福建省泉州市安溪县2018-2019学年八年级(上)期中数学试卷(附详细答案)
福建省泉州市2018-2019学年八年级数学上册期中试题

2018年秋季八年级期中考数学科试卷本试卷分(一)、(二)卷,满分150分。
总共26题。
考试时间120分钟。
注意:本试卷(一)为填空题、选择题。
试卷(二)为填空题、选择题的答题表、解答题。
同学们必须把试卷(一)试题的答案填...在试卷...(二)相应的答题位置上,答在试卷.............(.一.).上视为无效.....,.交.卷时只上交.....试卷(二)。
试卷(一)一、选择题(每小题3分,共21分) 1. 在下列实数中,无理数是 ( ) A .35-B .2πC .01.0D .327-2.下列说法正确的是 ( ) A .1的立方根是1± B .24±= C. 9的平方根是3± D. 0没有平方根3. 下列化简正确的是 ( )A .523)(a a =B .428a a a =÷C .623a a a =⋅D .2222a a a =+ 4. xy y x 322⋅ 的结果是 ( )A 、y x 36B 、236y xC 、x 23D 、xy 325. 下列各式中,能用平方差公式分解因式的是( ). A. 92+a B. y a -2 C. 92+-a D. 92--a6. 如图,已知∠1=∠2,则不一定...能使△ABD ≌△ACD 的条件是( ) A .BD=CD ; B .AB=AC ; C .∠B=∠C ; D .∠BAD=∠CAD ;7. 如图,边长为)3(+m 的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .32+m ;B .62+m ;C .3+m ;D .6+m .二、填空题:(每题4分,共40分) 8. 16的平方根是 . 9.计算:=-2)5(a .10. 比较大小:23_________32 (填”> , = , < ”). 11. 若23,53==y x ,则y x +3= .12. 已知矩形的面积为58a ,其中一条边长为22a ,则另一条边长为 。
2018-2019年第一学期初二年期中考试数学试题及答案

2018-2019年第一学期初二年期中考试数 学 试 题(满分:150分;考试时间:120分钟 )题号一 二三总分得分 1~7 8~17181920212223242526一、选择题(每小题3分,共21分) 1、 实数6的相反数是().A. 3-B. 6C. 6-D. 6-2、下列计算正确的是( )A .236a a a =÷B .229)3(x x =-C .632a a a =⋅D .923)(a a =3、 在实数0、3、6-、35、π、723、14.3中无理数的个数是( )个.A .1 B.2 C.3 D.4 4、下列变形是分解因式的是( )A .6x 2y 2=3xy ·2xy B .a 2-4ab+4b 2=(a -2b)2C .(x+2)(x+1)=x 2+3x+2 D .x 2-9-6x=(x+3)(x -3)-6x 5、如图,在下列条件中,不能证明ABD ∆≌ACD ∆的是( )A. AC AB CD BD ==,B. DC BD ADC ADB =∠=∠,C. CAD BAD C B ∠=∠∠=∠,D. CD BD C B =∠=∠, 6、若))(3(152n x x mx x ++=-+,则m 的值为( )A .-2 B. 2 C.5 D.-5 7、已知,则的值为( )A . B. 8 C. D.6二、填空题(每小题4分,共40分) 8、9的算术平方根是 . 9、比较大小: 310.10、因式分解:ax+ay= . 11.计算:x x x 2)48(2÷-= .12.已知ABC ∆≌DEF ∆,︒=∠50A ,︒=∠60B ,则F ∠= 。
13、计算:光速约为3×108米/秒,太阳光射到地球上的时间约为5×210秒,则地球与太阳的距离是 米.14、命题:全等三角形的对应边相等,它的条件是 结论是 ,它是 命题(填“真”或“假”)15、已知m 6x =,3n x =,则2m n x -的值为 . 16.当整数=k 多项式42++kx x 恰好是另一个多项式的平方.17、观察 给出一列式子:y x 2,2421y x -,3641y x ,4881y x -,……,根据其蕴含的规律可知这一列式子中的第8个式子是 ,第n 个式子是 三、解答题(共89分)18.计算:(每题5分,共10分) (1)41227163⋅-+ (2) ()232x x x ÷-⋅19、分解因式:(每题5分,共10分)(1)a a 1823- (2)xy y x 4)(2-+20如图,已知DBC ACB DCB ABC ∠=∠∠=∠,, 求证:DC AB = (8分)21(8分)先化简,再求值:y y x y x y y x y x ÷-++-+24)2()2)(2( ,其中21-=x ,2=y .22、(9分)先因式分解,再求值:2x(a-2)-y(2-a),其中a=0.5,x=1.5,y=-223、(9分)如图,在长方形ABCD 中,E 、F 分别在AD 、CD 上,BE ⊥EF,且BE=EF,若AE=5cm ,长方形ABCD 的周长为40cm ,(1)求证:△ABE ≌△DEF (2)求AB 的长AEF D CB24、(9分)将大小不同的两个正方形按如图所示那样拼接起来,连结BD 、BF 、DF ,已知正方形ABCD 的边长为a ,正方形CEFG 的边长为b ,且a <b . (1)(4分)填空:BE ×DG = (用含a 、b 的代数式表示);(2)(5分)当正方形ABCD 的边长a 保持不变..,而正方形CEFG 的边长b 不断增大时,△BDF 的面积会发生改变吗?请说明理由.25.(13分)如图,一个开口的长方体盒子,是从一块边长为a 的正方形的钢板的每个角落剪掉一个边长为b 的正方形后,再把它的边折起来做成的.(1)请用代数式分别表示图中剩余部分的面积及s 1、s 5的面积.(2)利用剩余部分的图形能否来说明()()b a b a b a 22422-+=-的正确性,如果能,请选择适当的方法加以说明.A CB D GF E a b a b(3)设cm900cm,求盒子的表面积(不 ,底面s5的面积为2a60含盖)和体积.26、(13分)如图,已知△ABC中,∠B=∠C,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C 点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?数学试题参考答案一.选择题:本大题共7小题,每小题3分,共21分.1. C 2. B 3. C 4. B 5. D 6. A 7. C二.填空题:本大题共10小题,每小题4分,共40分.8. 3 9. < 10. a(x+y) 11. 24-x12. 70013. 11105.1⨯ 14、两个三角形全等;它们的对应边相等;真15. 12 16. 4± 17. —1281x 16y 8, (-21)n-1x 2n y n三、解答题(共89分) 18.(1)解:原式=21234⨯-+ …………………… (3分) =6 ……………………(5分)(2) 解:原式=()238xxx ÷-⋅ …………………… (3分)=248x x ÷- …………………… (4分) =28x - …(5分)19、解:(1)原式=)9(22-a a ……2分 (2)原式=xy y xy x 4222-++ … 2分 =)3)(3(2-+a a a …… 5分 =222y xy x +- ………… 3分 =2)(y x - ……………… 5分 20、中与在DCB ABC ∆∆∵⎪⎩⎪⎨⎧∠∠∠∠(已知)=(公共边)=(已知)=DCB ACB CB BC DCB ABC ……………∠……… 5分∴ABC ∆≌DCB ∆(A.S.A ) …………………… 7分 ∴AB=DC (全等三角形的对应边相等)……………… 8分21.解:原式=2222424x y xy y x -++- ……………………………………… 4分 =xy 2 ………………………………………………………………… 5分当21-=x ,2=y 时,原式=22212-=⨯⎪⎭⎫⎝⎛-⨯. …………………… 8分22、解:原式= 2x(a-2)+y(a-2)…………………… (3分) =(a-2)(2x+y) …………………… (2分)当 a=0.5,x=1.5,y=-2时,原式=(0.5-2)×(2×1.5+(-2)) …………………… 7分=-1.5 …………………… 9分23、解:(1) 证明:在长方形ABCD 中,∠A=900=∠D ……………………1分 ∵BE ⊥EF ∴∠BEF=900即∠AEB+∠DEF=900,又∠ABE+∠AEB=900∴∠ABE=∠DEF ……………………3分 ∴△ABE 和△DEF 中,∠A=∠D ,∠ABE=∠DEF ,BE=EF∴△ABE ≌△DEF(AAS) ……………………5分 (2) ∵△ABE ≌△DEF ∴AE=DF=5CM,AB=DE=acm, …………………6分 ∴AD=(5+a)cm …………………7分 又长方形ABCD 的周长为40cm ∴2(5+a+a)=40 解得a=7.5cm=AB …………………9分 24.解:(1)22a b -; …………………………………………… 3分 (2)答:△BDF 的面积不会发生改变. ………………… 4分由图形可得:BEF DFG ABD CEFG ABCD BDF S S S S S S ∆∆∆∆---+=)(21)(2121222b a b a b b a b a +----+= …… 6分222222121212121b ab ab b a b a --+--+=221a = …… 8分∵a 保持不变,∴当正方形ABCD 的边长a 保持不变,而正方形CEFG 的边长b 不断增大时,△BDF 的面积不会发生改变. ……………………………………… 9分25.(1)224b a S -=剩余 …………………… (1分)().2221b ab b a b S -=-⋅=…………………… (2分)()2225442b ab a b a S +-=-=…………………… (3分)(2)能. ………………………………………… (4分),422b a S -=剩余 ()()()()()b a b a b a b b a a S S S S S 2222221352+-=-+-⋅=+++=剩余……………………………………………………(7分)()()b a b a b a 22422-+=-∴.…………………… (8分).(画图再加说明亦可得分)(3),9005=S………………………… (10分)又,60=a .15=∴b ……………………(11分)().302,90022=-∴=-∴b a b a.1350015900,2700154604352222cm b S V cm b a S S =⨯=⋅==⨯-=-==∴剩余表 (12)………………………… (13分) 答:略。
18—19学年上学期八年级期中考试数学试题(附答案)(2)

2018~2019学年度上学期期中阶段质量检测试题八年级数学2018.11注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分100分,考试时间90分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在答题纸规定的位置.考试结束后,将本试卷和答题纸一并交回. 2.答题注意事项见答题纸,答在本试卷上不得分.第Ⅰ卷(选择题共36分)一、选择题(每小题3分,共12小题;共36分)在每小题所给的四个选项中,只有一项是符合题目要求的,请把正确答案涂在答题卡中.1.在以下回收、绿色食品、节能、中国民生银行四个标志中,是轴对称图形的是A .B .C .D .2.下列各式计算正确的是A .729()a a = B .7214a a a =C .235235a a a +=D .333()ab a b =3.在平面直角坐标系中,点(3,-2)关于y 轴对称的点的坐标是 A .(3,2) B .(3,-2) C .(-3,2) D .(-3,-2) 4.以下列各组长度的三条线段为边,能组成三角形的是 A .1cm ,2cm ,3cm B .8cm ,6cm ,4cm C .12cm ,5cm ,6cm D .2cm , 3cm ,6cm5.能把一个三角形分成面积相等的两部分的是该三角形的 A .角平分线 B .中线C .高D .一边的垂直平分线6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即'A OA ∠)是A .20°B .40°C .60°D .80°7.如图,△ABC 与'''A B C ∆关于直线MN 对称,P 为MN 上任一点(P 不与'AA 共线),下列结论中错误的是A .'AA P ∆是等腰三角形B .MN 垂直平分'AA ,'CC C .△ABC 与'''A B C ∆面积相等D .直线AB ,''A B 的交点不一定在MN 上8.如图,已知太阳光线AC 和DE 是平行的,在同一时刻两根高度相同的木杆竖直插在地面上,在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断ABC DFE ∆≅∆的依据是A .SASB .AASC.HL D.ASA9.如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO 长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=A.30°B.45°C.60°D.90°10.如图,在△ABC中,BE,CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为A.6 B.7C.8 D.1011.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于A.18°B.36°C .54°D .64°12.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,则点C 的坐标为A .(1)B .(-1C .1)D .(-1)第Ⅱ卷(非选择题 共64分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题纸规定的区域内,在试卷上答题不得分.二、填空题(每小题4分,共6小题;共24分) 13.计算:323()a a =________.14.已知一个多边形的内角和为540°,则这个多边形是________边形.15.如图1是一把园林剪刀,把它抽象为图2,其中OA =OB ,若剪刀张开的角为30°,则∠A =________度.16.如图,已知点A,D,C,F在同一条直线上,AB=DE,∠B=∠E,要使△ABC≌△DEF,还需要添加一个条件是________.17.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是________.18.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则AC=________.三、解答题(共5小题;共40分)19.(本题满分5分)用圆规、直尺作图,不写作法,但要保留作图痕迹.如图所示,某汽车探险队要从A城穿越沙漠到B城,途中需要到河边为汽车加水,则汽车在河边哪一点加水,才能使行驶的总路程最短?请你在图上画出这一点.20.(本题满分7分)如图,点A,F,C,D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF.求证:AB=DE.21.(本题满分8分)如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°,求∠DAE的度数.22.(本题满分9分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.23.(本题满分11分)如图,△ABE和△ACD都是等边三角形,BD与CE相交于点O.(1)求证:△AEC≌△ABD;(2)求∠BOC的度数.参考答案一、选择题1.B2.D3.D4.B5.B6.B7.D8.B9.C10.B 11.C 12.A 二、填空题 13.9a 14.五 15.15.7516.BC =EF (答案不唯一) 17.3 18.9 三、解答题19.如下图所示,本题可以进行数学建模,即在直线l 上作一点C ,使它到同侧点A ,B 的距离之和最小.作法:作点A 关于直线l 的对称点A 1,连接A 1B ,则A 1B 与直线l 的交点C 即为所求的点.…………………………………………………………5分20.∵AF =CD ,∴AC =DF ,…………………………………………………………………………1分 ∵BC ∥EF ,∴∠ACB =∠DFE ,……………………………………………………………………3分 在△ABC 和△DEF 中,,,,A D AC DF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA),……………………………………………………………………6分∴AB=DE.……………………………………………………………………………………7分21.∵∠B=30°,∠C=50°,…………………………………………………………1分∴∠BAC=180°-∠B-∠C=100°,……………………………………………………2分∵AE是△ABC的角平分线,∴111005022BAE BAC∠=∠=⨯︒=︒………………………………………………4分∵AD是△ABC的高,∴∠BAD=90°-∠B=90°-30°=60°,………………………………………………6分∴∠DAE=∠BAD-∠BAE=60°-50°=10°.………………………………………………8分22.(1)如图所示:BD即为所求.……………………………………………………………………3分(2)是等腰三角形,理由如下:∵AB=AC,∴∠ABC=∠C,…………………………………………………………4分∵∠A=36°,∴∠ABC=∠ACB=(180°-36°)÷2=72°,…………………………………………5分∵BD平分∠ABC,∴∠ABD=∠DBC=36°,…………………………………………………………6分∴∠BDC=36°+36°=72°,…………………………………………………………7分∴BD=BC,…………………………………………………………………………8分∴△DBC是等腰三角形.…………………………………………………………9分23.(1)∵△ABE和△ACD是等边三角形,∴AE=AB,AD=AC,∠EAB=60°,∠DAC=60°,…………………………1分∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,……………………………………………………………………2分在△AEC和△ABD中,,,,AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△ABD .……………………………………………………………………5分 (2)由(1)得△AEC ≌△ABD ,…………………………………………………………6分 ∴∠AEC =∠ABD ,……………………………………………………………………7分 ∵∠AFE =∠BFO (对顶角),在△AEF 中,∠AEF +∠EF A +∠EAF =180°,…………………………8分在△BFO 中,∠FBO +∠BFO +∠FOB =180°,……………………………………9分 ∴∠EAB =∠EOB =60°,…………………………………………………………10分 ∴∠BOC =180°-∠EOB =120°.……………………………………………………11分。
2018-2019(含答案)八年级(上)期中数学试卷 (14)

2018-2019(含答案)八年级(上)期中数学试卷 (14).................................................................................................................................................................2018.10.22一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目的要求的.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列四个等式从左到右的变形,是多项式因式分解的是()A.B.C.D.3.下列运算正确的是()A. B.C. ∙D.4.分解因式结果正确的是()A. B.C. D.5.长方形的面积为,若它的一边长为,则它的周长为()A. B.C. D.6.如图,有、、三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在,两边高线的交点处B.在,两边中线的交点处C.在,两边垂直平分线的交点处D.在,两内角平分线的交点处7.若,,则和的值分别为()A.,B.,C.,D.,8.的值为()A. B. C. D.9.根据下列已知条件,能唯一画出的是()A.,,B.,,C.,,D.,10.如图,已知中,,,是高和的交点,则线段的长度为()A. B. C. D.11.如图,中,,是的中点,的垂直平分线分别交、、于点、、,则图中全等三角形的对数是()A.对B.对C.对D.对12.如图,和分别沿着边、翻折形成的,若,与交于点,则的度数为()A. B. C. D.二、填空题(每小题3分,共18分)13.如果点和点关于轴对称,则的值是________.14.如图,的周长为,的垂直平分线交于点,为垂足,,则的周长为________.15.如图,,,不再添加辅助线和字母,要使,需添加的一个条件是________(只写一个条件即可)16.点是内一点,且点到三边的距离相等,,则________.17.若是一个完全平方式,则的值为________.18.阅读下文,寻找规律.计算:,,….观察上式,并猜想:________.根据你的猜想,计算:________.(其中是正整数)三、解答题:19.在平面直角坐标系中,,,.在平面直角坐标系中,,,.在图中作出关于轴的对称;写出关于轴对称的各顶点坐标:________;________;________.20.化简求值:,其中.21.因式分解:.22.如图,是中点,,.证明:.23.已知:如图,的角平分线与的垂直平分线交于点,,,垂足分别为,.①求证:;②若,,求的周长.24.阅读理解:如图①,在中,若,,求边上的中线的取值范围.解决此问题可以用如下方法:延长到点使,再连接(或将绕着点逆时针旋转得到),把、,集中在中,利用三角形三边的关系即可判断.中线的取值范围是________;24.问题解决:如图②,在中,是边上的中点,于点,交于点,交于点,连接,求证:;24.问题拓展:如图③,在四边形中,,,,以为顶点作一个角,角的两边分别交,于、两点,连接,探索线段,,之间的数量关系,并加以证明.答案1. 【答案】A【解析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:、是轴对称图形,故符合题意;、不是轴对称图形,故不符合题意;、不是轴对称图形,故不符合题意;、不是轴对称图形,故不符合题意.故选:.2. 【答案】D【解析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:、是整式的乘法,故错误;、没把一个多项式化为几个整式的积的形式,故错误;、没把一个多项式化为几个整式的积的形式,故错误;、把一个多项式化为几个整式的积的形式,故正确;故选:.3. 【答案】C【解析】原式各项计算得到结果,即可作出判断.【解答】解:、原式,错误;、原式,错误;、原式,正确;、原式,错误,故选4. 【答案】D【解析】首先提取公因式,进而利用平方差公式进行分解即可.【解答】解:.故选:.5. 【答案】D【解析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:,则周长是:.故选.6. 【答案】C【解析】要求到三小区的距离相等,首先思考到小区、小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段的垂直平分线上,同理到小区、小区的距离相等的点在线段的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.【解答】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在,两边垂直平分线的交点处.故选.7. 【答案】C【解析】已知等式利用完全平方公式化简,整理即可求出所求式子的值.【解答】解:已知等式整理得: ①,②,①-②得:,即;① ②得:,即,故选8. 【答案】D【解析】应用乘法分配律,求出算式的值为多少即可.【解答】解:故选:.9. 【答案】C【解析】要满足唯一画出,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有选项符合,是满足题目要求的,于是答案可得.【解答】解:、因为,所以这三边不能构成三角形;、因为不是已知两边的夹角,无法确定其他角的度数与边的长度;、已知两角可得到第三个角的度数,已知一边,则可以根据来画一个三角形;、只有一个角和一个边无法根据此作出一个三角形.故选.10. 【答案】B【解析】易证后就可以得出,进而可求出线段的长度.【解答】解:∵ ,∴ ,∴ ,,∴ ,在和中,,∴ ,∴ ,故选.11. 【答案】D【解析】根据线段垂直平分线上的点到线段两端点的距离相等可得,然后判断出和全等,再根据等腰三角形三线合一的性质可得,从而得到关于直线轴对称,再根据全等三角形的定义写出全等三角形即可得解.【解答】解:∵ 是的垂直平分线,∴ ,又∵ ,∴ ,∵ ,是的中点,∴ ,∴ 关于直线轴对称,∴ ,,,综上所述,全等三角形共有对.故选.12. 【答案】B【解析】根据,三角形的内角和定理分别求得,,的度数,然后根据折叠的性质求出、、的度数,在中,根据三角形的内角和定理求出的度数,继而可求得的度数,最后根据三角形的外角定理求出的度数.【解答】解:在中,∵ ,∴设为,为,为,则,解得:,则,,,由折叠的性质可得:,,,在中,,∴ ,∴ .故选.13. 【答案】【解析】结合关于轴、轴对称的点的坐标的特点:关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点关于轴的对称点的坐标是;关于轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点关于轴的对称点的坐标是.求解即可.【解答】解:∵点和点关于轴对称,∴ ,,∴ .故答案为:.14. 【答案】【解析】根据垂直平分线的性质计算.的周长.【解答】解:∵ 的垂直平分线交于,为垂足∴ ,,∵ 的周长为,∴∴ 的周长.故答案为:.15. 【答案】或【解析】添加条件可证明,然后再根据,可得,再利用定理证明即可,或利用定理证明.【解答】解:添加,理由如下:∵ ,∴ ,∵ ,∴ ,在和中,,∴ .故答案是:.当添加时,利用即可证得.故答案是:或.16. 【答案】【解析】根据三角形内角和定理求出,再根据角平分线上的点到角的两边的距离相等判断出点是角平分线的交点,再根据角平分线的定义求出的度数,然后在中,利用三角形内角和定理列式进行计算即可得解.【解答】解:如图,∵ ,∴ ,∵点到三边的距离相等,∴点是角平分线的交点,∴,在中,.故答案为:.17. 【答案】或【解析】利用完全平方公式的结构特征判断即可得到的值.【解答】解:∵ 是一个完全平方式,∴ ,故的值为或,故答案为:或18. 【答案】,; .【解析】归纳总结得到一般性规律,写出即可;; 原式变形后,利用得出的规律计算即可得到结果.【解答】解:解:;;.19. 【答案】,,【解析】先连接、,于,,是梯形易证四边等腰梯形,从有,而、分是四边中点,用角形中定理有且且,可证四边形是菱形,再利,易求,可是含有角的直角三形,再利股定理求,即求边形的周长.【解答】解:连接、,如图所示,∴ 边形是平四边形,,∴,又∵ ,∴ 形,∴ ,∵ ,形,∴ ,∴ ,∵、、分别是四边中点,同理有,且,,∴ ,,∴四边是腰梯形,∴四边形的周长.20. 【答案】解:原式当时,原式.【解析】对先去括号,再合并同类项,化简后将代入化简后的式子,即可求得值.其中利用完全平方公式去括号,利用平方差公式去括号.【解答】解:原式当时,原式.21. 【答案】解:;;;;.【解析】首先提取公因式,进而利用完全平方公式分解因式得出答案;; 直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案;; 首先提取公因式,进而利用平方差公式分解因式得出答案.【解答】解:;;;;.22. 【答案】证明:∵ 是中点,∴ ,∵ ,∴ ,即,在与中,,,∴ .【解析】根据全等三角形的判定和性质即可得到结论.【解答】证明:∵ 是中点,∴ ,∵ ,∴ ,即,在与中,,,∴ .23. 【答案】①证明:连结,∵ 在的中垂线上∴∵ ,平分∴在和中,,∴ ,∴ ;②解:由可得,,∴ ,∴ 的周长,.【解析】①连接,根据垂直平分线性质可得,可证,可得;②根据得出解答即可.【解答】①证明:连结,∵ 在的中垂线上∴∵ ,平分∴在和中,,∴ ,∴ ;②解:由可得,,∴ ,∴ 的周长,.24. 【答案】;; 证明:延长至点,使,连接、,如图②所示:同得:,∴ ,∵ ,,∴ ,在中,由三角形的三边关系得:,∴ ;; 解:;理由如下:延长至点,使,连接,如图所示:∵ ,,∴ ,在和中,,∴ ,∴ ,,∵ ,,∴ ,∴ ,在和中,,∴ ,∴ ,∵ ,∴ .【解析】延长至,使,由证明,得出,在中,由三角形的三边关系求出的取值范围,即可得出的取值范围;; 延长至点,使,连接、,同得,得出,由线段垂直平分线的性质得出,在中,由三角形的三边关系得出即可得出结论;; 延长至点,使,连接,证出,由证明,得出,,证出,再由证明,得出,即可得出结论.【解答】解:延长至,使,连接,如图①所示:∵ 是边上的中线,∴ ,在和中,,∴ ,∴ ,在中,由三角形的三边关系得:,∴ ,即,∴ ;; 证明:延长至点,使,连接、,如图②所示:同得:,∴ ,∵ ,,∴ ,在中,由三角形的三边关系得:,∴ ;; 解:;理由如下:延长至点,使,连接,如图所示:∵ ,,∴ ,在和中,,∴ ,∴ ,,∵ ,,∴ ,∴ ,在和中,,∴ ,∴ ,∵ ,∴ .。
【校级联考】福建省泉州市安溪县2018-2019学年八年级上学期期中质量监测数学试题

【校级联考】福建省泉州市安溪县2018-2019学年八年级上学期期中质量监测数学试题一、单选题1 . 下列实数中属于无理数的是()A.B.C.D.2 . 下列算式中,结果等于a 5的是()A.a2+a3B.C.D.3 . 计算(x-3)(x+2)的结果是()A.B.x2-5x+6C.x2-x-6D.x2-5x-64 . 下列命题中,是真命题的是()A.任何数都有平方根B.只有正数才有平方根C.负数没有立方根D.存在算术平方根等于本身的数5 . 如图,若∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.∠B=∠C C.BD=CD D.∠BAD=∠CAD6 . 若x 2+kx+9是一个完全平方式,则常数的值为()A.6B.-6C.D.无法确定7 . 对于命题“若>,则>.”下列关于的值中,能说明这个命题是假命题的是()A.a=2,b=3B.a=-3,b=2C.a=3,b=-2D.a=-2,b=38 . 若是实数,则2(a 2+b 2)-(a+b)2的值必是()A.正数B.负数C.非正数D.非负数9 . 如图,将图1中的阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A.a2−b2=(a+b)(a−b)B.(a−b)2=a2−2ab+b2C.(a−b)2=a2+2ab+b2D.(a+b)2=(a−b)2+4ab10 . 如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论:①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.其中正确的是()A. ①②③B. ①②④C. ①②D. ①②③④二、填空题11 . 16的平方根是.12 . 比较大小:_____3.(填“>”、“=”或“<”)13 . 若,,则=__________.14 . 若多项式与单项式的积是,则该多项式为_____________.15 . 如图,已知△ABC≌△DCB,若∠A=75°,∠ACB=45°,则∠ACD=________度.16 . 已知时,.请你根据这个结论直接填空:(1) =_________;(2)若,则=____________.三、解答题17 . 计算:18 . 分解因式:(1)(2)19 . 先化简,再求值:,其中x=-2.20 . 如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.21 . 已知实数满足,求的平方根.22 . 如图,在一张长为,宽为(a>b>2)的长方形纸片上的四个角处各剪去一个边长为1的小正方形,然后做成一个无盖的长方体盒子.(1)做成的长方体盒子的体积为 (用含的代数式表示);(2)若长方形纸片的周长为30,面积为100,求做成的长方体盒子的体积.23 . 如图,在Rt△ABC中,∠ACB= ,D是AB边上的一点,过D作DE⊥AB交AC于点E,BC=BD,连结CD交BE于点F.(1)求证:CE=DE;(2)若点D为AB的中点,求∠AED的度数.24 . 规定两数a、b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为,所以(2,8)=3.(1)根据上述规定,填空:(5,125)= ,(-2,4)= ,(-2,-8)= ;(2)小明在研究这种运算时发现一个现象:,他给出了如下的证明:设,则,即∴,即,∴.请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30)25 . (1)如图1,在正方形ABCD中,E、F分别是边BC、CD上的点,且∠EAF=45°,把△ADF 绕着点A顺时针旋转90°得到△ABG,请直接写出图中所有的全等三角形;(2)在四边形ABCD中,AB=AD,∠B=∠D=90°.①如图2,若E、F分别是边BC、CD上的点,且2∠EAF=∠BAD,求证:EF=BE+DF;②若E、F分别是边BC、CD延长线上的点,且2∠EAF=∠BAD,①中的结论是否仍然成立?请说明理由。
2018-2019(含答案)八年级(上)期中数学试卷

2018-2019(含答案)八年级(上)期中数学试卷.................................................................................................................................................................2018.10.22一、选择题(每题3分,共18分)1.下列各式中互为有理化因式的是()A.a+b和a−bB.−x−1和x−1C.5−2和−5+2D.x a+y b和x a+y b2.下列各式中,在实数范围内不能分解因式的是()A.x2+4x+4B.x2−4x−4C.x2+x+1D.x2−x−13.已知a=7−5,b=5−3,c=3−7,则a、b、c三个数的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>a>b4.已知一个两位数等于它个位上的数的平方,并且十位上的数字比个位上的数字小3,则这个两位数为()A.25B.25或36C.36D.−25或−365.关于x的方程(a−6)x2−8x+6=0有实数根,则整数a的最大值是()A.6B.7C.8D.96.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50−2x(0<x<50)B.y=50−2x(0<x<25)(50−2x)(0<x<50)C.y=12(50−x)(0<x<25)D.y=12二、填空题:(每题2分,共24分)7.如果(x+2)2=−x−2,则x的取值范围是________.8.已知20n是整数,则满足条件的最小正整数n为________.9.已知m=n−1−1−n+3,则m n+1=________.a−1是同类二次根式,则a=________,b=________.10.若最简根式4a−1和3b+511.关于x的一元二次方程(a−1)x2+x+(a2−1)=0的一个根是0,则a的值是________.12.已知(x2+y2)2+2(x2+y2)=15,则x2+y2=________.13.如果关于x的方程(a−1)x2−2x−1=0有两个不相等的实数根,那么a的取值范围是________.14.在实数范围内因式分解:2x2−8xy+5y2=________.15.某件商品原价100元,经过两次降价后,售价为64元,设平均每次降价的百分率为x,依题意可列方程________.16.已知点P(a, b)在第三象限,则直线y=(a+b)x经过第________象限,y随x的增大而________.17.反比例函数y=kx的图象经过点P(a, b),且a、b是一元二次方程x2−5x+4=0的两根,k的值是________,点P的坐标为________.18.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=________.三、简答题(每题4分,共28分)19.计算:12−(3+1)2+434÷513.20.计算:xy2−1x8x3y+1y18xy3(x>0, y>0)21.解方程:(x+5)2−2(x+5)=8.22.解方程:2x2−5x+1=0(用配方法)23.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?24.已知y=y1−y2,y1与x成反比例,y2与(x−2)成正比例,并且当x=3时,y=5,当x=1时,y=−1;求y与x之间的函数关系式.25.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长________千米;(2)小强下坡的速度为________千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是________分钟.四、综合题:(每题6分,共30分)26.已知关于x的方程x2−(2k+1)x+4k−2=0(1)求证:不论k取什么实数值,这个方程总有实数根;(2)若等腰△ABC的一边长为a=4,另两边的长b、c恰好是这个方程的两个根,求△ABC 的周长.27.如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m.设AD的长为xm,DC的长为ym.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.28.如图,在△ABC中,∠C=90∘,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.29.如图,正方形OAPB、ADFE的顶点A、D、B在坐标轴上,点E在AP上,点P、F在函数y=k的图x象上,已知正方形OAPB的面积为9.(1)求k的值和直线OP的解析式;(2)求正方形ADFE的边长.30.如图,在四边形ABCD中,AB=BC=1,∠ABC=90∘,且AB // CD,将一把三角尺的直角顶点P放在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,探究:(1)如图,当点Q在边CD上时,线段PQ与BP有怎样的数量关系?并证明你的猜想.(2)当点Q在线段DC延长线上时,在备用图中画出符合要求的示意图,并判断(1)中的结论是否仍成立?(3)点P在线段AC上运动时,△PCQ是否可能为等腰三角形?若可能,求此时AP的值;若不可能,请说明理由.答案1. 【答案】B【解析】根据有理化因式的定义进行解答即可.【解答】解:A、∵⋅=(a+b)(a−b),∴两根式不互为有理化因式,故本选项错误;B、∵(−x−1)⋅x−1=1−x,∴两根式互为有理化因式,故本选项正确;C、∵(5−2)•(−5+2)=210−7,∴两根式不互为有理化因式,故本选项错误;D、∵(x a+y b)•(x a+y b)=(x a+y b)2,∴两根式不互为有理化因式,故本选项错误.故选B.2. 【答案】C【解析】先令二次三项式为0,若有实数根则能因式分解,否则不能.【解答】解:A、x2+4x+4=0有实数根,故本选项能在实数范围内因式分解;B、x2−4x−4=0有实数根,故本选项能在实数范围内因式分解;C、x2+x+1=0没有实数根,故本选项不能在实数范围内因式分解;D、x2−x−1=0有实数根,故本选项能在实数范围内因式分解;故选C.3. 【答案】B【解析】首先求出a,b,c的倒数,进而比较它们的大小,进而得出a、b、c三个数的大小关系.【解答】解:∵a=7−5,b=5−3,c=3−7,∴1 a =7−5=7+52,1 b =5−3=5+32,1 c =3−7=3+72,∵7>3,∴1 a >1b,∵3>5,∴1 a <1c,∴1 c >1a>1b,∴b>a>c.故选:B.4. 【答案】B【解析】设十位上的数字为x,则个位上的数字为(x+3),根据该两位数等于它个位上的数的平方,即可得出关于x的一元二次方程,解之即可得出x的值,进而即可得出该两位数.【解答】解:设十位上的数字为x,则个位上的数字为(x+3),根据题意得:10x+x+3=(x+3)2,整理得:x2−5x+6=0,解得:x=2或x=3,∴x+3=5或x+3=6,∴这个两位数为25或36.故选B.5. 【答案】C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a−6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【解答】解:当a−6=0,即a=6时,方程是−8x+6=0,解得x=68=34;当a−6≠0,即a≠6时,△=(−8)2−4(a−6)×6=208−24a≥0,解上式,得a≤263≈8.6,取最大整数,即a=8.故选C.6. 【答案】D【解析】根据等腰三角形的腰长=(周长-底边长)×12,及底边长x>0,腰长>0得到.【解答】解:依题意有y=12(50−x).∵x>0,50−x>0,且x<2y,即x<2×12(50−x),得到0<x<25.故选D7. 【答案】x≤−2【解析】根据二次根式的性质,可得答案.【解答】解:由(x+2)2=(−x−2)2=−x−2,得x+2≤0,解得x≤−2,故答案为:x≤−2.8. 【答案】5【解析】因为20n是整数,且20n=4×5n=25n,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵20n=4×5n=25n,且20n是整数;∴25n是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.9. 【答案】9【解析】根据二次根式中的被开方数必须是非负数列出不等式,求出n的值,得到m的值,代入代数式根据乘方法则计算即可.【解答】解:由题意得,n−1≥0,1−n≥0,解得,n=1,∴m=3,则m n+1=9,故答案为:9.10. 【答案】3,2【解析】根据最简二次根式与同类二次根式的定义列方程组求解.【解答】解:由题意,得a−1=24a−1=3b+5,解得a=3 b=2,故答案为:3,2.11. 【答案】−1【解析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a −1≠0.【解答】解:∵关于x 的一元二次方程(a −1)x 2+x +(a 2−1)=0的一个根是0, ∴x =0满足该方程,且a −1≠0.∴a 2−1=0,且a ≠1.解得a =−1.故答案是:−1.12. 【答案】3【解析】首先设x 2+y 2=z ,然后将原方程转化为关于z 的一元二次方程,解该方程即可解决问题.【解答】解:设x 2+y 2=z ,(z ≥0)则原方程变为:z 2+2z −15=0,解得:z =3或−5(舍去).故答案为:3.13. 【答案】a >12且a ≠1【解析】根据方程有两个不相等的实数根利用根的判别式结合二次项系数非零即可得出关于a 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x 的方程(a −1)x 2− 2x −1=0有两个不相等的实数根,∴ a −1≠0△=(− 2)2+4(a −1)>0, 解得:a >12且a ≠1.故答案为:a >12且a ≠1.14. 【答案】( 2x −2 2y + 3y )( 2x −2 2y − 3y )【解析】首先把5y 2变为8y 2−3y 2,然后把前三项组合提公因式2,再利用完全平方分解,然后再次利用平方差分解因式即可.【解答】解:原式=2x 2−8xy +8y 2−3y 2,=2(x −2y )2−3y 2,=[ 2(x −2y )+ 3y ][ 2(x −2y )− 3y ],=( 2x −2 2y + 3y )( 2x −2 2y − 3y ),故答案为:( 2x −2 2y + 3y )( 2x −2 2y − 3y ).15. 【答案】100(1−x )2=64【解析】设平均每次降价的百分率为x ,根据某件商品原价100元,经过两次降价后,售价为64元,可列方程求解.【解答】解:设平均每次降价的百分率为x ,100(1−x )2=64.故答案为:100(1−x )2=64.16. 【答案】二、四,减小【解析】先根据第三象限点的坐标特征得到a <0,b <0,然后根据正比例函数与系数的关系判断直线y =(a +b )x 经过的象限.【解答】解:因为点P (a , b )在第三象限,所以a <0,b <0,可得a+b<0,所以直线y=(a+b)x经过第二、四象限,y随x的增大而减小;故答案为:二、四;减小17. 【答案】4,(1, 4)或(4, 1)的图象经过点P(a, b),把点P的坐标代入解析式,得到关【解析】先根据反比例函数y=kx于a、b、k的等式ab=k;又因为a、b是一元二次方程x2−5x+4=0的两根,得到a+b=5,ab=4,根据以上关系式求出a、b的值即可.得,ab=k,【解答】解:把点P(a, b)代入y=kx因为a、b是一元二次方程x2−5x+4=0的两根,根据根与系数的关系得:a+b=5,ab=4,解得a=1,b=4或a=4,b=1,所以k=4,点P的坐标是(1, 4)或(4, 1).故答案为4,(1, 4)或(4, 1).18. 【答案】6【解析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4的系数k,由此即可求出S1+S2.x上的点,分别经过A、B两点向x轴、y轴作垂线段,【解答】解:∵点A、B是双曲线y=4x则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4−1×2=6.故答案为6.19. 【答案】解:原式=23−(3+23+1)+23×343=23−(4+23)+5=−【解析】根据二次根式的运算性质即可求出答案.【解答】解:原式=2−(3+2+1)+2×343=23−(4+23)+5=−20. 【答案】解:原式=2xy−22xy+32xy2xy.=322【解析】根据二次根式性质与化简,可得同类二次根式,根据合并同类二次根式,可得答案.【解答】解:原式=2xy−22xy+32xy2=322xy.21. 【答案】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.【解析】将x+5看做整体因式分解法求解可得.【解答】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.22. 【答案】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.【解析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【解答】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.23. 【答案】修建的道路宽为1米.【解析】设路宽为x,则道路面积为30x+20x−x2,所以所需耕地面积551=20×30−(30x+20x−x2),解方程即可.【解答】解:设修建的路宽为x米.则列方程为20×30−(30x+20x−x2)=551,解得x1=49(舍去),x2=1.24. 【答案】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.【解析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1−y2,再把当x=3时,y=5,当x=1时,y=−1代入关于y的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【解答】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.25. 【答案】2; 0.5; 14【解析】(1)根据题意和函数图象可以得到下坡路的长度;; (2)根据函数图象中的数据可以求的小强下坡的速度;; (3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【解答】解:(1)由题意和图象可得,小强去学校时下坡路为:3−1=2(千米),; (2)小强下坡的速度为:2÷(10−6)=0.5千米/分钟,; (3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:21+10.5=14(分钟),26. 【答案】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.【解析】(1)根据方程的系数结合根的判别式即可得出△=(2k−3)2≥0,由此可得出:不论k取什么实数值,这个方程总有实数根;; (2)当a为底时,由根的判别式△=(2k−3)2= 0可求出k值,再根据根与系数的关系可得出b+c=4,由b+c=a可知此种情况不符合题意;当a为腰时,将x=4代入原方程求出k值,再根据根与系数的关系可得出b+c=6,套用三角形的周长公式即可求出结论.【解答】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.27. 【答案】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.【解析】(1)根据面积为60m2,可得出y与x之间的函数关系式;; (2)由(1)的关系式,结合x、y都是正整数,可得出x的可能值,再由三边材料总长不超过26m,DC的长<12,可得出x、y的值,继而得出可行的方案.【解答】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.28. 【答案】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.【解析】(1)设x秒钟后,可使△PCQ的面积为8平方厘米,用x表示出△PCQ的边长,根据面积是8可列方程求解.; (2)假设y秒时,△PCQ的面积等于△ABC的面积的一半,列出方程看看解的情况,可知是否有解.【解答】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.29. 【答案】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.【解析】(1)利用正方形的性质得到P点坐标为(3, 3),再把P点坐标代入y=kx即可得到k的值;然后利用待定系数法求直线OP的解析式;; (2)设正方形ADFE的边长为a,利用正方形的性质易表示F点的坐标为(a+3, a),然后把F(a+3, a)代入y=9x,再解关于a的一元二次方程即可得到正方形ADFE的边长.【解答】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.30. 【答案】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.【解析】(1)可通过构建全等三角形来证PB=PQ,过点P作PF⊥BC于点F,PE⊥CD于点E,由于△PEC是等腰直角三角形,因此PE=EC,可得出四边形PECF是正方形,由此可得出PE=PF,根据同角的余角相等可得出∠FPB=∠QPE,这两个三角形中又有一组直角,因此构成了全等三角形判定条件中ASA的条件.根据全等三角形即可得出PB=PQ;; (2)根据题意画出图形,同(1)过点P作PF⊥BC于点F,PE⊥CD于点E可得出四边形PFCE是正方形,故PE=PF.由ASA定理得出△BPF≅△QPE,根据全等三角形的性质即可得出结论;; (3)延长BP交DC于G,可得出等腰△PCQ中,PC=QC,故可得出∠1=∠2,由直角三角形的性质得出∠5=∠3,在正方形ABCD中根据平行线的性质即可得出结论.【解答】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.。
2018-2019学年度第一学期八年级(上)期中数学试题(含答案).doc

2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学(满分:100分考试时间:100分钟)注意事项:1.选择题请用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.2.非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列“表情”中属于轴对称图案的是A. B. C. D.2.下列说法正确的是A .两个等边三角形一定全等B .形状相同的两个三角形全等C .面积相等的两个三角形全等D .全等三角形的面积一定相等3.下列长度的三条线段,能组成直角三角形的是 A .1,2,3B .2,3,4C .3,4,5D .4,5,64.在△ABC 中,AB =AC ,BD 为△ABC 的高,若∠BAC =40°,则∠CBD 的度数是 A .70°B .40°C .20°D .30°5.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A 的面积是 A .16 B .32 C .34 D .64925A(第5题)(第4题)ABCD6.到三角形三条边距离相等的点是A .三条边的垂直平分线的交点B .三条边上高的交点C .三条边上中线的交点D .三个内角平分线的交点7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′C ′B ′=∠ACB 的依据是A .SASB .SSSC .ASAD .AAS8.如图,长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′,点B 落在点B ′处.若∠2=40°,则∠1的度数为 A .115°B .120°C .130°D .140°二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卷.相应位置....上) 9.等边三角形有▲条对称轴.10.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则AC =▲.11.已知△ABC ≌△DEF ,且△DEF 的周长为12.若AB =5,BC =4,则AC =▲. 12.若等腰三角形的两边长分别为4和8,则这个三角形的周长为▲. 13.在等腰△ABC 中,AC =AB ,∠A =70°,则∠B =▲°.14.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB ,垂足为D ,CD =▲.15.如图,在等腰△ABC 中,AB =AC ,AD 为△ABC 的中线,∠B =72°,则∠DAC =▲°. 16.在Rt △ABC 中,∠C =90°,∠A =30°,D 是斜边AB 的中点,DE ⊥AC ,垂足为E ,DE =2,则AB =▲.(第7题) AC DBB ′A ′C ′D ′(第8题)1 2BB ′ CA ′ DEAF(第15题)DACBDACB(第14题)(第16题)ACBDE17.如图,△DEF 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形.若在图中再画1个格点△ABC (不包括△DEF ),使△ABC ≌△DEF ,这样的格点三角形能画▲个.18.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =4,M 在BC 上,且BM =1,N 是AC上一动点,则BN +MN 的最小值为▲.三、解答题(本大题共9小题,共64分.请在答题..卷.指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)已知:如图,在△ABC 中,DE ∥BC ,AD =AE .求证:AB =AC .20.(5分)如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个梯形(两底分别为a 、b ,高为a +b ),利用这个图形,小明验证了勾股定理.请将计算过程补充完整. 解:S 梯形=12(上底+下底)×高=12(a +b )•(a +b ),即S 梯形=12(▲).①S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =▲+▲+▲.即S 梯形=12(▲).②由①、②,得a 2+b 2=c 2.DE C(第19题)A(第20题)cⅢcⅡⅠb ba a(第17题)EDFMNABC(第18题)21.(6分)如图,育苗棚的顶部是长方形,求育苗棚顶部薄膜ABDE 的面积.22.(6分)已知:如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .23.(6分)如图,△ABC 是等边三角形,D 是BC 上任意一点(与点B 、C 不重合),以AD 为一边向右侧作等边△ADE ,连接CE .求证:△CAE ≌△BAD .FECBA(第22题)DCEA(第23题)B(第21题)E24.(7分)如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,CD =12,AD =13.求四边形ABCD 的面积.25.(8分)如图,在△ABC 中,∠C =90°.E 是AB 中点,DE ⊥AB ,垂足为E .若CD =ED ,求∠BAC ,∠B 的度数.26.(8分)如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 为AC 的中点.(1)求证:MB =MD .(2)若∠BAD =100°,求∠BMD 的度数.M(第26题)CABD (第24题)CBDA(第25题)BE DC27.(12分)在Rt △ABC 中,∠C =90°,将△ABC 沿着某条直线折叠.(1)若该直线经过点A ,且折叠后点C 落在AB 边上,请用直尺和圆规在图①中作出该直线(不写作法,保留作图痕迹); (2)若折叠后点A 与点B 重合.①请用直尺和圆规在图②中作出该直线(不写作法,保留作图痕迹); ②若图②中所画直线与AC 交于点P ,且AB =8,AP =5,求CP 的长.(第27题)AC图①AC图②2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计16分)二、填空题(每小题2分,共计20分)9.3 10.5 11.3 12.20 13.55 14.4.8 15.18 16.8 17.3 18.5三、解答题(本大题共9小题,共计64分) 19.(本题6分) 证明:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C .……………………………………………2分 ∵AD =AE ,∴∠ADE =∠AED . …………………………………………………………4分 ∴∠B =∠C . ………………………………………………………………5分 ∴AB =AC .……………………………………………………………………6分20.(本题5分)解:S 梯形=12(上底+下底)•高=12(a +b )•(a +b ),即S 梯形=12(a 2+2ab +b 2).①…………………………1分S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =12ab +12c 2+12ab .…………………………4分即S 梯形=12(c 2+2 ab ).②……………………………5分由①、②,得a 2+b 2=c 2.21.(本题6分)解:在Rt △ABC 中,∠ACB =90°,由勾股定理得:AB 2=AC 2+BC 2=22+1.52=6.25,∴AB =2.5(m ).…………3分∴S 四边形ABDE =2.5×20=50(m 2).……………………………………………5分 答:四边形ABDE 的面积是50m 2.……………………………………………6分 22.(本题6分)证明:∵AF =DC ,∴AF +FC =DC +FC .即AC =DF .………………………1分在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠A =∠D ,AC =DF .∴△ABC ≌△DEF (SAS ).…………………4分∴∠BCA =∠EFD .……………………………………………5分 ∴BC ∥EF .……………………………………………6分 23.(本题6分)证明:∵△ABC 和△ADE 是等边三角形,∴AC =AB ,AE =AD ,∠DAE =∠BAC =60°.………………………………3分 ∴∠DAE -∠CAD =∠BAC -∠CAD ,即∠CAE =∠BAD .………………4分 在△CAE 和△BAD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD .∴△CAE ≌△BAD (SAS ).………6分24.(本题7分)解:∵在△ABC 中,∠B =90°,AB =4,BC =3,∴AC =5.………………………2分在△ADC 中,AD =13,CD =12,AC =5. ∵122+52=132,即CD 2+AC 2=AD 2,∴△ADC 是直角三角形,且∠DCA =90°.……………………………………4分∴S 四边形ABCD =S △ABC +S △ADC =12AB •BC +12AC •CD =12×3×4+12×5×12=36.……7分25.(本题8分) 解:连接AD .∵∠C =90°,DE ⊥AB ,CD =ED , ∴点D 在∠BAC 的角平分线上.∴∠CAD =∠EAD .……………………………………………………………………2分 ∵E 是AB 中点,DE ⊥AB ,∴DB =DA .……………………………………………………………………4分 ∴∠DBA =∠DAB .……………………………………………………………………6分 ∵∠DBA +∠CAB =90°, ∴3∠DBA =90°. ∴∠DBA =30°.∴∠B =30°,∠BAC =60°.…………………………………………………………8分 26.(本题8分)(1)证明:∵∠ABC =∠ADC =90°,又∵M 为AC 的中点,∴MB =12AC ,MD =12AC .………………………………4分∴MB =MD .…………………………………………………………………………5分 (2)解:∵∠BAD =100°,∴∠BCD =360°-(∠ABC +∠ACB )-∠BAD =80°,……………………………6分 ∵MB =MC =MD ,∴∠MBC =∠MCB ,∠MCD =∠MDC .……………………………………………7分 ∴∠BMD =∠BMA +∠DMA =2∠BCA +2∠DCA =2∠ACB =2×80°=160°.……8分27.(本题12分)解:(1)如图,直线AD 即为所求.…………………………………………………3分(2)①如图,直线MN 即为所求.……………………………………………………6分②由①中的作图得:AP =PB .…………………………………………………7分 ∵∠C =90º,∴ △BCP 和△ACB 是直角三角形. 在Rt △ABC 中,∵AC 2+CB 2=AB 2,∴BC 2=AB 2-AC 2.………………………………………8分 在Rt △PCB 中,∵PC 2+CB 2=PB 2,∴ BC 2=PB 2-CP 2.………………………………………9分 ∴ AB 2-AC 2=PB 2-CP 2. 设CP =x ,则AC =5+x ,52-x 2=82-(5+x )2.……………………………………………………………11分 ∴ x =1.4.即CP 的长为1.4.…………………………12分.ACDBBCAPMN。
2018-2019(含答案)八年级(上)期中数学试卷 (9)

2018-2019(含答案)八年级(上)期中数学试卷 (9).................................................................................................................................................................2018.10.22一、选择题(将正确答案序号填入下表相应的空格内,每小题3分,共20分)1.下列标志中,可以看作是轴对称图形的是()A. B.C. D.2.在一个三角形的外角中,钝角至少有()A.个B.个C.个D.个3.已知等腰三角形中,腰,底,则这个三角形的周长为()A. B. C. D.4.将的三个顶点坐标的横坐标都乘以,并保持纵坐标不变,则所得图形与原图形的关系是()A.关于轴对称B.关于轴对称C.关于原点对称D.将原图形沿轴的负方向平移了个单位5.如果一个多边形的内角和是,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形6.如图所示,三角形纸片中,有一个角为,剪去这个角后,得到一个四边形,则的度数为()A. B. C. D.7.如图,在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,作直线,交于点,连接.若的周长为,,则的周长为()A. B. C. D.8.下面四个图形中,线段是的高的图是()A. B.C. D.9.如图所示,,,,结论:① ;② ;③ ;④ .其中正确的有()A.个B.个C.个D.个10.已知:点、是的边上的两个点,且,的度数是()A. B. C. D.二、填空题(每小题2分,共20分)11.如图所示,图中的的值是________.12.如图,点在的平分线上,于,于,若,则________.13.如图是由射线,,,,组成的平面图形,则________.14.如图,在中,点是上一点,,,则________度.15.如图,已知中,,点、在上,要使,则只需添加一个适当的条件是________.(只填一个即可)16.如图,中,,,平分,平分,经过点,与、相交于点、,且,则的周长等于________.17.如图,,,若为,,则________.18.如图,在平面直角坐标系中,点在第一象限,点在轴上,若以,,为顶点的三角形是等腰三角形,则满足条件的点共有________个.三、解答题(8分)19.如图,五边形的内角都相等,且,,求的值.四、作图解答题(8分)20.如图,已知,,.为上一点,且到,两点的距离相等.用直尺和圆规,作出点的位置(不写作法,保留作图痕迹);连结,若,求的度数.五、解答题(8分)21.如图,在平面直角坐标系中的位置如图所示.画出关于轴对称的,并写出各顶点坐标;将向左平移个单位,作出平移后的,并写出的坐标.六、解答题(8分)22.如图,,,,求证:.七、解答题(8分)23.如图,等边三角形中,是的中点,为延长线上一点,且,,垂足为.求证:是的中点.八、解答题(8分)24.如图,过平分线上一点作交于点,是线段的中点,请过点画直线分别交射线、于点、,探究线段、、之间的数量关系,并证明你的结论.答案1. 【答案】C【解析】根据轴对称图形的概念,可得答案.【解答】解:、是中心对称图形,故错误;、是中心对称图形,故正确;、是轴对称图形,故正确;、是中心对称图形,故错误;故选:.2. 【答案】C【解析】因为三角形的内角和为,所以至少有两个锐角,因为外角和相邻的内角互补,所以外角中至少有两个钝角.【解答】解:一个三角形的三个内角中,至少有两个锐角,三个外角中至少有两个钝角.故选.3. 【答案】A【解析】由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解.【解答】解:.故这个三角形的周长为.故选:.4. 【答案】B【解析】熟悉:平面直角坐标系中任意一点,分别关于轴的对称点的坐标是,关于轴的对称点的坐标是.【解答】解:根据对称的性质,得三个顶点坐标的横坐标都乘以,并保持纵坐标不变,就是横坐标变成相反数.即所得到的点与原来的点关于轴对称.故选.5. 【答案】C【解析】边形的内角和可以表示成,设这个正多边形的边数是,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是,则,解得:.则这个正多边形的边数是.故选:.6. 【答案】C【解析】三角形纸片中,剪去其中一个的角后变成四边形,则根据多边形的内角和等于即可求得的度数.【解答】解:∵ ,∴ .∵四边形的内角和等于,∴ .故选.7. 【答案】C【解析】首先根据题意可得是的垂直平分线,即可得,又由的周长为,求得的长,则可求得的周长.【解答】解:∵在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,作直线,交于点,连接.∴ 是的垂直平分线,∴ ,∵ 的周长为,∴ ,∵ ,∴ 的周长为:.故选.8. 【答案】D【解析】根据高的画法知,过点作边上的高,垂足为,其中线段是的高.【解答】解:线段是的高的图是.故选.9. 【答案】C【解析】根据已知的条件,可由判定,进而可根据全等三角形得出的结论来判断各选项是否正确.【解答】解:∵,∴ ;∴ ,∴ ,即;(故③正确)又∵ ,,∴ ;∴ ;(故①正确)由知:,;又∵ ,∴ ;(故④正确)由于条件不足,无法证得② ;故正确的结论有:①③④;故选.10. 【答案】B【解析】根据等边三角形的性质,得,再根据等腰三角形的性质和三角形的外角的性质求得,从而求解.【解答】解:∵ ,∴ ,,.又∵ ,,∴ .∴ .故的度数是.故选:.11. 【答案】【解析】根据四边形内角和等于列出方程求解即可.【解答】解:依题意有:,解得.故答案为:.12. 【答案】【解析】由点在的平分线上,丄于,丄于,根据角平分线上的点到角的两边的距离相等得到.【解答】解:∵点在的平分线上,丄于,丄于,∴ ,而,∴ .故答案为:.13. 【答案】【解析】首先根据图示,可得,,,,,然后根据三角形的内角和定理,求出五边形的内角和是多少,再用减去五边形的内角和,求出等于多少即可.【解答】解:.故答案为:.14. 【答案】【解析】本题考查的是三角形内角和定理,三角形外角与外角性质以及等腰三角形的性质.由可得,易求解.【解答】解:∵ ,,∴ ,由三角形外角与外角性质可得,又∵ ,∴,∴ .15. 【答案】【解析】此题是一道开放型的题目,答案不唯一,如,根据推出即可;也可以等.【解答】解:,理由是:∵ ,∴ ,在和中,,∴ ,故答案为:.16. 【答案】【解析】根据平分,平分,且,可得出,,所以三角形的周长是.【解答】解:∵ 平分,平分,∴ ,,∵ ,∴ ,,∴ ,,∴ ,,∵ ,,∴ 的周长.故答案为:.17. 【答案】【解析】首先证明为等边三角形,然后依据证明全等,从而可得到,然后依据等腰三角形三线合一的性质可得到,从而可求得的长,故此可得到的长.【解答】解:在和中,∴ .∴ .又∵ ,∴ .∴ .∵ ,,∴ 为等边三角形.∴ .故答案为:.18. 【答案】或【解析】分为三种情况:① ,② ,③ ,分别画出即可.【解答】解:以为圆心,以为半径画弧交轴于点和,此时三角形是等腰三角形,即个;以为圆心,以为半径画弧交轴于点 ″(除外),此时三角形是等腰三角形,即个;作的垂直平分线交轴于一点,则,此时三角形是等腰三角形,即个;,当与轴正半轴夹角等于的时候,图中的,和会重合,是一个点,加上原来的负半轴的点,总共个点,故答案为或.19. 【答案】解:因为五边形的内角和是,则每个内角为,∴ ,又∵ ,,由三角形内角和定理可知,,∴ .【解析】由五边形的内角都相等,先求出五边形的每个内角度数,再求出,从而求出度.【解答】解:因为五边形的内角和是,则每个内角为,∴ ,又∵ ,,由三角形内角和定理可知,,∴ .20. 【答案】解:如图所示:点即为所求;; 在中,,∴ ,又∵ ,∴ ,∴ .【解析】利用线段垂直平分线的作法得出点坐标即可;; 利用线段垂直平分线的性质得出,,进而求出即可.【解答】解:如图所示:点即为所求;; 在中,,∴ ,又∵ ,∴ ,∴ .21. 【答案】解:如图,即为所求,,,;; 如图,即为所求,,.【解析】作出各点关于轴的对称点,再顺次连接,并写出各点坐标即可;; 根据图形平移的性质作出平移后的,并写出的坐标.【解答】解:如图,即为所求,,,;; 如图,即为所求,,.22. 【答案】证明:∵ ,∴ ,即,在和中∴ ,∴ .【解析】由条件证明即可.【解答】证明:∵ ,∴ ,即,在和中∴ ,∴ .23. 【答案】证明:连接,∵等边三角形中,是的中点,∴ ,∵ ,∴,∴ ,又∵ ,垂足为,∴ 是的中点.【解析】要证是的中点,根据题意可知,证明为等腰三角形,利用等腰三角形的高和中线向重合即可得证.【解答】证明:连接,∵等边三角形中,是的中点,∴ ,∵ ,∴,∴ ,又∵ ,垂足为,∴ 是的中点.24. 【答案】解:线段、、之间的数量关系是:.证明:∵ 是的平分线,∴ ,又∵ ,∴ ,∴ ,∴ ,∵ 是线段的中点,∴ ,∵ ,∴,∴ ,又∵ ,∴ .【解析】首先根据是的平分线,,判断出,所以;然后根据是线段的中点,,推得,即可判断出,据此解答即可.【解答】解:线段、、之间的数量关系是:.证明:∵ 是的平分线,∴ ,又∵ ,∴ ,∴ ,∴ ,∵ 是线段的中点,∴ ,∵ ,∴,∴ ,又∵ ,∴ .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年福建省泉州市安溪县八年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.下列实数中属于无理数的是()C. πD. √4A. 3.14B. 2272.下列算式中,结果等于a5的是()A. a2+a3B. a2⋅a3C. (a2)3D. a10÷a23.计算(x-3)(x+2)的结果是()A. x2−6B. x2−5x+6C. x2−x−6D. x2−5x−64.下列命题中,是真命题的是()A. 任何数都有平方根B. 只有正数才有平方根C. 负数没有立方根D. 存在算术平方根等于本身的数5.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A. BD=CDB. AB=ACC. ∠B=∠CD. ∠BAD=∠CAD6.若x2+mx+9是一个完全平方式,则m的值是()A. ±6B. 6C. −6D. 无法确定7.对于命题“若a2>b2,则a>b.”下列关于a,b的值中,能说明这个命题是假命题的是()A. a=2,b=3B. a=−3,b=2C. a=3,b=−2D. a=−2,b=38.若a,b是实数,则2(a2+b2)(a+b)2的值必是()A. 正数B. 负数C. 非正数D. 非负数9.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A. (a+b)(a−b)=a2−b2B. (a−b)2=a2−2ab+b2C. (a+b)2=a2+2ab+b2D. (a+b)2=(a−b)2+4ab10.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;A. ①②③B. ①②④C. ①②D. ①②③④二、填空题(本大题共6小题,共24.0分)11. 16的平方根是______. 12. 比较大小:√10______3.(填“>”、“=”或“<”)13. 若a x =6,a y =2,则a x -y =______.14. 若多项式与单项式2a 2b 的积是6a 3b -2a 2b 2,则该多项式为______.15. 如图,已知△ABC ≌△DCB ,若∠A =75°,∠ACB =45°,则∠ACD =______度.16. 已知a ≥0时,√a 2=a .请你根据这个结论直接填空:(1)√9=______;(2)若x +1=20182+20192,则√2x +1=______.三、计算题(本大题共4小题,共36.0分)17. 计算:20×√425-√−273+3÷(-13) 18.先化简,再求值:(2x +1)(2x -1)-x (4x -3),其中x =-2. 19.已知实数x ,y 满足√2x +3y −1+|x -3y -5|=0,求4x -y 的平方根. 20. 规定两数a ,b 之间的一种运算,记作(a ,b ):如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30)四、解答题(本大题共5小题,共50.0分)21.分解因式:(1)3a2-27(2)2ax2-4ax+2a22.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.23.如图,在一张长为a,宽为b(a>b>2)的长方形纸片上的四个角处各剪去一个边长为1的小正方形,然后做成一个无盖的长方体盒子.(1)做成的长方体盒子的体积为______(用含a,b的代数式表示);(2)若长方形纸片的周长为30,面积为100,求做成的长方体盒子的体积.24.如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,过D作DE⊥AB交AC于点E,BC=BD,连结CD交BE于点F.(1)求证:CE=DE;(2)若点D为AB的中点,求∠AED的度数.25.(1)如图1,在正方形ABCD中,E、F分别是边BC、CD上的点,且∠EAF=45°,把△ADF绕着点A顺时针旋转90°得到△ABG,请直接写出图中所有的全等三角形;(2)在四边形ABCD中,AB=AD,∠B=∠D=90°.①如图2,若E、F分别是边BC、CD上的点,且2∠EAF=∠BAD,求证:EF=BE+DF;②若E、F分别是边BC、CD延长线上的点,且2∠EAF=∠BAD,①中的结论是否仍然成立?请说明理由.答案和解析1.【答案】C【解析】解:因为=2是整数,3.14、是分数由于整数和分数统称有理数,所以A、B、D是有理数,π是无限不循环小数,是无理数.故选:C.根据有理数、无理数的定义,直接给出判断即可.本题主要考查了无理数的定义,注意带根号且开不尽方的是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等.2.【答案】B【解析】解:A、a2+a3,无法计算,故此选项错误;B、a2•a3=a5,正确;C、(a2)3=a6,故此选项错误;D、a10÷a2=a8,故此选项错误;故选:B.直接利用同底数幂的乘除运算法则以及合并同类项法则分别计算得出答案.此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.【答案】C【解析】解:(x-3)(x+2)=x2+2x-3x-6=x2-x-6;故选:C.多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是4.【答案】D【解析】解:A、因负数没有平方根,故任何数都有平方根错误;B、因0的平方根是0,故只有正数才有平方根错误;C、负数有立方根,错误;D、存在算术平方根等于本身的数,即是1和0,正确.故选:D.根据平方根的定义,结合正数有两个平方根;0的平方根是0;负数没有平方根逐一进行判定即可.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.5.【答案】B【解析】解:A、∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选:B.利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.【答案】A【解析】解:∵x2+mx+9是一个完全平方式,故选:A.根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方即可求出m的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.【答案】B【解析】解:在A中,a2=4,b2=9,且3>2,此时不但不满足a2>b2,也不满足a>b不成立故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=2,且-2<3,此时满足满足a2>b2,但不能满足a>b,即意味着命题“若a2>b2,则a>b”不能成立,故B选项中a、b的值能说明命题为假命题;在C中,a2=9,b2=4,且3>-2,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=4,b2=9,且-2<3,此时不但不满足a2>b2,也不满足a>b不成立,故D选项中a、b的值不能说明命题为假命题;故选:B.说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.8.【答案】D【解析】解:∵a2≥0,b2≥0,(a+b)2≥0,∴2(a2+b2)(a+b)2的值必是非负数.故选:D.直接利用偶次方的性质分析得出答案.此题主要考查了非负数的性质,正确把握偶次方的性质是解题关键.9.【答案】B【解析】解:根据题意得:(a-b)2=a2-2ab+b2,故选:B.根据图形确定出图1与图2的面积,即可作出判断.此题考查了完全平方公式的几何背景,弄清阴影部分面积的求法是解本题的关键.10.【答案】A【解析】解:∵∠EAF=∠BAC,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△FAB≌△EAC(SAS),故①正确,∴BF=EC,故②正确,∴∠ABF=∠ACE,∵∠BDF=∠ADC,∴∠BFD=∠DAC,∴∠BFD=∠EAF,故③正确,无法判断AB=BC,故④错误,故选:A.想办法证明△FAB≌△EAC(SAS),利用全等三角形的性质即可解决问题;本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.11.【答案】±4【解析】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【答案】>【解析】解:∵32=9<10,∴>3,故答案为:>.先求出3=,再比较即可.本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.13.【答案】3【解析】解:∵a x=6,a y=2,∴a x-y=a x÷a y=6÷2=3.故答案为:3.直接利用同底数幂的乘除运算法则计算得出答案.此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.14.【答案】3a-b【解析】解:∵多项式与单项式2a2b的积是6a3b-2a2b2,∴该多项式为:(6a3b-2a2b2)÷2a2b=3a-b.故答案为:3a-b.直接利用整式的除法运算法则计算得出答案.此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.15.【答案】15【解析】解:∵∠A=75°,∠ACB=45°,∴∠ABC=60°,∵△ABC≌△DCB,∴∠DCB=∠ABC=60°,∴∠ACD=∠DCB-∠ACB=15°,故答案为:15.根据三角形内角和定理求出∠ABC的度数,根据全等三角形的性质求出∠DCB的度数,计算即可.本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.16.【答案】3 4037【解析】解:(1)==3,故答案为:3;(2)∵x+1=20182+20192=20182+(2018+1)2=20182+20182+2×2018+1=2×20182+2×2018+1,∴x=2×20182+2×2018,则===2×2018+1=4037,故答案为:4037.(1)由=根据二次根式性质可得;(2)由x+1=20182+20192=2×20182+2×2018+1得x=2×20182+2×2018,代入得==,从而得出答案.本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质和完全平方公式的应用.17.【答案】解:原式=20×2-(-3)+3×(-3)5=8+3-9=2.【解析】先计算算术平方根、立方根、将除法转化为乘法,再计算乘法,最后计算加减可得.本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序和运算法则.18.【答案】解:原式=4x 2-1-4x 2+3x =3x -1,当x =-2时,原式=3×(-2)-1=-6-1=-7.【解析】原式去括号合并得到最简结果,把x 的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 19.【答案】解:∵√2x +3y −1+|x -3y -5|=0,∴{x −3y =52x+3y=1,解得:{y =−1x=2,∴4x -y =8-(-1)=8+1=9,∵9的平方根是±3, ∴4x -y 的平方根是±3. 【解析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,代入计算即可求出所求.此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.20.【答案】3 2 3【解析】解:(1)53=125,(5,125)=3,(-2)2=4,(-2,4)=2,(-2)3=-8,(-2,-8)=3,故答案为:3;2;3;(2)设(4,5)=x ,(4,6)=y ,(4,30)=z ,则4x =5,4y =6,4z =30,4x ×4y =4x+y =30,∴x+y=z ,即(4,5)+(4,6)=(4,30).(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算.本题考查的是幂的乘方和积的乘方以及有理数的混合运算,掌握幂的乘方和积的乘方法则是解题的关键.21.【答案】解:(1)原式=3(a2-9)=3(a+3)(a-3);(2)原式=2a(x2-2x+1)=2a(x-1)2.【解析】(1)直接提取公因式3,再利用平方差公式分解因式即可;(2)直接提取公因式2a,再利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.22.【答案】证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.【解析】由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.本题考查了全等三角形的判定和性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,要结合判定方法及已知的位置进行选择运用.23.【答案】ab-2a-2b+4【解析】解:(1)做成的长方体盒子的体积为1×(a-1-1)(b-1-1)=(a-2)(b-2)=ab-2a-2b+4,故答案为:ab-2a-2b+4;(2)∵长方形的周长为30,∴2(a+b)=30,即a+b=15,∵长方形的面积为100,∴ab=100,∴ab-2a-2b+4=ab-2(a+b)+4=100-2×15+4=74.(1)根据底面积乘以高求出体积即可;(2)根据已知求出ab=100,a+b=15,变形后代入,即可求出答案.本题考查了整式的运算法则和列代数式,能根据题意列出代数式是解此题的关键.24.【答案】(1)证明:∵DE⊥AB,∠ACB=90°,∴△BCE与△BDE都是直角三角形,在Rt△BCE与Rt△BDE中,BE=BE{BC=BD∴Rt△BCE≌Rt△BDE(HL),∴CE=DE.(2)∵DE⊥AB,∴∠ADE=∠BDE=90°,∵点D为AB的中点,∴AD=BD,又∵DE=DE,∴△ADE≌△BDE(SAS),∴∠AED=∠DEB,∵△BCE≌△BDE(已证),∴∠CEB=∠DEB,∴∠AED=∠DEB=∠CEB,∵∠AED+∠DEB+∠CEB=180°,∴∠AED=60°.【解析】(1)根据HL证明Rt△BCE≌Rt△BDE即可;(2)想办法证明∠AED=∠DEB=∠CEB即可解决问题;本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.【答案】解:(1)由△ADF绕着点A顺时针旋转90°得到△ABG知△ADF≌△ABG,∴AG=AF,∠DAF=∠BAG,∵四边形ABCD是正方形,∴∠BAD=90°,即∠BAE+∠EAF+∠DAF=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°,即∠EAG=45°,则∠EAG=∠EAF,∵AE=AE,∴△EAG≌△EAF(SAS),故图中全等的三角形有:△ADF≌△ABG,△EAG≌△EAF;(2)①如图2,将△ADF绕着点A顺时针旋转,使AD与AB重合,得△ABG,∵AB=AD,∠ABC=∠D=90°,∴∠ABC+∠ABG=180°,即∠GBC=180°,由旋转知△ADF≌△ABG,∴∠DAF=∠BAG,AF=AG,DF=BG,∵2∠EAF=∠BAD,∴∠EAF=∠BAE+∠DAF=∠BAE+∠BAG=∠EAG,∵AE=AE,∴△AEF≌△AEG(SAS),∴EF=EG=BE+BG=BE+DF,即EF=BE+DF;②不成立,理由如下:如图3,将△ADF绕着点A顺时针旋转,使AD与AB重合,得△ABH,∵AB=AD,∠B=∠ADC=∠ADF=90°,∴点H在BC上,易得AF=AH,BH=DF,∠1=∠2,∴∠EAF=∠EAD+∠1=∠EAD+∠2,∵2∠EAF=∠BAD=∠EAD+∠2+∠EAH,∴∠EAF=∠EAH,又∵AE=AE,∴△AEF≌△AEH(SAS),∴EF=EH=BE-BH=BE-DF,即EF=BE-DF,∴①中的结论不成立.【解析】(1)由旋转的性质知△ADF≌△ABG,据此得AG=AF,∠DAF=∠BAG,再证∠EAG=∠EAF得△EAG≌△EAF;(2)①思路和作辅助线的方法与(1)完全一样,只不过证明三角形ABG和ADF全等中,证明∠ABG=∠ADF时,用到的等角的补角相等,其他的都一样.因此与(1)的结果完全一样.②按照(1)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BH,使BH=DF,连接AH.根据(1)的证法,我们可得出DF=BH,HE=EF,那么EF=HE=BE-BH=BE-DF.所以(1)的结论在(3)的条件下是不成立的.本题考查了四边形的综合问题,主要考查旋转的性质,全等三角形的判定与性质,正方形的性质,作辅助线构造全等三角形是解题的关键.。