福建省安溪第八中学2010届高考模拟试题(理科)
福建高考理科数学模拟试题二有答案

2010年福建省高考模拟试卷数学试题(理科)2010.4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),第Ⅱ卷第21题为选考题,其他题为必考题.本试卷共5页.满分150分,考试时间120分钟.命题人:吴育文作者简介:吴育文厦门外国语学校毕业生,现东北大学秦皇岛分校大一学生审核人:厦门市东山中学陈海峰推荐人:安溪县第八中学许晓进注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.做选考题时、考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑.5.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据x 1,x 2,…,x n 的标准差 其中x 为样本平均数; 柱体体积公式其中S 为底面面积,h 为高 锥体体积公式其中S 为底面面积,h 为高 球的表面积、体积公式24R S π= ,334R V π=其中R 为球的半径第I 卷(选择题 共50分)一、选择题:本大题有10小题,每小题5分,共50分.每小题都有四个选项中,只有一个选项是符合题目要求的. 1.已知命题p :x ∀∈R ,20x >,那么命题p ⌝为A .x ∃∈R ,20x <B .x ∀∈R ,20x <C .x ∃∈R ,20x ≤D .x ∀∈R ,20x ≤ 2.已知幂函数()y f x =的图象经过点(2,4),则()f x 的解析式为A .()2f x x =B .2()f x x =C .()2x f x =D .()2f x x =+ 3.右图是2010年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1,a 2,则一定有 A .a 1>a 2 B .a 2>a 1C .a 1=a 2D .a 1,a 2的大小与m4 不可能为....①长方形;②正方形;③圆;④椭圆. 的是A 5.在区间[-π,π]内随机取两个数分别记为a ,b 数22()2π=+-+f x x ax b 有零点的概率为A .78B .34C .12D .146.如图,A 、B 分别是射线OM ON ,上的两点,给出下列向量:①2OA OB +u u u r u u u r; ②1123OA OB +u u ur u u u r ;0795455184464793m 甲 乙③3143OA OB +u u ur u u u r ; ④3145OA OB +u u u r u u u r ; ⑤3145OA OB -u u ur u u u r . 这些向量中以O 为起点,终点在阴影区域内的是A .①②B .①④C .①③D .⑤7.若曲线C :22224540x y ax ay a ++-+-=上所有的点均在第二象限内,则a 的取值范围为 A .2-∞-(,) B .1-∞-(,) C .1+∞(,) D .2+∞(,) 8.如图,设平面EF b a =I ,a AB ⊥,a CD ⊥,垂足分别为B ,D ,且AB CD ≠. 如果增加一个条件就能推出EF BD ⊥,给出四个条件:①b AC ⊥ ;②EF AC ⊥;③AC 与BD 在b 内的正投影在同一条直线上 ;④AC 与BD 在平面b 内的正投影所在的直线交于一点. 那么这个条件不可能...是 A .①② B .②③ C .③ D .④9.定义:设K 是n 维空间中的一点集,若对任意两点K X K X ∈∈)2()1(,满足:)10(,)1()2()1(≤≤∈-+αααK X X ; 则称K 为凸集.则下列集合中凸集的个数为(a )实心球体;(b )圆环;(c )两个凸集的交集;(d )扇面;(e )线性规划问题的可行域.A .1个B .2个C .3个D .4个10.若点集22{(,)|1},{(,)|11,11}A x y x y B x y x y =+≤=-≤≤-≤≤,则点集 所表示的区域的面积分别为A .π;18π+B .π2;π218+C .π;18D .π2;18第Ⅱ卷(非选择题 共100分)二、填空题(本大题有4小题,每小题5分,共20分)B AD E F C11.复数1i1i 2++等于 . 12.定义运算符:○1“= =”为等于判断符,如 A= =B 用于判断A 与B 是否相等;○2“++A ”其中“++”称为前增运算符,S=++i+2等价于i=i+1;S=i+2;○3“%”称为取余运算符,A%B 表示A 除以B 所得余数;○4以上运算符运算顺序满足从左到右.如右图程序框图所示,该程序最后的输出结果为 .13.函数sin cos y x x =的最大值是 .14.现定义命题演算的合式公式(wff ),规定为:A .单个命题本身是一个合式公式;B .如果A 是合式公式,那么A ⌝是合式公式;C .如果A 和B 是合式公式,那么),(),(B A B A ∨∧)(),(B A B A ↔→都是合式公式;D .当且仅当能够有限次地运用A 、B 、C 所 得到的命题是合式公式. 说明:考生无需知道)(),(),(),(B A B A B A B A ↔→∨∧所表示的具体含义.下列公式是合式公式的是: .①)))()((P Q Q P →→→⌝ ②)(S R Q ∧→ ③)(T RS →第12题图④))((S R P →↔ ⑤))()(())(((R P Q P R Q P →→→→→→15.已知数列()1212:,,,0,3n n A a a a a a a n ≤<<<≥L L 具有性质P :对任意(),1i j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项. 现给出以下四个命题:①数列0,1,3具有性质P ; ②数列0,2,4,6具有性质P ;③若数列A 具有性质P ,则10a =;④若数列()123123,,0a a a a a a ≤<<具有性质P ,则1322a a a +=. 其中真命题有 .三、解答题(本大题有6小题,共74分) 16.(本题满分13分)在ΔABC 中,内角A ,B ,C 所对的边分别为a,b,c ,已知22)(b a c CB CA --=⋅. (1) 求C cos 的值;(2) 若A ∠是钝角,求sinB 的取值范围. 17.(本题满分13分)如图,PA ⊥平面ABC , AB ⊥BC .AD 垂直于PB于D ,AE 垂直于PC 于E .PA =2,AB =BC=1. (1)求证:PC ⊥平面ADE ;(2)求AB 与平面ADE 所成的角; (3)Q 为线段AC 上的点,试确定点Q 的位置, 使得BQ ∥平面ADE . 18.(本题满分13分)为考察某种要务预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:药物效果试验列联表设从没服用药的动物中任取两只,未患病数为ξ;从服用药物的动物中任取两只,未患病数为η。
福建省安溪第八中学2007-2008学年高三年统练试卷(二)数学理

福建省安溪第八中学2007-2008学年高三年统练试卷(二)数学(理科)试题 2007年10月14日一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设集合P={1,2,3,4,5,6},Q={R ∈≤≤x x x ,62|},那么下列结论正确的是( )A .P ∩QPB .P ∩QQC .Q Q P =D .P Q P =2.i i -+1)21(2等于( )A .i 2127+B .i 2127- C .i 2127+-D .i 2127--3.=+-→xx xx x 230lim ( )A .0B .21 C .1 D .-14.函数|log |)(21x x f =的单调递增区间是( ) A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞5.已知函数)1,0(log )(≠>=a a x x f a 的反函数是)(1x f -,且满足,1)2(01<<-f则函数)1(1+-x f 的图象大致是( )6.已知函数ax x y 42-=(1≤x ≤3)是单调递增函数,则实数a 的取值范围是( )A 、]1,(-∞B 、]21,(-∞C 、]23,21[ D 、),23[+∞7.对于定义在R 上的函数f(x),若实数x 0满足f(x 0)=x 0,则称x 0是函数f(x)的一个不动点,函数f(x)=6x —6x 2的不动点是( )A 、65或0 B 、65 C 、56或0 D 、56 8.在正方体1111ABCD A B C D -中,P 为棱11A B 上任意一点,则直线PC 与直线1AD 所成的角是( )A .6πB .4πC .3π D .2π 9.从5名学生中选出3人参加数学、物理、化学三科竞赛,每科只参赛1人,其中甲学生不能参加化学竞赛,则不同的参赛方案共有( ) A .24种 B .36种 C .48种 D .52种10.已知函数f (x )=x 3+ax 2,点P(-1,b )在曲线y =f (x ) 上,则以P 为切点且平行于直线3x +y =0的切线方程为( ) A .3x +y -1=0 B .3x +y +1=0C .3x -y +1=0D .3x +y -2=011.在矩形ABCD 中,AB=3,AD=2,沿BD 将△BCD 折起,使得点C 在平面ABD 上的射影恰好落在AD 边上,则二面角C —BD —A 的大小为( )A .6πB .3πC .43arcsinD .43arccos12.设奇函数)(x f 在[-1,1]上是增函数,且1)1(-=-f ,若函数12)(2+-≤at t x f 对所有的]1,1[-∈x ,]1,1[-∈a 都成立,则t 的取值范围是( )A.22≤≤-tB.2121≤≤-t C.022=-≤≥t t t 或或 D.02121=-≤≥t t t 或或 二、填空题:本大题共4小题,每小题4分,共16分.13.93)1(xx x +的展开式中常数项为 (用数字作答).14.已知35a b c ==,且112a b+=,则c 的值是 .15.已知函数1()x f x a-=的反函数的图象经过点(4,2),则1(2)f -的值是_________16.对一切实数x ,不等式2||10x a x ++≥恒成立,则实数a 的取值范围是 。
福建高考理科数学模拟题二有

福建高考理科数学模拟题二有2010 年福建省高考模拟试卷数学试题(理科)本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷( 非选择题 ), 第Ⅱ卷第 21 题为选考题,其余题为必考题.本试卷共 5 页.满分 150 分,考试时间 120 分钟.命题人:吴育文作者简介:吴育文厦门外国语学校毕业生,现东北大学秦皇岛分校大一学生审查人:厦门市东山中学陈海峰介绍人:安溪县第八中学许晓进注意事项:1.答题前 , 考生先将自己的姓名、准考据号填写在答题卡上.2.考生作答时 , 将答案答在答题卡上 . 请依据题号在各题的答题地区 ( 黑色线框)内作答,高出答题地区书写的答案无效 . 在底稿纸、试题卷上答题无效.3.选择题答案使用 2B 铅笔填涂 , 如需变动 , 用橡皮擦洁净后 , 再选涂其余答案标号 ; 非选择题答案使用 0.5 毫米的黑色中性 ( 署名 ) 笔或碳素笔书写 , 字体工整、字迹清楚.4.做选考题时、考生依据题目要求作答 , 并用 2B 铅笔在答题卡上把所选题目对应的题号涂黑.5.保持答题卡卡面洁净 , 不折叠、不损坏 . 考试结束后 , 将本试卷和答题卡一并交回 .参照公式:本数据x 1 , x 2x n的 准差此中 S 底面面 , h高, ⋯,此中 x 本均匀数 ;球的表面 、体 公式S 4R 2,V4 R 3柱体体 公式3此中 S 底面面 , h 高此中 R 球的半径体体 公式第 I 卷(选择题共 50分)一、 :本大 有 10 小 ,每小5 分,共 50 分 . 每小 都有四个中,只有一个 是切合 目要求的 .1.已知命 p : xR , 2x 0,那么命pA . x R , 2x 0 B. x R , 2x 0 C . x R , 2xD. x R , 2x 0 2.已知 函数 yf ( x) 的 象 点 ( 2,4) , f ( x) 的分析式A . f ( x) 2xB . f ( x) x 2C . f ( x) 2xD . f (x)x 23.右 是 2010 年轻年歌手大 中,七位 委 甲、甲乙乙两名m 数字 ~中0 7 9手打出的分数的茎叶 (此中0 9 54551844647 的一个),去掉一个最高分和一个最低分后,甲、乙两名 手m 9 3 得分的均匀数分 a 1 ,a 2, 必定有A . a 1 a 2 . a 2 a 1> B > . a 1 a 2 D . a 1, a 2 的大小与 m 的 相关C =4.一个 几何体的正 、 如 所示, 其俯3 2 不行能 ① 方形;②正方形;③ ;④ . 此中正确.... 22 的是A .①②B .②③C .③④D .①④ 正视图 侧视图π π a ,b , 使得函5.在区 [ - , ] 内随机取两个数分数 f ( x) x 2 2ax b 2 π 有零点的概率A .7B.3C.1D.184246.如 , A 、 B 分 是射 OM ,ON 上的两点, 出以下向量:uuur uuur②1 uuur1 uuur① OA2OB ;OAOB ;2 3MAOBN③3 uuur1 uuurOA OB ;43uuur uuur uuuruuur④3OA1OB ;⑤3OA1OB .4545这些向量中以 O 为起点,终点在暗影地区内的是A.①②B.①④C.①③D.⑤7.若曲线C:x2y22ax4ay 取值范围为A.(,2) B .(,8.如图,设平面 a b EF ,AB假如增添一个条件就能推出5a240 上全部的点均在第二象限内,则1)C.( 1,) D .(2,)a ,CD a ,垂足分别为 B ,D ,且 ABBD EF ,给出四个条件:①ACa的CD .b;② AC EF;③ AC与上;④ AC与线交于一点 .A.①②C.③9.定义 : 设意两点BD 在b内的正投影在同一条直线BD 在平面b内的正投影所在的直C那么这个条件不行能是F...B.②③D.④DK 是 n 维空间中的一点集 , 若对任EABX (1)K, X(2)K 知足:X (1)(1 )X (2)K, (01);则称 K 为凸集 . 则以下会合中凸集的个数为( a) 实心球体 ;( b) 圆环 ;( c) 两个凸集的交集 ;( d) 扇面 ;( e) 线性规划问题的可行域 .A.1 个 B .2个C.3 个D.4个10.若点集A {( x, y) | x2y21}, B{( x, y) | 1x 1, 1y 1} ,则点集所表示的地区的面积分别为A.;18B. 2 ;182C.;18D. 2 ;18第Ⅱ卷(非选择题共 100 分)二、填空题(本大题有 4 小题,每题 5 分,共 20 分)11.复数1+ i等于.1+ i212.定义运算符:○1 “= =”为等于判断符,如A= =B 用于判断 A 与 B 能否相等;○2 “++A”此中“++”称为前增运算符,S=++i+2等价于 i=i+1 ;S=i+2;○3 “%”称为取余运算符,A%B表示 A除以B所得余数;○4 以上运算符运算次序知足从左到右.如右图程序框图所示,该程序最后的输出结果为.13 .函数y = sin x cos x的最大值是.14.现定义命题演算的合式公式( wff ), 规定为:A.单个命题自己是一个合式公式;B.假如 A 是合式公式 , 那么A是合式公式;C.假如 A 和 B 是合式公式 , 那么( A B), (A B), (A B), (A B)都是合式公式;D.当且仅当能够有限次地运用 A、B、C所获得的命题是合式公式 .说明 : 考生无需知道( A B), (A B),( A B), ( A B) 所表示的详细含义.以下公式是合式公式的是:.①(( P Q) (Q P)))②(Q R S)第 12题图③ (RS T)④ (P (R S))⑤ ((P(Q R)) ((P Q) (P R))15.已知数列 A : a1, a2,L , a n0 a1a2L a n , n 3 拥有性质P:对随意 i , j 1 i j n ,a j a i与 a j a i两数中起码有一个是该数列中的一项.现给出以下四个命题:①数列 0,1, 3 拥有性质P;②数列 0, 2, 4, 6 拥有性质P;③若数列 A 拥有性质 P ,则a1④若数列 a1 ,a2 ,a30 a1a2a3此中真命题有.三、解答题(本大题有 6 小题,共16.(此题满分 13 分)0;拥有性质 P ,则a1a32a2. 74分)在ABC中,内角 A,B,C所对的边分别为a,b,c ,已知CA CB c 2(a b) 2.(1)求 cosC 的值;(2)若 A 是钝角,求sinB的取值范围.17.(此题满分 13 分)如图, PA平面ABC,AB BC.AD 垂直于PBP E于 D,AE垂直于 PC于 E.PA=2 ,AB=BC=1.(1)求证: PC平面ADE;(2)求AB与平面ADE所成的角;(3)Q为线段AC上的点,试确立点使得 BQ∥平面 ADE.18.(此题满分 13 分)为观察某种要务预防疾病的成效,进行动物试验,获得以下丢掉数据的列联表:药物成效试验列联表设从没服用药的动物中任取两只,未患病数为;从服用药物的动物中任取两只,未生病数为。
2010年普通高等学校招生全国统一考试数学理科试题(福建卷)精校版-推荐下载

2
2
【答案】A
【解析】原式= sin (43 -13 )= sin 30 = 1 ,故选 A。 2
【命题意图】本题考查三角函数中两角差的正弦公式以及特殊角的三角函数,考查基础知 识,属保分题。
2.以抛物线 y2 4x 的焦点为圆心,且过坐标原点的圆的方程为(
A. x2 +y2 +2x=0 B. x2 +y2 +x=0
6)2
36
,所以当
n
6
)
时,
Sn
取最小值。
当 x 0 时,令 2 ln x 0 解得 x 100 ,所以已知函数有两个零点,选 C。
【命题意图】本题考查分段函数零点的求法,考查了分类讨论的数学思想。
5.阅读右图所示的程序框图,运行相应的程序,输出的 i 值等于( )
A.2
【答案】C
【命题意图】本题属新课标新增内容,考查认识程序框图的基本能力。
6.如图,若 是长方体 ABCD-A1B1C1D1 被平面 EFGH 截去几何体
EFGHB1C1 后得到的几何体,其中 E 为线段 A1B1 上异于 B1 的点,F 为线段
BB1 上异于 B1 的点,且 EH ∥ A1D1 ,则下列结论中不正确的是(
2010 年高考福建数学试题(理科解析)
第 I 卷(选择题 共 60 分)
一、选择题:本大题共 12 小题。每小题 5 分,共 60 分,在每小题给出的四个选项中,只 有一项是符合题目要求的。
1. 计算si n43 cos13 - si n13 cos 43 的值等于( )
A.
1
2
B.
3
3
C.
福建省安溪八中2010届高三上学期质量检测(数学理)

福建省安溪八中2010届高三上学期质量检测数学(理科)试题(2010.01.10)命题人:许晓进 审题人:金 中考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共21道题。
满分值:150分,考试时间:120分钟。
考生只交第Ⅰ卷答题卡和第Ⅱ卷.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}|1,|21x M x x N x =<=>,则MN =( )A .∅B .{}|0x x <C .{}|1x x <D .{}|01x x << 2.在ABC ∆中,角A ,B 所对的边长为,a b ,则“a b =”是“cos cos a A b B =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 3.右图是一算法的程序框图,若此程序运行结果为720S =, 则在判断框中应填入关于k 的判断条件是( ) A .6?k ≥ B .7?k ≥ C .8?k ≥ D .9?k ≥4.在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么z y x ++的值为 ( ) A. 1 B. 2 C. 3 D. 45.对于平面α和共面..的直线m 、n ,下列命题中真命题是( ) A .若m ⊥α,m ⊥n ,则n ∥α B .若m ∥α,n ∥α,则m ∥n C .若m ⊂α,n ∥α,则m ∥n D .若m 、n 与α所成的角相等,则n ∥m6.要得到函数⎪⎭⎫ ⎝⎛π-=42cos x y 的图象,只要将函数x y 2sin =的图象( )A .向左平移8π个单位 B .向右平移8π个单位 C .向左平移4π个单位 D .向右平移4π个单位7.设],[b a X =,],[d c Y =都是闭区间,则“直积”},|),{(Y y X x y x Y X ∈∈=⨯表示直角坐标平面上的( )A .一条线段B .两条线段C .四条线段D .包含内部及边界的矩形区域8.设4443342241404)(x C x C x C x C C x f +-+-=,则导函数)('x f 等于( ) A .3)1(4x - B .3)1(4x +- C .3)1(4x + D .3)1(4x -- 9.已知函数①2()f x x =;②()ln f x x =;③cos ()x f x e =;④()x f x e =.其中对于()f x 定义域内的任意一个自变量1x 都存在唯一....的一个自变量2x ,使12()()f x f x ⋅=1成立的函数是( ) A .③④ B .②④ C.①② D .④10.若对可导函数()f x ,(),g x 当[0,1]x ∈时恒有()()()()f x g x f x g x ''⋅<⋅,若已知,αβ 是一锐角三角形的两个内角,且αβ≠,记()()(()0),()f x F xg x g x =≠则下列不等式正确的是( )A .(sin )(cos )F F αβ<B .(sin )(sin )F F αβ>C .(cos )(cos )F F αβ>D .(cos )(cos )F F αβ< 二、填空题:本大共5小题,每小题4分,满分20分。
福建省安溪八中2010届高三3月质量检测(2)(数学理)

福建省安溪八中2010届高三3月质量检测(2)数学(理科)试题命题人:福建省安溪第八中学 许晓进考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共21道题。
满分值:150分,考试时间:120分钟。
考生只交第Ⅰ卷答题卡和第Ⅱ卷. 临界值表第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数()3i 1i - 的共轭复数....是( ) A .3i -+ B .3i -- C .3i + D .3i -2.在2009年全运会女子百米冠军王静传出兴奋剂事件后,许多网民表达了自己的意见,有的网友进行了调查,在参加调查的4258名男性公民中有2360名认为其服用了兴奋剂,3890名女性公民中有2386人认为遭人陷害,在运用这些数据说明王静兴奋剂事件是否遭人陷害时用什么方法最有说服力?( )A .平均数与方差B .回归分析C .独立性检验D .概率3.在圆x y x 522=+内,过点)23,25(有n 条弦的长度成等差数列,最短弦长为数列的首项1a ,最长弦长为n a ,若公差]31,61(∈d ,那么n 的取值集合为( )A .}6,5,4{B .}9,8,7,6{C .}5,4,3{D .}6,5,4,3{4.已知两个不同的平面α、β和两条不重合的直线,m 、n ,有下列四个命题: ①若α⊥m n m ,//,则α⊥n②若βαβα//,,则⊥⊥m m ;③若βαβα⊥⊂⊥则,,//,n n m m ; ④若n m n m //,,,//则=βαα 其中不正确的命题的个数是( ) A .0个 B .1个 C .2个 D .3个5.右图是一个空间几何体的三视图,根据图中尺寸 (单位:cm ),可知几何体的表面积是( )A .18+B .16+C .17+D .18+6.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80 mg/100ml (不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80mg/100ml (含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.据《法制晚报》报道,2009年8月15日至月28日,全国查处酒后驾车和醉酒驾车共 28800人,如图1是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为A .2160B .2880C .4320D .86407.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆,中间有边长为1cm 的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是 ( )A .49π B .π49 C .94πD .π948.在ABC △中,点P 在BC 上,且2BP PC =,点Q 是AC 的中点,若()4,3PA =,()1,5PQ =,则BC =A .()2,7-B .()6,21-C .()2,7-D .()6,21-9.在113)23(x x -的展开式中任取一项,则所取项为有理项的概率为α,则=⎰-11αx ( )A .61 B .712 C .98 D .51210.如图2所示的三角形数阵叫“莱布尼兹调和三角形”, 它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n()2n ≥,每个数是它下一行左右相邻两数 的和,如111122=+,111236=+,1113412=+,…,则第10行第4个数(从左往右数)为A .11260B .1840C .1504D .1360图2 第Ⅱ卷(非选择题 共100分)二、填空题:本大共5小题,每小题4分,满分20分。
福建省2010-2011学年高考模拟预测试卷(1)(理综)
福建省2010-2011学年高考模拟预测试卷(1)理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷.第Ⅰ卷均为必考题,第Ⅱ卷包括必考和选考两个部分。
相对原子质量(原子量):H 1 C 12 O 16 Na 23 N 14 Cl 35.5Ca 40第I卷(必考)本卷共18小题,每小题6分,共108分。
一、选择题(本题共12小题.在每小题给出的四个选项中,只有一个选项符合题目要求.)1.2011年3月10日云南盈江县发生5.8级地震,对被埋在废墟中的人来说,水是维持生命的最基本条件。
以下有关水的说法错误的是A.饮水不足、体内缺水时,则体内抗利尿激素分泌增多B.当人体缺水时,血浆的渗透压会降低,从而产生渴觉C.代谢旺盛时,结合水与自由水的比值降低D.核糖体中进行的化学反应有水生成2。
某同学在培养皿底部铺上棉花并加入适量的清水,然后把豌豆种子放在棉花上.实验过程与结果如下表,由表可得出装置场所温度棉花状态数日后的现象甲日光23℃潮湿全部发芽乙日光23℃干燥没有发芽丙黑暗23℃潮湿全部发芽丁黑暗23℃干燥没有发芽A.该实验研究的目的是:探究光照、温度和水分对种子萌发的影响B.该实验的自变量为光照、温度和水分,因变量为种子是否萌发C.该实验选用大小相同的豌豆作为实验材料属于无关变量的控制D.该实验的结论是:种子萌发只与光照和水分有关3.某同学虽然接受过B型肝炎疫苗注射,但是体内抗B型肝炎病毒的抗体数量却很低。
检测该同学体内的白细胞包括淋巴细胞,数目皆正常,那么可能的原因是A.T淋巴细胞表面没有抗体B.B型肝炎疫苗导致B型肝炎病毒大量繁殖C.B淋巴细胞表面没有抗体D.B淋巴细胞受抗原刺激后,无法正常发育4。
如右图所示,为了鉴定男孩8与本家庭的亲子关系,需采用特殊的鉴定方案,下列方案可行的是A.比较8与2的线粒体DNA序列B.比较8与3的线粒体DNA序列C.比较8与2的X染色体DNA序列D.比较8与5的Y染色体DNA序列5.下列关于突变与进化的关系,说法正确的是A.突变使狼和鹿产生不定向变异,自然选择使它们向奔跑速度快的方向进化B.有利的突变太少,不足作为生物进化的原始材料C.突变是可遗传变异,都会遗传给下一代D.物种的形成过程也就是种群基因频率发生定向改变的过程6.三聚氰胺结构如右图,为纯白色单斜棱晶体,无味,密度为1.573g/cm3 (16℃).溶于热水,微溶于冷水。
2010年福建省高考模拟试卷数学试题(一)(理科)(已整理)
2010年福建省高考模拟试卷数学试题(一)(理科)一、选择题:本大题有10小题,每小题5分,共50分.每小题都有四个选项中,只有一个选项是符合题目要求的.1.设a ∈R ,若2i i a -()(i 为虚数单位)为正实数,则a =( )A .2B .1C .0D .1-2.已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙: 直线EF 和GH 不相交,则甲是乙成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.曲线sin y x =,cos y x =与直线0x =,2x π=所围成的平面区域的面积为( )A .2(sin cos )x x dx π-⎰B .402(sin cos )x x dx π-⎰C .20(cos sin )x x dx π-⎰D .402(cos sin )x x dx π-⎰4.下列向量中与向量)3,2(-=平行的是( ) A .(-4,6) B .(4,6) C .(-3,2) D .(3,2) 5.函数)1lg()(2x x x f +=是( )A .奇函数B .既是奇函数又是偶函数C .偶函数D .既不是奇函数也不是偶函数 6.设函数)(x f y =在区间),0(+∞内是减函数,则)6(sinπf a =,)4(sinπf b =,)3(sin πf c =的大小关系是( )A .a b c >>B .a c b >>C .c a b >>D .c b a >> 7.设n S 为等差数列{n a }的前n 项和,且1073=+a a ,则=9S ( ) A .45 B .50 C .55 D .908.统计某校1000名学生的数学水平测试成绩,得到样本频率分布直方图如图所示,若满分为40 50 60 70 80 90 100100分,规定不低于60分为及格,则及格率是( )A .20%B .25%C .6%D .80%9.将函数x y sin =的图像按向量)1,1(=平移得到的图像对应的一个函数解析式是( ) A .)1sin(1++-=x y B .)1sin(1++=x y C .)1sin(1-+-=x y D .)1sin(1-+=x y10.设1a ,2a ,…,n a 是1,2,…,n 的一个排列,把排在i a 的左边..且比i a 小.的数的个数称为i a 的顺序数(12i n =,,,).如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0.则在1至8这八个数字构成的全排列中,同时满足8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为( ) A .48 B .96 C .144 D .192 二、填空题(本大题有4小题,每小题5分,共20分)11.命题“x R ∀∈,sin 1x ≥-”的否定是 。
2010年高考试题理综(福建卷)含答案
2010年高校招生全国统一考试理综(福建卷)理科综合能力测试试题相对原子质量:H1 C12 N14 O16 S32 Fe56 Zn65 Ba137第Ⅰ卷(选择题共108分)本卷共18小题,每小题6分,共108分。
在每小题给出的4个选项中,只有一个选项符合题目要求。
6、下列关于有机物的正确说法是A.聚乙烯可发生加成反应B.石油干馏可得到汽油、煤油等C.淀粉、蛋白质完全水解的产物互为同分异构体D.乙酸乙酯、油脂与NaOH溶液反应均有醇生成7、表示阿伏加德罗常数,下列判断正确的是A.在18182Og中含有AN个氧原子B.标准状况下,22.4L空气含有AN个单质分子C.1 mol2C l参加反应转移电子数一定为2AND.含AN个N a+的2N a O溶解于1L水中,N a+的物质的量浓度为1 mol·1L-8、下列有关化学研究的正确说法是A.同时改变两个变量来研究反应速率的变化,能更快得出有关规律B.对于同一个化学反应,无论是一步完成还是分几步完成,其反应的焓变相同C.依据丁达尔现象可将分散素分为溶液、胶体与浊液D.从HF、HCl、HBr、Hl酸性递增的事实,推出F、Cl、Br、l的非金属性递增的规律9、下列各组物质中,满足下图物质一步转化关系的选项是10、下列关于电解质溶解的正确判断是A.在pH=12的溶液中,-3HCO NaK Cl+-+、、、可以常量共存B.在pH=0的溶液中,Na+、-3NO、2-3SO、K+可以常量共存C.由0.1 mol·1L-一元碱BOH溶液的pH=10,可推知BOH溶液存在BOH =B++OH-D.由0.1 mol·1L-一元酸HA溶液的pH=3,可推知N a A 溶液存在AN11、铅蓄电池的工作原理为:研读右图,下列判断不正确的是A.K闭合时,d电极反应式:B.当电路中转移0.2 mol电子时,Ⅰ中消耗的24H SO为0.2molC.K闭合时,Ⅱ中2-4SO向c电极迁移D.K闭合一段时间后,Ⅱ可单独作为原电池,d电极为正极12、化合物Bilirubin在一定波长的光照射下发生分解反应,反应物浓度随反应时间变化如右图所示,计算反应4~8min间的平均反应速率和推测反应16min时反应物的浓度,结果应是第Ⅱ卷(非选择题共192分)必考部分23.(15分)J、L、M、R、T是原子序数依次增大的短周期主族元素,J、R在周期表中的相对位置如右表;J元素最低负化合价的绝对值与其原子最外层电子数相等;M是地壳中含量最多的金属元素。
2010届高三数学高考模拟试题理科卷(01)
2010届高考模拟试题数学理科卷(01)本试卷满分150分,考试时间120分钟一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个备选项中,只有一项是符合题目要求的。
1. 设全集U=R,集合M={x|x≤1或x≥3},集合P={}R ,1|∈+<<k k x k x ,且UM P ≠∅,则实数k 的取值X 围是()A. 0<k <3B. k≤0 或k≥3C. k<3D. k>0 2. 设a ∈R ,且(a+i )2i 为正实数,则a=() A. 1 B. 0 C. -1 D. 0或-1 3.“1=a ”是“函数ax x f -=)(在区间[)1,+∞上为增函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 已知等差数列{n a }的前n 项和为n S ,若4518a a =-,则8S =() A. 68 B. 72 C. 54 D. 905.定义在R 上的函数)(x f ,如果存在函数为常数)b k b kx x g ,()(+=,使得)(x f ≥)(x g 对一切实数x 都成立,则称)(x g 为函数)(x f 的一个承托函数.现有如下命题: ①对给定的函数)(x f ,其承托函数可能不存在,也可能有无数个;②()2g x x =为函数()2xf x =的一个承托函数;③定义域和值域都是R 的函数)(x f 不存在承托函数. 其中正确命题的序号是()(A )①(B )②(C )①③(D )②③6. 设22)1(,3005,y x x y x y x y x ++⎪⎩⎪⎨⎧≤≥+≥+-则满足约束条件的最大值为( )A. 80B.C. 25D.1727. 某同学做了10道选择题,每道题四个选择项中有且只有一项是正确的,他每道题都随意地从中选了一个答案.记该同学至少答对9道题的概率为p ,则p 为()A .109414341⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛ B .1010109109414341C C ⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛C .104130⎪⎭⎫⎝⎛⨯ D .104131⎪⎭⎫⎝⎛⨯ 8. 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是()二、填空题(本答题共6小题,每小题5分,共30分) (一)必做题(9~12题)9、若框图所给的程序运行的结果为S=90,那么判断框中应填入的关于k 的判断条件是_________.10、在四边形ABCD 中,AB =DC =(1,1),高考资源网113BA BC BDBABCBD+=,则四边形ABCD 的面积是____.11、已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 1 ,负的概率为 ,客场胜、平、负是等可能 的。假定各场比赛相互之间不 3 12
受影响。在前三轮中求: (Ⅰ)山东鲁能两胜一平的概率; (Ⅱ)山东鲁能积分的数学期望。
第 - 5 - 页 共 14 页
(18)(本小题满分 13 分) 直 四 棱 柱 ABCD − A1 B1C1 D1 中 , 底 面 ABCD 为 菱 形 , 且
⎡2 ⎣1
0⎤ ,求矩阵 M 的特征值及其相应的特征向量. 1⎥ ⎦
选修 4—4:坐标系与参数方程
π ( ρ ∈ R ) ,以极点为原点,极轴为 x 轴的正 3 ⎧ x = 2 cos α , 半轴建立平面直角坐标系,曲线 C 的参数方程为 ⎨ ( α 为参数) ,求直线 l 与曲 ⎩ y = 1 + cos 2α 线 C 的交点 P 的直角坐标.
(5)已知直线 l , m, 平面 α、β , 且 l ⊥ α , m ⊂ β , 给出下列四个命题: ①若 α //β , 则 l ⊥ m; ②若 l ⊥ m, 则 α //β ; ③若 α ⊥ β , 则 l //m; ④若 l //m, 则 α ⊥ β ; 其中真命题是 (A)①②
(B)①③
(C)①④
第 - 2 - 页 共 14 页
(D)②④
(6)设 a 为函数 y = sin x + 3 cos x ( x ∈ R ) 的最大值,则二项式 ( a x −
1 6 ) 的展开式中含 x
x 2 项的系数是
(A)192 (B)182 (C)-192 (D)-182 (7)某器物的三视图如图所示,根据图中数据可知该器物的表 面积为 (A) 4π (B) 5π (C) 8π (D) 9π (8)数列 {an } 中, a3 = 2, a5 = 1, 如果数列 {
2
π 。 2 (Ⅰ)求 m 的值;
(Ⅱ)若点 A( x0 , y0 ) 是 y = f ( x ) 图象的对称中心,且 x0 ∈ [0,
π ] ,求点 A 的坐标。 2
第 - 4 - 页 共 14 页
(17)(本小题满分 13 分) 2010 年亚冠联赛,山东鲁能、广岛三箭、阿德莱德联、浦项制铁分在同一组进行循环赛, 已知规则为每轮胜得 3 分,平得 1 分,负得 0 分。第一轮在 2 月 24 日的比赛中,山东鲁能客 场 l:0 战胜广岛三箭;第二轮主场对阵阿德莱德联;第三轮客场对阵浦项制铁。若山东鲁能 主场胜的概率为
第 - 6 - 页 共 14 页
(19) (本小题满分 13 分) 已知抛物线 C1 的方程是 y = ax 2 (a > 0), 圆 C2 的方程是
x 2 + ( y + 1)2 = 5, 直线 l : y = 2 x + m( m < 0) 是 C1 , C2 的公切
线, F 是 C1 的焦点. (Ⅰ)求 m 与 a 的值; (Ⅱ)设 A 是抛物线 C1 上的一动点,以 A 为切点作 C1 的 切线交 y 轴于点 B ,若 FM = FA + FB ,则点 M 在一定直线上,试证明之。
(A) [
3 2 , ] 3 2
(B) [ ,
2 3
2 ] 2
(C) [
3 3 ,, ] 3 2
第Ⅱ卷(共 100 分)
注意事项: 第Ⅱ卷共 2 页。考生必须使用 0.5 毫米黑色签字笔在指定答题区域内作答,填空题请直 接填写答案,解答题应写出文字说明、证明过程或演算步骤。 二、填空题:本大题共 5 小题,每小题 4 分,共 20 分。 (11)按如图所示的程序框图运行程序后,输出的结果是 63,则判断 框中的整数 H 的值是 。
2
2 对应的点所在象限是 1+ i
(B)二 (C)三
2 0
(D)四
∫
2
0
xdx, b = ∫ e x dx, c = ∫ sin xdx, 则 a、b、c 大小关系是
0
2
(A) a < c < b (B) a < b < c (C) c < b < a (D) c < a < b (3)某校园有一椭圆型花坛,分成如图四块种花,现有 4 种不同颜色的花 可供选择,要求每块地只能种一种颜色,且有公共边界的两块不能种 同一种颜色,则不同的种植方法共有 (A)48 种 (B)36 种 (C)30 种 (D)24 种 (4)某企业三月中旬生产 A、B、C 三种产品共 3000 件,根据分层抽样的结 果,企业统计员制作 了如下的统计表格。由于不小心,表格中 A、C 产 品的有关数据己被污染看不清楚,统计员记得 A 产品的样本容量比 C 产品的样本容量多 10 件,根据以上信息,可得 C 产品的数量是 产品类别 产品数量(件) 样本容量(件) (A)900 件 (B)800 件 (C)90 件 A B 1300 1300 (D)80 件 C
主场胜,第三轮客场平:或第二轮主场平,第三轮客场胜,
2 1 1 1 2 1 11 × + × = + = …………………………………………………5 分 3 3 4 3 9 12 36 11 所以山东鲁能两胜一平的概率为 …………………………………………………………6 分 36
从而 P ( A) = (Ⅱ)(法一)记山东鲁能在第二轮得分为随机变量 X ,则 X 的取值为 3、 1、 0 由已知得 X 的分布列为:
���� �
��� � ��� �
第 - 7 - 页 共 14 页
(20)(本小题满分 14 分) 己知 f ( x) = ln x − ax 2 − bx 。 (Ⅰ)若 a = −1 ,函数 f ( x) 在其定义域内是增函数,求 b 的取值范围; (Ⅱ)当 a = 1, b = −1 时,证明函数 f ( x) 只有一个零点; (Ⅲ) f ( x) 的图象与 x 轴交于 A( x1 , 0), B ( x2 , 0)( x1 < x2 ) 两点 AB 中点为 C ( x0 , 0) ,求证:
1 } 是等差数列,则 a11 = an + 1
(C) −
(A)
1 11
(B) 0
1 13
(D) −
1 7
(9)定义在 R 上的函 数 f ( x) 满足 f (− x) = − f ( x), f ( x − 2) = f ( x + 2), 且 x ∈ ( −1, 0) 时,
1 f ( x) = 2 x + , 则 f (log 2 20) = 5 4 4 (A) 1 (B) (C) −1 (D) − 5 5 (10)从一块短轴长为 2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是 [3b 2 , 4b 2 ] ,则这一椭圆离心率 e 的取值范围是
福建省安溪第八中学 2010 届高考模拟试题 理科数学参考答案及评分标准
一、选择题(每小题 5 分,共 50 分) DDABC CCBCD 二、填空题(每小题 4 分,共 20 分) (11)5; (12) [ , 2] ;
1 2
(13)4; (14)
1 3
(15)②④
2 三、(16)解:(Ⅰ) f ( x) = sin ax − 3 sin ax cos ax
。
第 - 3 - 页 共 14 页
(14) 如图,在矩形 ABCD 中, AB = 1, AC = 2, O 为 AC 中点,抛物线 的一部分在矩形内,点 O 为抛物线顶点,点 B, D 在抛物线上,在矩形 内随机地放一点,则此点落在阴影部分的概率为 .
(15)给出下列四个命题: ①命题 " ∀x ∈ R , x 2 ≥ 0" 的否定是 " ∃x ∈ R , x 2 ≤ 0" ; ②线性相关系数 r 的绝对值越接近于 1 ,表明两个随机变量线性相关性越强; ③若 a, b ∈ [0,1], 则不等式 a + b <
=
1 − cos 2ax 3 π 1 − sin 2ax = − sin(2ax + ) + , 2 2 6 2
……………………………………3 分
由题意知, m 为 f ( x) 的最大值或最小值,所以 m = − (Ⅱ)由题设知,函数 f ( x) 的周期为 分
1 3 或m = 2 2
………………………6 分
∠BAD = 60� , A1 A = AB, E 为 BB1 延 长 线 上 的 一 点 , D1E ⊥ 面
D1 AC 。
(Ⅰ)求二面角 E − AC − D1 的大小; (Ⅱ)在 D1 E 上是否存在一点 P ,使 A1 P // 面 EAC ?若存在,求 D1 P : PE 的值,不存在, 说明理由。
x + y − 3 ≥ 0, (12)若 x, y 满足 x − y + 1 ≥ 0, 设 y = kx, 则 k 的取值范围是 3 x − y − 5 ≤ 0,
(13)在 ∆ABC 中,三个内角 A, B, C 所对的边分别是 a, b, c, 已知
。
c = 2, C =
π , ∆ABC 的面积等于 3, 则 a + b = 3
在极坐标系中,直线 l 的极坐标方程为 θ = 选修 4-5:不等式选讲
(a + b+ c)2 已知函数 f (x) = (x −a) + (x −b) + (x −c) + ( a , b , c 为实数)的最小值为 m ,若 3 a − b + 2c = 3 ,求 m 的最小值.
2 2 2
第 - 9 - 页 共 14 页
2 2
1 π 成立的概率是 ; 4 4
④函数 || x − 1 | − | x + 1 ||≤ a 恒成立,则实数 a 的取值范围是 [2, +∞) 。 其中真 命题的序号是 。(填上所有真命题的序号) 三、解答题:本大题共 6 小题,共 80 分。 (16)(本小题满分 13 分) 若函数 f ( x) = sin ax − 3 sin ax cos ax( a > 0) 的图象与直线 y = m 相切, 相邻切点之间 的距离为