,k ∈Z . 故当α=k π,k ∈Z 时,l 1⊥l 2.方法引航] 两直线垂直时,一般先将直线方程化成一般式,l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,然后利用A 1A 2+B 1B 2=0求解,这样避免出现漏解.如果利用斜截式方程,则需要根据其斜率是否存在分情况讨论,往往容易忽视斜率不存在的情况,导致漏解.对l 1∥l 2,用A 1A 2=B 1B 2≠C 1C 2时,有可能漏解.1.将本例(1)的两直线改为:l 1:bx +ay +c =0,l 2:x sin B +y sin A -sin C =0,其位置关系如何? 解:由b sin B =asin A ≠c-sin C ,∴l 1∥l 2.2.将本例(2)改为过点(1,0)与x -2y -2=0垂直,其直线方程怎样. 解:∵x -2y -2=0的斜率为12, ∴所求直线的斜率为-2,∴直线方程为y =-2(x -1),即2x +y -2=0.3.将本例(3)变为“a =-1”是“直线ax +y +1=0与直线x +ay +2=0平行”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件解析:选A.由直线ax +y +1=0与直线x +ay +2=0平行,得a =-1或1,所以“a =-1”是“直线ax +y +1=0与直线x +ay +2=0平行”的充分不必要条件. 4.将本例(4)变为l 1:ax -by +4=0,l 2:(a -1)x +y +b =0,若l 1⊥l 2且l 1过点(-3,-1),求a ,b 的值.解:法一:由题意得⎩⎪⎨⎪⎧ a (a -1)-b ×1=0-3a +b +4=0,即⎩⎪⎨⎪⎧a 2-a -b =0-b =-3a +4,解得⎩⎪⎨⎪⎧a =2,b =2.法二:由已知可得l 2的斜率存在,∴k 2=1-a . 若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1必不存在,即b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾). ∴此种情况不存在,∴k 2≠0.即k 1,k 2都存在,∵k 2=1-a ,k 1=ab ,l 1⊥l 2, ∴k 1k 2=-1,即ab (1-a )=-1.①又∵l 1过点(-3,-1),∴-3a +b +4=0.② 由①②联立,解得a =2,b =2.考点二 两条直线的交点和距离例2] (1)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.解:法一:由方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1、l 2的交点坐标为(-1,2),∵l 3的斜率为35,∴l 的斜率为-53,则直线的点斜式方程l :y -2=-53(x +1), 即5x +3y -1=0.法二:设直线l 的方程为:3x +2y -1+λ(5x +2y +1)=0, 将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0, 其斜率-3+5λ2+2λ=-53,解得λ=15,代入直线系方程即得l 的方程为5x +3y -1=0.(2)求过点P (2,-1)且与原点距离为2的直线l 的方程. 解:若l 的斜率不存在,则直线x =2满足条件. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(3)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c +2a 的值为________.解析:由题意得,63=a -2≠c-1,∴a =-4,c ≠-2.则6x +ay +c =0可化为3x -2y +c2=0. ∴21313=⎪⎪⎪⎪⎪⎪⎪⎪c 2+113,∴解得c =2或c =-6.∴c +2a =1或c +2a =-1. 答案:±1方法引航] (1)符合特定条件的某些直线构成一个直线系,常见的直线系有: ①与Ax +By +C =0平行的直线系:Ax +By +m =0(m ≠C ); ②与Ax +By +C =0垂直的直线系:Bx -Ay +m =0;③过A 1x +B 1y +C 1=0和A 2x +B 2y +C 2=0交点的直线系:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0. (2)y =kx +b .①当b 为定值,k 变为参数时,表示过定点(0,b )的直线系(除x =0外); ②当k 为定值,b 为参数时,表示斜率为k 的平行直线系.1.已知经过点P (2,2)的直线l 与直线ax -y +1=0垂直,若点M (1,0)到直线l 的距离等于5,则a 的值是( ) A .-12B .1C .2 D.12解析:选C.依题意,设直线l 的方程为x +ay +c =0, ∵点P (2,2)在l 上,且点M (1,0)到l 的距离等于 5. ∴⎩⎪⎨⎪⎧2+2a +c =0,|1+c |1+a2= 5.消去c ,得a =2.2.过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程为________.解析:由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.∴l 1与l 2交点为(1,2),设所求直线y -2=k (x -1),即kx -y +2-k =0, ∵P (0,4)到所求直线的距离为2, ∴2=|-2-k |1+k 2,解得k =0或k =43.∴直线方程为y =2或4x -3y +2=0. 答案:y =2或4x -3y +2=03.l 1,l 2是分别经过点A (1,1),B (0,-1)的两条平行直线,当l 1与l 2间的距离最大时,直线l 1的方程是________.解析:当AB ⊥l 1时,两直线l 1与l 2间的距离最大, 由k AB =-1-10-1=2,知l 1的斜率k =-12.∴直线l 1的方程为y -1=-12(x -1), 即x +2y -3=0. 答案:x +2y -3=0考点三 对称问题例3] (1)(2017·江西南昌二中月考)过点M (0,1)作直线,使它被两条直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,则此直线方程为________. 解析:法一:过点M 且与x 轴垂直的直线是x =0,它和直线l 1,l 2的交点分别是⎝ ⎛⎭⎪⎫0,103,(0,8),显然不符合题意,故可设所求直线方程为y =kx +1,其图象与直线l 1,l 2分别交于A ,B 两点,则有①⎩⎪⎨⎪⎧ y A =kx A +1,x A -3y A +10=0,②⎩⎪⎨⎪⎧y B =kx B +1,2x B +y B -8=0. 由①解得x A =73k -1,由②解得x B =7k +2.因为点M 平分线段AB ,所以x A +x B =2x M , 即73k -1+7k +2=0,解得k =-14.故所求的直线方程为y =-14x +1,即x +4y -4=0. 法二:设所求直线与l 1交于A (x 1,y 1)与l 2交于B (x 2,y 2) 且x 1+x 2=0,∴x 2=-x 1. y 1+y 2=2,y 2=2-y 1∴⎩⎪⎨⎪⎧ x 1-3y 1+10=0-2x 1+2-y 1-8=0,解得⎩⎪⎨⎪⎧x 1=-4y 1=2.即A (-4,2) 故过M 和A 的方程为x +4y -4=0. 答案:x +4y -4=0(2)A (-1,-2)关于直线l :2x -3y +1=0的对称点A ′的坐标为________.解析:设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0解得⎩⎪⎨⎪⎧x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413.答案:A ′⎝ ⎛⎭⎪⎫-3313,413(3)直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程为________.解析:由⎩⎪⎨⎪⎧y =2x +3,y =x +1解得直线l 1与l 的交点坐标为(-2,-1),∴可设直线l 2的方程为y +1=k (x +2),即 kx -y +2k -1=0.在直线l 上任取一点(1,2),由题设知点(1,2)到直线l 1,l 2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),∴直线l 2的方程为x -2y =0. 答案:x -2y =0方法引航](1)点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .(2)解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直., 3)若直线l 1、l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.(4)解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解:法一:由⎩⎨⎧x -2y +5=0,3x -2y +7=0,得⎩⎨⎧x =-1,y =2. ∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,Q 点在l 上,∴3·x 0-52-2·y 02+7=0. 由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0. 法二:设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x=-23, 又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0, 由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0.可得P 点的横、纵坐标分别为x 0=-5x +12y -4213,y 0=12x +5y +2813, 代入方程x -2y +5=0中,化简得29x -2y +33=0,∴所求反射光线所在的直线方程为29x -2y +33=0.方法探究]有关点与直线的最值问题典例] (2017·福建泉州模拟)若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3关系探究] 一、从m 2+n 2表示的几何意义分析,得出原点到直线的距离.二、从函数角度分析:题意隐含了m 与n 的约束关系,从而m 2+n 2可转化为关于m (n )的函数求最值.解析] 法一:数形结合法(1)m 2+n 2=(m -0)2+(n -0)2表示点(m ,n )与(0,0)距离的平方,∴m 2+n 2表示点(m ,n )与(0,0)的距离,其最小值为原点到直线的距离.当过原点的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离的最小值为d =|-10|42+32=2,∴m 2+n 2的最小值为4.(2)由题意知点(m ,n )为直线上到原点最近的点, 直线与两坐标轴交于A ⎝ ⎛⎭⎪⎫52,0,B ⎝ ⎛⎭⎪⎫0,103,在直角三角形OAB 中,OA =52,OB =103,斜边AB =⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫1032=256,斜边上的高h 即为所求m 2+n 2的算术平方根, ∴S △OAB =12·OA ·OB =12AB ·h , ∴h =OA ·OB AB =52×103256=2,∴m 2+n 2的最小值为h 2=4. 法二:函数法因点(m ,n )在直线4x +3y -10=0上, ∴4m +3n -10=0,∴m =10-3n4,∴m 2+n 2=⎝ ⎛⎭⎪⎫10-3n42+n 2=100-60n +25n 216=2516⎝ ⎛⎭⎪⎫n -652+4. 当n =65时,m 2+n 2的最小值为4. 答案] C回顾反思] 有关点与直线的最值问题,一般有两种方法:一是利用几何意义,采用数形结合法.如(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )间距离的平方.|Ax 0+By 0+C |A 2+B 2表示点P (x 0,y 0)到直线Ax +By +C =0的距离;再者利用函数求最值.高考真题体验]1.(2012·高考浙江卷)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +2y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.由a =1可得l 1∥l 2,反之,由l 1∥l 2可得a =1,故选C.2.(2014·高考福建卷)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y +2=0 C .x +y -3=0 D .x -y +3=0解析:选D.依题意,得直线l 过点(0,3),斜率为1,所以直线l 的方程为y -3=x -0,即x -y +3=0.故选D.3.(2014·高考四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,不难验证P A ⊥PB ,所以|P A |2+|PB |2=|AB |2=10,所以|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |=5时,等号成立),当P 与A 或B 重合时,|P A |·|PB |=0,故|P A |·|PB |的最大值是5. 答案:5课时规范训练 A 组 基础演练1.直线l 过点(-1,2),且与直线2x -3y +4=0垂直,则l 的方程是( ) A .3x +2y -1=0 B .3x +2y +7=0 C .2x -3y +5=0 D .2x -3y +8=0解析:选A.由题意可得直线l 的斜率k =-32, ∴l :y -2=-32(x +1),即3x +2y -1=0.2.已知直线l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0,则l 1∥l 2的充要条件是a 等于( ) A .3 B .1 C .-1 D .3或-1解析:选C.由题意知,l 1∥l 2⇔1a -2=a 3≠62a ,即a =-1.故选C.3.已知直线l 的倾斜角为34π,直线l 1经过点A (3,2)和B (a ,-1),且l 1与l 垂直,直线l 2的方程为2x +by +1=0,且直线l 2与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2解析:选B.∵直线l 的斜率为-1,∴直线l 1的斜率为1,∴k AB =2-(-1)3-a=1,解得a =0.∵l 1∥l 2,∴-2b =1,解得b =-2,∴a +b =-2.4.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ) A .2x +3y -18=0 B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0解析:选D.设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.5.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A .x +2y -4=0B .2x +y -1=0C .x +6y -16=0D .6x +y -8=0解析:选A.由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式可得A 正确. 6.过点A (1,2)且与原点距离最大的直线方程是________. 解析:由题意知,所求直线与OA 垂直, 因k OA =2,则所求直线的斜率k =-12.所以直线的方程是y -2=-12(x -1),即x +2y -5=0. 答案:x +2y -5=07.过点(3,1),且过直线y =2x 与直线x +y =3交点的直线方程为________. 解析:法一:由⎩⎨⎧ y =2x x +y =3,得⎩⎨⎧x =1y =2,即两直线交点为(1,2),依题意,由两点式方程得y -12-1=x -31-3,即x +2y -5=0.法二:设所求直线方程为x +y -3+λ(2x -y )=0. 把点(3,1)代入得λ=-15,故所求直线方程为 x +y -3-15(2x -y )=0,即x +2y -5=0. 答案:x +2y -5=08.△ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),则边BC 的垂直平分线DE 的方程为________.解析:设BC 中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2.BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2,由斜截式得直线DE 的方程为y =2x +2.答案:y =2x +29.光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在直线的方程.解:作出草图,如图所示.设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.10.已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0互相平行,且l 1,l 2之间的距离为5,求直线l 1的方程. 解:∵l 1∥l 2,∴m 2=8m ≠n-1,∴⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.①当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0,∴|n +2|16+64=5,解得n =-22或n =18.所以,所求直线的方程为2x +4y -11=0或2x +4y +9=0.②当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为4x -8y -2=0,∴|-n +2|16+64=5,解得n =-18或n =22.所以,所求直线的方程为2x -4y +9=0或2x -4y -11=0.B 组1.若三条直线l 1:4x +y =4,l 2:mx +y =0,l 3:2x -3my =4不能围成三角形,则实数m 的取值最多有( ) A .2个 B .3个 C .4个 D .6个解析:选C.三条直线不能围成三角形,则至少有两条直线平行或三条直线相交于同一点.若l 1∥l 2,则m =4;若l 1∥l 3,则m =-16;若l 2∥l 3,则m 的值不存在;若三条直线相交于同一点,则m =-1或23,故实数m 的取值最多有4个.2.若曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A.由题意得切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1·x -(-1)],整理得x +y +2=0.由点到直线的距离公式,得点P (3,2)到直线l 的距离为|3+2+2|12+12=722.3.已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0互相垂直,则ab 的最小值为( ) A .1 B .2 C .22D .2 3解析:选B.由已知两直线垂直得(b 2+1)-ab 2=0,即ab 2=b 2+1.两边同除以b ,得ab =b 2+1b =b +1b .由基本不等式,得b +1b ≥2b ·1b =2当且仅当b =1时等号成立,故选B.4.直线y =2x 是△ABC 的一个内角平分线所在的直线,若点A (-4,2),B (3,1),则点C 的坐标为________.解析:把A ,B 两点的坐标分别代入y =2x ,可知A ,B 不在直线y =2x 上,因此y =2x 为∠ACB 的平分线所在的直线,设点A (-4,2)关于直线y =2x 的对称点为A ′(a ,b ),则k AA ′=b -2a +4,线段AA ′的中点坐标为⎝ ⎛⎭⎪⎫a -42,b +22, 由⎩⎪⎨⎪⎧b -2a +4·2=-1,b +22=2·a -42,解得⎩⎪⎨⎪⎧a =4,b =-2,∴A ′(4,-2).∵y =2x 是∠ACB 的平分线所在的直线, ∴点A ′在直线BC 上,∴直线BC 的方程为y +21+2=x -43-4,即3x +y -10=0,由⎩⎪⎨⎪⎧ y =2x ,3x +y -10=0解得⎩⎪⎨⎪⎧x =2,y =4,∴C (2,4). 答案:(2,4)5.若直线l 过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点,且|AB |=5,求直线l 的方程.解:过点A (1,-1)与y 轴平行的直线为x =1. 解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0.求得B 点坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1), 解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1).得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行). 则B 点坐标为⎝ ⎛⎭⎪⎪⎫k +7k +2,4k -2k +2. 由已知⎝ ⎛⎭⎪⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎪⎫4k -2k +2+12=52, 解得k =-34,∴y +1=-34(x -1), 即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.第3课时 圆的方程1.圆的定义及方程2.点与圆的位置关系(1)理论依据:点与圆心的距离与半径的大小关系. (2)三种情况圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0), ①(x 0-a )2+(y 0-b )2=r 2⇔点在圆上; ②(x 0-a )2+(y 0-b )2>r 2⇔点在圆外; ③(x 0-a )2+(y 0-b )2<r 2⇔点在圆内.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)确定圆的几何要素是圆心与半径.(√)(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.(√)(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4F >0.(×)(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.(√)(5)已知圆的方程为x 2+y 2-2y =0,过点A (1,2)作该圆的切线只有一条.(×) (6)方程(x +a )2+(y +b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆.(×) (7)方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆心为⎝ ⎛⎭⎪⎫-a 2,-a ,半径为12-3a 2-4a +4的圆.(×)(8)过不共线的三点一定有唯一的一个圆.(√)(9)方程x 2+y 2+2x -2y +2=0表示圆心为(-1,1)的圆.(×) (10)圆x 2-4x +y 2+2y +1=0上的点到(2,1)的最长距离为4.(√)考点一 求圆的方程例1] 根据下列条件,求圆的方程:(1)经过点A (5,2),B (3,-2),且圆心在直线2x -y -3=0上; (2)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6; (3)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2). 解:(1)法一:由题意知k AB =2,AB 的中点为(4,0),设圆心为C (a ,b ),则 AB 的垂直平分线为y =-12(x -4)由⎩⎨⎧ y =-12(x -4)2x -y -3=0得⎩⎪⎨⎪⎧x =2y =1即C (2,1)为圆心. ∴r =|CA |=(5-2)2+(2-1)2=10,∴所求圆的方程为(x -2)2+(y -1)2=10. 法二:设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧2a -b -3=0,(5-a )2+(2-b )2=r 2,(3-a )2+(-2-b )2=r 2,解得⎩⎪⎨⎪⎧a =2,b =1,r =10,故圆的方程为(x -2)2+(y -1)2=10.法三:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则⎩⎪⎨⎪⎧25+4+5D +2E +F =0,9+4+3D -2E +F =0,2×⎝ ⎛⎭⎪⎫-D 2+E 2-3=0,解得⎩⎪⎨⎪⎧D =-4,E =-2,F =-5,∴所求圆的方程为x 2+y 2-4x -2y -5=0.(2)设圆的方程为x 2+y 2+Dx +Ey +F =0, 将P 、Q 两点的坐标分别代入得 ⎩⎪⎨⎪⎧2D -4E -F =20, ①3D -E +F =-10. ② 又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6有D 2-4F =36,④ 由①、②、④解得D =-2,E =-4, F =-8,或D =-6,E =-8,F =0.故所求圆的方程为x 2+y 2-2x -4y -8=0,或x 2+y 2-6x -8y =0.(3)法一:如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22,故圆的方程为(x -1)2+(y +4)2=8.。

2021届高三数学一轮复习 第八章平面解析几何测试题 新人教版2

2021届高三数学一轮复习 第八章平面解析几何测试题 新人教版2

第八章 平面解析几何(时间120分钟,总分值150分)一、选择题(本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是 ( ) A.|a |4 B.|a |2 C .|a | D .-a 2 解析:由焦点到准线的距离为p =|a |2.答案:B2.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,那么|AB |= ( )A .6 B. 2 C .2 D .不确定解析:由题知b -a5-4=1,∴b -a =1.∴|AB |=(5-4)2+(b -a )2= 2. 答案:B3.双曲线x 24-y 212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),那么p 的值为( )A .2B .1 C.14 D.116解析:依题意得e =2,抛物线方程为y 2=12p x ,故18p =2,得p =116.答案:D4.假设直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,那么1a +2b的最小值为 ( ) A .1 B .5 C .4 2 D .3+2 2 解析:由(x -2)2+(y -1)2=13,得圆心(2,1), ∵直线平分圆的周长,即直线过圆心. ∴a +b =1.∴1a +2b =(1a +2b )(a +b )=3+b a +2ab≥3+22,当且仅当b a =2ab,即a =2-1,b =2-2时取等号, ∴1a +2b的最小值为3+2 2.5.假设双曲线x 2a2-y 2=1的一个焦点为(2,0),那么它的离心率为 ( )A.255B.32C.233 D .2解析:由a 2+1=4,∴a =3, ∴e =23=233.答案:C6.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,那么顶点C 的轨迹方程是 ( ) A.x 29-y 216=1 B.x 216-y 29=1C.x 29-y 216=1(x >3) D.x 216-y 29=1(x >4) 解析:如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线的右支,方程为x 29-y 216=1(x>3). 答案:C7.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e5x (e 为双曲线离心率),那么有( )A .b =2aB .b =5aC .a =2bD .a =5b 解析:由b a =55e , ∴b a =55×c a,∴c =5b ,又a 2+b 2=c 2, ∴a 2+b 2=5b 2,∴a =2b . 答案:C8.抛物线y =-4x 2上的一点M 到焦点的距离为1,那么点M 的纵坐标是 ( )A.1716B.1516 C .-1516 D .-1716 解析:准线方程为y =116,由定义知116-y M =1⇒y M =-1516.9.点A 、B 是双曲线x 2-y 22=1上的两点,O 为坐标原点,且满足OA ·OB =0,那么点O 到直线AB 的距离等于 ( )A. 2B. 3 C .2 D .2 2解析:此题是关于圆锥曲线中的点到线的距离问题,由OA ·OB =0⇒OA ⊥OB ,由于双曲线为中心对称图形,为此可考查特殊情况,令点A 为直线y =x 与双曲线在第一象限的交点,因此点B 为直线y =-x 与双曲线在第四象限的一个交点,因此直线AB 与x 轴垂直,点O 到AB 的距离就为点A 或点B 的横坐标的值,由⎩⎪⎨⎪⎧x 2-y 22=1y =x⇒x = 2.答案:A10.(2021·全国卷Ⅱ)双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,那么r =( )A. 3 B .2 C .3 D .6 解析:双曲线的渐近线方程为y =±12x 即x ±2y =0,圆心(3,0)到直线的距离d =|3|(2)2+1= 3. 答案:A11.(2021·四川高考)双曲线x 22-y 2b2=1(b >0)的左、右焦点分别为F 1、F 2,其一条渐近线方程为y=x ,点P (3,y 0)在该双曲线上,那么1PF ·2PF = ( ) A .-12 B .-2 C .0 D .4 解析:由渐近线方程y =x 得b =2,点P (3,y 0)代入x 22-y 2b2=1中得y 0=±1.不妨设P (3,1),∵F 1(2,0),F 2(-2,0), ∴1PF ·2PF =(2-3,-1)·(-2-3,-1) =3-4+1=0. 答案:C12.(2021·天津高考)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,|BF |=2,那么△BCF 与△ACF 的面积之比S △BCFS △ACF= ( )A.45B.23C.47D.12 解析:如图过A 、B 作准线l :x =-12的垂线,垂足分别为A 1,B 1, 由于F 到直线AB 的距离为定值. ∴S △BCF S △ACF =|BC ||CA |. 又∵△B 1BC ∽△A 1AC . ∴|BC ||CA |=|BB 1||AA 1|, 由拋物线定义|BB 1||AA 1|=|BF ||AF |=2|AF |.由|BF |=|BB 1|=2知x B =32,y B =-3,∴AB :y -0=33-32(x -3).把x =y 22代入上式,求得y A =2,x A =2,∴|AF |=|AA 1|=52.故S △BCF S △ACF =|BF ||AF |=252=45. 答案:A二、填空题(本大题共4小题,每题4分,共16分.请把正确答案填在题中横线上)13.点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,那么(x 0-a )2+(y 0-b )2的最小值为________.解析:(x 0-a )2+(y 0-b )2可看作点(x 0,y 0)与点(a ,b )的距离.而点(x 0,y 0)在直线ax +by =0上,所以(x 0-a )2+(y 0-b )2的最小值为点(a ,b )到直线ax +by =0的距离|a ·a +b ·b |a 2+b 2=a 2+b 2.答案:a 2+b 214.(2021·福建高考)过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,假设线段AB 的长为8,那么p =________. 解析:由焦点弦|AB |=2p sin 2α得|AB |=2p sin 245°,∴2p =|AB |×12,∴p =2.答案:215.直线l 的方程为y =x +3,在l 上任取一点P ,假设过点P 且以双曲线12x 2-4y 2=3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为______________.解析:所求椭圆的焦点为F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P ,使|PF 1|+|PF 2|最小,利用对称性可解. 答案:x 25+y 24=116.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,假设AF =FB ,BA ·BC =48,那么抛物线的方程为______________.解析:设抛物线的准线与x 轴的交点为D ,依题意,F 为线段AB 的中点, 故|AF |=|AC |=2|FD |=2p , |AB |=2|AF |=2|AC |=4p , ∴∠ABC =30°,|BC |=23p ,BA ·BC =4p ·23p ·cos30°=48,解得p =2,∴抛物线的方程为y 2=4x . 答案:y 2=4x三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题总分值12分):圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,那么此圆的圆心为(0,4),半径为2.(1)假设直线l 与圆C 相切,那么有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,那么根据题意和圆的性质, 得⎩⎪⎨⎪⎧CD =|4+2a |a 2+1,CD 2+DA 2=AC 2=22,DA =12AB = 2.解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.18.(本小题总分值12分)过点P (2,4)作两条互相垂直的直线l 1、l 2,假设l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.解:法一:设点M 的坐标为(x ,y ), ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y ). ∵l 1⊥l 2,且l 1、l 2过点P (2,4), ∴PA ⊥PB ,k PA ·k PB =-1.而k PA =4-02-2x ,k PB =4-2y2-0,(x ≠1),∴21-x ·2-y 1=-1(x ≠1). 整理,得x +2y -5=0(x ≠1).∵当x =1时,A 、B 的坐标分别为(2,0),(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程x +2y -5=0.综上所述,点M 的轨迹方程是x +2y -5=0.法二:设M 的坐标为(x ,y),那么A 、B 两点的坐标分别是(2x,0),(0,2y),连结PM , ∵l 1⊥l 2,∴2|PM |=|AB |. 而|PM|22(2)(4)x y -+- |AB 22(2)(2)x y +, ∴2222(2)(4)44x y x y -+-=+化简,得x +2y -5=0即为所求的轨迹方程. 法三:设M 的坐标为(x ,y ),由l 1⊥l 2,BO ⊥OA ,知O 、A 、P 、B 四点共圆, ∴|MO |=|MP |,即点M 是线段OP 的垂直平分线上的点. ∵k OP =4020--=2,线段OP 的中点为(1,2), ∴y -2=-12(x -1), 即x +2y -5=0即为所求.19.(本小题总分值12分)(2021·南通模拟)动圆过定点F (0,2),且与定直线L :y =-2相切.(1)求动圆圆心的轨迹C 的方程;(2)假设AB 是轨迹C 的动弦,且AB 过F (0,2),分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ ⊥BQ .解:(1)依题意,圆心的轨迹是以F (0,2)为焦点,L :y =-2为准线的抛物线. 因为抛物线焦点到准线距离等于4, 所以圆心的轨迹是x 2=8y .(2)证明:因为直线AB 与x 轴不垂直, 设AB :y =kx +2.A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,可得x 2-8kx -16=0,x 1+x 2=8k ,x 1x 2=-16. 抛物线方程为y =18x 2,求导得y ′=14x .所以过抛物线上A 、B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1k 2=14x 1·14x 2=116x 1·x 2=-1.所以AQ ⊥BQ .20.[理](本小题总分值12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A ,B 两点,记O 为坐标原点.(1)求OA ·OB 的值;(2)设AF =λFB ,当△OAB 的面积S ∈[2, 5 ]时,求λ的取值范围. 解:(1)根据抛物线的方程可得焦点F (1,0), 设直线l 的方程为x =my +1,将其与C 的方程联立,消去x 可得y 2-4my -4=0. 设A ,B 点的坐标分别为(x 1,y 1),(x 2,y 2)(y 1>0>y 2), 那么y 1y 2=-4. 因为y 21=4x 1,y 22=4x 2, 所以x 1x 2=116y 21y 22=1,故OA ·OB =x 1x 2+y 1y 2=-3. (2)因为AF =λFB ,所以(1-x 1,-y 1)=λ(x 2-1,y 2),即⎩⎪⎨⎪⎧1-x 1=λx 2-λ, ①-y 1=λy 2, ②又y 21=4x 1, ③y 22=4x 2, ④由②③④消去y 1,y 2后,得到x 1=λ2x 2,将其代入①,注意到λ>0,解得x 2=1λ.从而可得y 2=-2λ,y 1=2λ,故△OAB 的面积S =12|OF |·|y 1-y 2|=λ+1λ,因λ+1λ≥2恒成立,所以只要解λ+1λ≤5即可,解之得3-52≤λ≤3+52.20.[文](本小题总分值12分)圆(x -2)2+(y -1)2=203,椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的离心率为22,假设圆与椭圆相交于A 、B ,且线段AB 是圆的直径,求椭圆的方程. 解:∵e =ca =a 2-b 2a 2=22,∴a 2=2b 2. 因此,所求椭圆的方程为x 2+2y 2=2b 2,又∵AB 为直径,(2,1)为圆心,即(2,1)是线段AB 的中点, 设A (2-m,1-n ),B (2+m,1+n ),那么⎩⎪⎨⎪⎧(2-m )2+2(1-n )2=2b 2,(2+m )2+2(1+n )2=2b 2,|AB |=2 203⇒⎩⎪⎨⎪⎧8+2m 2+4+4n 2=4b 2,8m +8n =0,2m 2+n 2=2203⇒⎩⎪⎨⎪⎧2b 2=6+m 2+2n 2,m 2=n 2=103,得2b 2=16.故所求椭圆的方程为x 2+2y 2=16.21.(本小题总分值12分)A 、B 、D 三点不在一条直线上,且A (-2,0),B (2,0),|AD |=2,AE =12(AB +AD ). (1)求E 点的轨迹方程;(2)过A 作直线交以A 、B 为焦点的椭圆于M ,N 两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆的方程.解:(1)设E (x ,y ),由AE =12(AB +AD ),可知E 为线段BD 的中点,又因为坐标原点O 为线段AB 的中点, 所以OE 是△ABD 的中位线, 所以|OE |=12|AD |=1,所以E 点在以O 为圆心,1为半径的圆上, 又因为A ,B ,D 三点不在一条直线上, 所以E 点不能在x 轴上,所以E 点的轨迹方程是x 2+y 2=1(y ≠0).(2)设M (x 1,y 1),N (x 2,y 2),中点为(x 0,y 0),椭圆的方程为x 2a 2+y 2a 2-4=1,直线MN 的方程为y=k (x +2)(当直线斜率不存在时不成立), 由于直线MN 与圆x 2+y 2=1(y ≠0)相切, 所以|2k |k 2+1=1,解得k =±33,所以直线MN 的方程为y =±33(x +2), 将直线y =±33(x +2)代入方程x 2a 2+y2a 2-4=1,整理可得:4(a 2-3)x 2+4a 2x +16a 2-3a 4=0,所以x 0=x 1+x 22=-a 22(a 2-3).又线段MN 的中点到y 轴的距离为45,即x 0=-a 22(a 2-3)=-45,解得a =2 2.故所求的椭圆方程为x 28+y 24=1.22.[理](本小题总分值14分)(2021·东北四市模拟)O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB |=8,动点P 满足AP =35PB ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM交曲线C 于另外一点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值.解:(1)设A (a,0),B (0,b ),P (x ,y ), 那么AP =(x -a ,y ),PB =(-x ,b -y ),∵AP =35PB ,∴⎩⎪⎨⎪⎧x -a =-35x ,y =35(b -y ).∴a =85x ,b =83y .又|AB |=a 2+b 2=8,∴x 225+y 29=1.∴曲线C 的方程为x 225+y 29=1.(2)由(1)可知,M (4,0)为椭圆x 225+y 29=1的右焦点,设直线PM 方程为x =my +4,由⎩⎪⎨⎪⎧x 225+y 29=1,x =my +4,消去x 得(9m 2+25)y 2+72my -81=0,∴|y P -y Q |=(72m )2+4×(9m 2+25)×819m 2+25 =90m 2+19m 2+25. ∴S △OPQ =12|OM ||y P -y Q |=2×90m 2+19m 2+25=20m 2+1m 2+259=20m 2+1m 2+1+169=20m 2+1+169m 2+1≤2083=152, 当m 2+1=169m 2+1, 即m =±73时,△OPQ 的面积取得最大值为152,此时直线方程为3x ±7y -12=0. [文](本小题总分值14分)设椭圆ax 2+by 2=1与直线x +y -1=0相交于A 、B 两点,点C 是AB 的中点,假设|AB |=22,OC 的斜率为22,求椭圆的方程. 解:设A (x 1,y 1),B (x 2,y 2),那么A 、B 的坐标是方程组⎩⎪⎨⎪⎧ax 2+by 2=1,x +y -1=0的解.由ax 21+by 21=1,ax 22+by 22=1,两式相减,得a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0, 因为y 1-y 2x 1-x 2=-1, 所以y 1+y 2x 1+x 2=a b, 即2y C 2x C =a b ,y C x C =a b =22,所以b =2a .① 再由方程组消去y 得(a +b )x 2-2bx +b -1=0, 由|AB |=(x 1-x 2)2+(y 1-y 2)2=2(x 1-x 2)2 =2[(x 1+x 2)2-4x 1x 2]=22,得(x 1+x 2)2-4x 1x 2=4,即(2b a +b )2-4·b -1a +b=4.② 由①②解得a =13,b =23, 故所求的椭圆的方程为x 23+2y 23=1.。

高考数学(新课标人教版)一轮总复习课件:第八章 平面解析几何2

高考数学(新课标人教版)一轮总复习课件:第八章 平面解析几何2
圆心 C1(-1,-1),半径 r1=2. ⊙C2:(x-2)2+(y-1)2=4,圆心 C2(2,1),半径 r2=2. ∴|C1C2|= 13,∴|r1-r2|=0<|C1C2|<r1+r2=4, ∴两圆相交,有两条公切线. [ 答案] B
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
说明:圆的弦长、弦心距的计算常用几何方法.
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
5.圆与圆的位置关系 ⊙O1、⊙O2半径分别为r1、r2,d=|O1O2|. 图形 相离 量的关系 d>r1+r2
外切
d=r1+r2
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
[ 解析]
①错误.当 t≠0 时,方程表示圆心为(-a,-b),
考点自主回扣
考向互动探究
考能感悟提升
课时作业
[基础自测]
1.直线x-y+1=0与圆(x+1)2+y2=1的位置关系是 ( ) A.相切 B.相交,且直线过圆心
C.直线不过圆心,但与圆相交
D.相离
[ 解析] 因为圆心(-1,0)满足直线方程 x-y+1=0,故直 线与圆相交,且过圆心,故选 B.
[ 答案] B
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
2.已知方程 x2+y2-2mx+2y=3m-5 表示圆,则实数 m 的取值范围为( 5 A.m>3 C.-4<m<1
[解析]

高考数学一轮复习第8章平面解析几何第2讲作业课件理

答案 B
12/11/2021
第十四页,共二十八页。
答案
解析 在所求直线上任取一点P(x,y),则点P关于点A对称的点 P′(x′,y′)必在直线l上.由xy′ ′+ +xy= =22, , 得P′(2-x,2-y),所以4(2-x) +3(2-y)-2=0,即4x+3y-12=0.
12/11/2021
2x+y+1=0, x+y-1=0,
得xy= =3-,2,
所以直线l恒过定点(-2,3).
(2)由(1)知直线l恒过定点A(-2,3),
当直线l垂直于直线PA时,点P到直线l的距离最大.
又直线PA的斜率kPA=43-+32=15,
所以直线l的斜率kl=-5.
12/11/2021
第二十五页,共二十八页。
12/11所/2021以1+2c=±2,解得c=2或-6.
第十二页,共二十八页。
答案 解析
10.以A(1,1),B(3,2),C(5,4)为顶点的△ABC,其边AB上的高所在的 直线方程是________.
答案 2x+y-14=0
解析
由A,B两点得kAB=
1 2
,则边AB上的高所在直线的斜率为-2,故
第一页,共二十八页。
答案 解析
2.若直线l1:(m-2)x-y-1=0与直线l2:3x-my=0互相平行,则m 的值等于( )
A.0或-1或3 B.0或3 C.0或-1 D.-1或3
答案 D
解析 当m=0时,两条直线方程分别化为-2x-y-1=0,3x=0,此时
两条直线不平行;当m≠0时,由于l1∥l2,则
A组 基础关
1.已知过点A(m+1,0),B(-5,m)的直线与过点C(-4,3),D(0,5)的直

【人教版】数学(理)一轮复习:第8章《平面解析几何》(第2节)ppt课件 (2)


②当 l 的斜率 k 存在时, 设 l:y+1=k(x-2),即 kx-y-2k-1=0. 由点到直线距离公式得|-12+k-k21|=2, ∴k=34,∴l:3x-4y-10=0. 故所求 l 的方程为 x=2 或 3x-4y-10=0.
(2)作图可得过 P 点与原点 O 距离最大的直线是过 P 点且与 PO 垂 直的直线,由 l⊥OP,得 k1kOP=-1, 所以 k1=-k1OP=2. 由直线方程的点斜式得 y+1=2(x-2),
5.(2014·临沂模拟)已知点 P(4,a)到直线 4x-3y-1=0 的距离不 大于 3,则 a 的取值范围是________. 解析 由题意得, 点到直线的距离为|4×4-53×a-1|=|15-5 3a|. 又|15-5 3a|≤3, 即|15-3a|≤15, 解得,0≤a≤10,所以 a∈[0,10]. 答案 [0,10]
[规律方法] 对称问题主要包括中心对称和轴对称 (1)中心对称 ①点 P(x,y)关于 O(a,b)的对称点 P′(x′,y′)满足yx′ ′==2b2-a-y. x, ②直线关于点的对称可转化为点关于点的对称问题来解决.
(2)轴对称 ①点 A(a,b)关于直线 Ax+By+C=0(B≠0)的对称点 A′(m,n), 则有mAn- ·-a+b2a×m+-BAB·b=+2 -n+1,C=0. ②直线关于直线的对称可转化为点关于直线的对称问题来解决.
直线系方程为 A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不
包括 l2.
[体验高考]
1.(2013·天津高考)已知过点 P(2,2)的直线与圆(x-1)2+y2=5 相
切,且与直线 ax-y+1=0 垂直,则 a=( )
A.-21

2021高中数学一轮复习课件第八章 平面解析几何第二节 两直线的位置关系


+10-6=0,t=-1.点(-1,1)又在直线5x-2y+n=0上,
所以-5-2+n=0,n=7.
答案:A
返回
2.已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满 足下列条件的a,b的值. (1)l1⊥l2,且l1过点(-3,-1); (2)l1∥l2,且坐标原点到这两条直线的距离相等.
解得-16<k<12.
返回
2.若P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一 点,则|PQ|的最小值为________. 解析:因为36=48≠-512,所以两直线平行, 将直线3x+4y-12=0化为6x+8y-24=0, 由题意可知|PQ|的最小值为这两条平行直线间的距离, 即|-6224+-852|=2190,所以|PQ|的最小值为2190. 答案:2190
解:(1)由已知可得l2的斜率存在, 且k2=1-a.若k2=0,则1-a=0,a=1. ∵l1⊥l2,直线l1的斜率k1必不存在,即b=0. 又∵l1过点(-3,-1),∴-3a+4=0,即a=43(矛盾), ∴此种情况不存在,∴k2≠0,即k1,k2都存在且不为0.
返回
∵k2=1-a,k1=ab,l1⊥l2,∴k1k2=-1,
所以3(2+λ)+4(3-3λ)=0,
所以λ=2,代入①式得所求直线方程为4x-3y+9=0.
[答案] (1)C (2)B (3)4x-3y+9=0
返回
[解题技法] 1.与两直线的位置关系有关的常见题目类型 (1)判断两直线的位置关系. (2)由两直线的位置关系求参数. (3)根据两直线的位置关系求直线方程.
有l1∥l2⇔ k1=k2 .
在判定两条直线平行或垂
②当直线l1,l2不重合且斜 直的情况时不要忽略了一

高考数学一轮复习 第八章 平面解析几何 第二节 两条直线的位置关系教案(含解析)-高三全册数学教案

第二节 两条直线的位置关系1.两条直线平行与垂直的判定(1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.(2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2.2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧ A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.三种距离公式 P 1(x 1,y 1),P 2(x 2,y 2)两点之间的距离 |P 1P 2|=x 2-x 12+y 2-y 12点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2平行线Ax +By +C 1=0与Ax +By +C 2=0间距离 d =|C 1-C 2|A 2+B 21.(2018·金华四校联考)直线2x +(m +1)y +4=0与直线mx+3y -2=0平行,则m =( )A .2B .-3C .2或-3D .-2或-3解析:选C ∵直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,∴2m =m +13≠4-2,解得m =2或-3. 2.“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直,得(a +1)(a -1)+3a (a +1)=0,即4a 2+3a -1=0,解得a =14或-1,∴“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直”的充分不必要条件,故选A.3.(2018·浙江五校联考)已知动点P 的坐标为(x,1-x ),x ∈R ,则动点P 的轨迹方程为________,它到原点距离的最小值为________.解析:设点P 的坐标为(x ,y ),则y =1-x ,即动点P 的轨迹方程为x +y -1=0.原点到直线x +y -1=0的距离为d =|0+0-1|1+1=22,即为所求原点到动点P 的轨迹的最小值.答案:x +y -1=0 221.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.(2018·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( )A .7B.172 C .14 D .17解析:选B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172. 考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.已知a ≠0,直线ax +(b +2)y +4=0与直线ax +(b -2)y -3=0互相垂直,则ab 的最大值为( )A .0B .2C .4 D.2解析:选B 若b =2,两直线方程分别为y =-a 4x -1和x =3a,此时两直线相交但不垂直.若b =-2,两直线方程分别为x =-4a和y =a 4x -34,此时两直线相交但不垂直.若b ≠±2,两直线方程分别为y =-a b +2x -4b +2和y =-a b -2x +3b -2,此时两直线的斜率分别为-a b +2,-a b -2,由-ab +2·⎝ ⎛⎭⎪⎫-a b -2=-1,得a 2+b 2=4.因为a 2+b 2=4≥2ab ,所以ab ≤2,且当a =b =2或a =b =-2时取等号,故ab 的最大值为2.2.(2018·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a+3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝ ⎛⎭⎪⎫2a +3b =13+6a b+6b a ≥13+2 6a b ·6b a=25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:253.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使(1)l 1与l 2相交于点P (m ,-1);(2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧ m 2-8+n =0,2m -m -1=0,解得m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧ m =4,n ≠-2或⎩⎪⎨⎪⎧ m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2.(3)当且仅当2m +8m =0,即m =0时,l 1⊥l 2.又-n8=-1,∴n=8.即m=0,n=8时,l1⊥l2,且l1在y轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等;(2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况.2.由一般式确定两直线位置关系的方法直线方程l1:A1x+B1y+C1=0(A21+B21≠0)l2:A2x+B2y+C2=0(A22+B22≠0)l1与l2垂直的充要条件A1A2+B1B2=0l1与l2平行的充分条件A1A2=B1B2≠C1C2(A2B2C2≠0)l1与l2相交的充分条件A1A2≠B1B2(A2B2≠0)l1与l2重合的充分条件A1A2=B1B2=C1C2(A2B2C2≠0)[提醒] 在判断两直线位置关系时,比例式A1A2与B1B2,C1C2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二距离问题重点保分型考点——师生共研[典例引领]1.(2018·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2 B.823C. 3D.833解析:选B 因为l 1∥l 2,所以1a -2=a 3≠62a,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪⎪⎪6-232=823. 2.直线3x +4y -3=0上一点P 与点Q(2,-2)的连线的最小值是________.解析:∵点Q 到直线的距离即为P ,Q 两点连线的最小值,∴|P Q|min =|3×2+4×-2-3|32+42=1. 答案:13.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.故所求直线l 的方程为x +3y -5=0或x =-1.法二:当AB ∥l 时,有k =k AB =-13, ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-1[由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便.[即时应用]1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P 点的坐标为________.解析:法一:设P (a,b ),则⎩⎪⎨⎪⎧ 2a -3b +6=0,a 2+b 2=a +12+b -12, 解得a =3,b =4.∴P 点的坐标为(3,4).法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧ 2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧ x =3,y =4,则P 点的坐标为(3,4).答案:(3,4)2.已知直线l :ax +y -1=0和点A (1,2),B (3,6).若点A ,B 到直线l 的距离相等,则实数a 的值为________.解析:法一:要使点A ,B 到直线l 的距离相等,则AB ∥l ,或A ,B 的中点(2,4)在直线l 上.所以-a =6-23-1=2或2a +4-1=0, 解得a =-2或-32. 法二:要使点A ,B 到直线l 的距离相等,则|a +1|a 2+1=|3a +5|a 2+1,解得a =-2或-32. 答案:-2或-32考点三 对称问题题点多变型考点——多角探明[锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.常见的命题角度有:(1)点关于点对称;(2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P(0,1)作直线l使它被直线l1:2x+y-8=0和l2:x -3y+10=0截得的线段被点P平分,则直线l的方程为________________.解析:设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,把B点坐标代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即点A(4,0)在直线l上,所以由两点式得直线l的方程为x+4y-4=0.答案:x+4y-4=02.已知直线l:2x-3y+1=0,点A(-1,-2),则直线l关于点A(-1,-2)对称的直线l′的方程为________.解析:法一:在l:2x-3y+1=0上任取两点,如M(1,1),N(4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.答案:2x -3y -9=0角度二:点关于线对称3.已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. 解:(1)设A ′(x ,y ),则⎩⎪⎨⎪⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧ x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎪⎨⎪⎧ 2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013. 设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧ 2x -3y +1=0,3x -2y -6=0.得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.角度三:线关于线对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( )A .x -2y +3=0B .x -2y -3=0C .x +2y +1=0D .x +2y -1=0解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧ x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧ x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法(1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧ x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.2.轴对称问题的2个类型及求解方法(1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧ A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧ y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧ x =4,y =-2,∴BC 所在直线的方程为y -1=-2-14-3(x -3),即3x +y -10=0. 同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),∴AC 所在直线的方程为y -2=3-2-1--4(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧ x =2,y =4,可得C (2,4).2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧ b -4a --3·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0. 又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1, 即6x -y -6=0.答案:6x -y -6=0 3.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A 关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l 于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称,∴⎩⎪⎨⎪⎧y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0, 解得⎩⎪⎨⎪⎧ x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5), ∴△ABC 周长的最小值为 ||A 1A 2=4-02+-5-72=410.一抓基础,多练小题做到眼疾手快1.(2018·浙江名校协作体联考)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧ a a -2=3×1,a ×1≠3×1,解得a =-1,故选C.2.(2018·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3) D.⎝ ⎛⎭⎪⎪⎫1,32 解析:选C 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎪⎨⎪⎧ x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).3.(2018·诸暨期初)已知点A (7,-4)关于直线l 的对称点为B (-5,6),则该对称直线l 的方程为( )A .6x +5y -1=0B .5x +6y +1=0C .5x -6y -1=0D .6x -5y -1=0解析:选D 由题可得,直线l 是线段AB 的垂直平分线.因为A (7,-4),B (-5,6),所以k AB =6+4-5-7=-56,所以k l =65.又因为A (7,-4),B (-5,6)的中点坐标为(1,1).所以直线l 的方程为y -1=65(x -1),即6x -5y -1=0. 4.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.因为|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]5.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________. 解析:依题意知,63=a -2≠c -1, 解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c 2=0, 又两平行直线之间的距离为21313, 所以⎪⎪⎪⎪⎪⎪c 2+132+-22=21313,解得c =2或-6. 答案:2或-6二保高考,全练题型做到高考达标1.(2018·舟山调研)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|M Q|2的值为( )A.102B.10 C .5 D .10 解析:选D 由题意知P (0,1),Q(-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴M 位于以P Q 为直径的圆上,∵|P Q|=9+1=10,∴|MP |2+|M Q|2=|P Q|2=10.2.(2018·慈溪模拟)曲线y =2x -x 3在x =-1处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A 由题可得,切点坐标为(-1,-1).y ′=2-3x 2,由导数的几何意义可知,该切线的斜率为k =2-3=-1,所以切线的方程为x +y +2=0.所以点P (3,2)到直线l 的距离为d =|3+2+2|12+12=722. 3.(2018·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|P Q|的最小值为( )A.95B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行, 由题意可知|P Q|的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|P Q|的最小值为2910. 4.(2018·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323解析:选A 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,则⎩⎪⎨⎪⎧ 3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧ m =35,n =315,故m +n=345. 5.(2018·钦州期中)已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线解析:选C 由直线l 的方程为f (x ,y )=0,知方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示与l 平行的直线,P 1(x 1,y 1)为直线l 上的点,则f (x 1,y 1)=0,f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0化为f (x ,y )-f (x 2,y 2)=0,显然P 2(x 2,y 2)满足方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0,所以f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示过点P 2且与l 平行的直线.故选C.6.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有⎩⎪⎨⎪⎧ y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧ x 1=0,y 1=3,所以A 1(0,3).同理设A 2(x 2,y 2),易求得A 2(-2,-1).所以BC 边所在直线方程为2x -y +3=0.答案:2x -y +3=07.(2018·余姚检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2, ∴k =2或k =-23. ∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案:2x -y -2=0或2x +3y -18=08.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB上,最后经直线OB 反射后又回到P 点,则光线所经过的路程为________.解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1与A 2两点间的距离.于是|A 1A 2|=4+22+2-02=210.答案:2109.(2018·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q(2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析:∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|P Q|=[2--1]2+-1-32=5,又l 1与l 2不重合,∴l 1,l 2之间距离的取值范围是(0,5].答案:(0,5]10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧ 2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧ 2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65, ∴直线BC 的方程为y -3=65(x -4), 即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知线段AB 的两个端点A (0,-3),B (3,0),且直线y =2λx +λ+2与线段AB 总相交,则实数λ的取值范围为________. 解析:如图所示,因为y =2λx +λ+2恒过定点C ⎝ ⎛⎭⎪⎫-12,2,连接AC ,CB ,所以直线AC 的斜率k AC=-10,直线BC 的斜率k BC =-47. 又直线y =2λx +λ+2与线段AB 总相交,所以k AC ≤2λ≤k BC ,所以λ的取值范围为⎣⎢⎡⎦⎥⎤-5,-27. 答案:⎣⎢⎡⎦⎥⎤-5,-27 2.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4).(1)证明直线l 过某定点,并求该定点的坐标.(2)当点P 到直线l 的距离最大时,求直线l 的方程. 解:(1)证明:直线l 的方程可化为a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧ 2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧ x =-2,y =3,所以直线l 恒过定点(-2,3).(2)由(1)知直线l 恒过定点A (-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大.又直线PA 的斜率k PA =4-33+2=15, 所以直线l 的斜率k l =-5.故直线l 的方程为y -3=-5(x +2),即5x +y +7=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[命题报告·教师用书独具]一、选择题1.(2013年滨州模拟)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得两直线的交点坐标为⎝ ⎛⎭⎪⎪⎫k k -1,2k -1k -1,因为0<k <12,所以kk -1<0,2k -1k -1>0,故交点在第二象限.答案:B2.(2013年茂名模拟)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13 C .-32D.23解析:设P (x P ,y P ),由题意及中点坐标公式,得x P +7=2,解得x P =-5,∴P(-5,1),∴直线l的斜率k=1-(-1)-5-1=-13.答案:B3.(2013年武汉模拟)已知点A(-3,-4),B(6,3)到直线l:ax+y+1=0的距离相等,则实数a的值为()A.79B.-13C.-79或-13 D.79或13解析:由题意及点到直线的距离公式得|-3a-4+1|a2+1=|6a+3+1|a2+1,解得a=-1 3或-79.答案:C4.(2013年广州模拟)直线x-2y+1=0关于直线x=1对称的直线方程是()A.x+2y-1=0 B.2x+y-1=0C.2x+y-3=0 D.x+2y-3=0解析:由题意得直线x-2y+1=0与直线x=1的交点坐标为(1,1).又直线x-2y+1=0上的点(-1,0)关于直线x=1的对称点为(3,0),所以由直线方程的两点式,得y-01-0=x-31-3,即x+2y-3=0.答案:D5.(2013年成都模拟)在直角坐标系中,A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后,再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.210 B.6C.3 3 D.2 5解析:如图,设点P关于直线AB,y轴的对称点分别为D,C,易求得D(4,2),C (-2,0),则△PMN 的周长=|PM |+|MN |+|PN |=|DM |+|MN |+|NC |.由对称性,D ,M ,N ,C 共线,∴|CD |即为所求,由两点间的距离公式得|CD |=40=210.答案:A 二、填空题6.若点(1,1)到直线x cos α+y sin α=2的距离为d ,则d 的最大值是________. 解析:依题意有d =|cos α+sin α-2| =⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫α+π4-2. 于是当sin ⎝ ⎛⎭⎪⎫α+π4=-1时,d 取得最大值2+ 2.答案:2+ 27.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c +2a 的值为________.解析:由题意得,36=-2a ≠-1c , ∴a =-4且c ≠-2, 则6x +ay +c =0可化为 3x -2y +c2=0, 由两平行线间的距离, 得21313=⎪⎪⎪⎪⎪⎪c 2+113,解得c =2或c =-6,所以c +2a =±1.答案:±18.(2013年安庆模拟)从点(2,3)射出的光线沿与直线x -2y =0平行的直线射到y 轴上,则经y 轴反射的光线所在的直线方程为________.解析:由题意得,射出的光线方程为y -3=12(x -2), 即x -2y +4=0,与y 轴交点为(0,2), 又(2,3)关于y 轴的对称点为(-2,3), ∴反射光线所在直线过(0,2),(-2,3). 故方程为y -2=3-2-2x ,即x +2y -4=0.答案:x +2y -4=09.(2013年绍兴模拟)已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k 值为________.解析:由题意知直线l 1,l 2恒过定点P (2,4),直线l 1的纵截距为4-k ,直线l 2的横截距为2k 2+2,所以四边形的面积S =12×2×(4-k )+12×4×(2k 2+2)=4k 2-k +8,故面积最小时,k =18.答案:18 三、解答题10.直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.解析:设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足⎩⎪⎨⎪⎧4x 0+y 0+3=0,3(-2-x 0)-5(4-y 0)-5=0,即⎩⎪⎨⎪⎧ 4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎪⎨⎪⎧x 0=-2,y 0=5, 因此直线l 的方程为y -25-2=x -(-1)-2-(-1),即3x +y +1=0.11.已知直线l 经过直线2x +y -5=0与x -2y =0的交点, (1)点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解析:(1)经过两已知直线交点的直线系方程为 (2x +y -5)+λ(x -2y )=0, 即(2+λ)x +(1-2λ)y -5=0, ∴|10+5λ-5|(2+λ)2+(1-2λ)2=3.解得λ=2或λ=12.∴l 的方程为x =2或4x -3y -5=0. (2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,得P (2,1).如图,过P 作任一直线l ,设d 为点A 到l 的距离,则d ≤|P A |(当l ⊥P A 时等号成立). ∴d max =|P A |=10.12.(能力提升)(1)在直线l :3x -y -1=0上求一点P ,使得P 到A (4,1)和B (0,4)的距离之差最大;(2)在直线l :3x -y -1=0上求一点Q ,使得Q 到A (4,1)和C (3,4)的距离之和最小.解析:(1)如图甲所示,设点B 关于l 的对称点为B ′,连接AB ′并延长交l 于P ,此时的P 满足|P A |-|PB |的值最大.设B ′的坐标为(a ,b ),则k BB ′·k l =-1, 即b -4a ·3=-1. ∴a +3b -12=0.①又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且中点在直线l 上, ∴3×a 2-b +42-1=0,即3a -b -6=0.②①②联立,解得a =3,b =3,∴B ′(3,3). 于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.解方程组⎩⎪⎨⎪⎧ 3x -y -1=0,2x +y -9=0.得⎩⎪⎨⎪⎧x =2,y =5,即l 与AB ′的交点坐标为P (2,5).(2)如图乙所示,设C 关于l 的对称点为C ′,连接AC ′交l 于点Q ,此时的Q 满足|QA |+|QC |的值最小.设C ′的坐标为(x ′,y ′),∴⎩⎪⎨⎪⎧y ′-4x ′-3·3=-1,3·x ′+32-y ′+42-1=0.解得⎩⎪⎨⎪⎧x ′=35,y ′=245.∴C ′⎝ ⎛⎭⎪⎫35,245.由两点式得直线AC ′的方程为 y -1245-1=x -435-4, 即19x +17y -93=0.解方程组⎩⎪⎨⎪⎧19x +17y -93=0,3x -y -1=0,得⎩⎪⎨⎪⎧x =117,y =267.∴所求点Q 的坐标为⎝ ⎛⎭⎪⎫117,267.[因材施教·学生备选练习]1.(2013年武汉调研)点P是曲线y=x2-ln x上任意一点,则点P到直线y =x+2的最短距离为()A.22 B. 2C.2 2 D.2解析:当点P为直线y=x+2平移到与曲线y=x2-ln x相切的切点时,点P 到直线y=x+2的距离最短.设点P(x0,y0),f(x)=x2-ln x,则f′(x0)=1.∵f′(x)=2x-1x,∴2x0-1x0=1.又x0>0,∴x0=1.∴点P的坐标为(1,1),此时点P到直线y=x+2的距离为22= 2.答案:B2.(2013年武汉模拟)已知A(-2,0),B(2,0),C(0,2),E(-1,0),F(1,0),一束光线从F点出发射到BC上的D点经BC反射后,再经AC反射,落到线段AE 上(不含端点),则直线FD斜率的取值范围为________.解析:从特殊位置考虑.∵点A(-2,0)关于直线BC:x+y=2的对称点为A1(2,4),∴kA1F=4.∵点E(-1,0)关于直线AC:y=x+2的对称点为E1(-2,1),点E1(-2,1)关于直线BC:x+y=2的对称点为E2(1,4),此时直线E2F的斜率不存在,∴kA1F<k FD,即k FD∈(4,+∞).答案:(4,+∞)。

相关文档
最新文档