分子生物学基础知识
分子生物学基础知识点

分子生物学基础知识点分子生物学是研究生物体内分子结构与功能的学科,主要研究生物分子的组成、结构、功能以及其在生命过程中的调控。
下面将从DNA、RNA、蛋白质和基因调控四个方面,介绍分子生物学的基础知识点。
DNA(脱氧核糖核酸)DNA是细胞的基因遗传物质,由鸟嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)和胞嘧啶(C)四个碱基组成。
DNA通过碱基配对的方式,以双螺旋结构存在,形成了著名的DNA双螺旋结构。
DNA 的重要性体现在多个方面,其中包括:1. 遗传信息的传递:DNA携带了生物个体的遗传信息,通过遗传物质的传递实现了物种遗传的延续。
2. DNA复制:DNA能够通过复制过程产生与自身一模一样的新的DNA分子,确保细胞的遗传信息能够传递给下一代细胞。
3. DNA修复:细胞会受到环境因素的影响,导致DNA损伤。
细胞通过DNA修复机制,修复受损的DNA,维持DNA的完整性。
RNA(核糖核酸)RNA也是生物分子的一种,由鸟嘌呤(G)、尿嘧啶(U)、腺嘌呤(A)和胞嘧啶(C)四个碱基组成。
与DNA不同,RNA通过单链结构存在,包括了信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA(rRNA)等不同类型。
RNA的重要性主要在于:1. 转录:RNA通过转录过程,可以将DNA的遗传信息转录成RNA 分子,为蛋白质的合成提供模板。
2. 翻译:mRNA进入到细胞质中,参与到蛋白质的合成过程中,被tRNA识别并翻译成相应的氨基酸序列,进而组装成蛋白质。
3. 调控功能:RNA还可以通过miRNA、siRNA等形式参与到基因的调控过程中,影响蛋白质合成的速率和用途。
蛋白质蛋白质是生物体内功能最为复杂和多样的分子。
蛋白质的组成由氨基酸构成,共有20种氨基酸,通过肽键连接形成多肽链,进而折叠形成特定的三维结构。
蛋白质的重要性体现在:1. 功能和结构:蛋白质具有多样的功能和结构,是细胞的工作驱动力,包括酶、结构蛋白、抗体等。
分子生物学基础知识

五、核酸的理化性质及应用
(一) 一般理化 1、性粘度质
DNA > RNA 2、沉降系数
DNA >> RNA 3、酸碱性质
DNA pI 4~4.5 ,pH 4.0 ~ 11.0 稳定,提取 RNA pI 2~2.5 提取左右,混有很少DNA污染
(二) 紫外吸收 特征 1、碱基的行为表现 —— 共轭双键在260nm有最大吸收
DNA 分子中碱基间电子的互相作用是紫外吸收的构造根底, 但双螺旋构造有序堆积的碱基又 “ 束缚 〞 了这种作用。变性 DNA的双链解开,碱基中电子的互相作用更有利于紫外吸收, 故而产生增色效应。
4、复性:变性的DNA在适当的温度、一定离子强度条件下, 给以足够的时间重新缔合形成双螺旋的过程,称为复性。 5、影响复性的因素:
甲基化,甲羟化,乙酰化等
(二) RNA的种类:
1、参与基因表达的RNA
① 信使RNA〔mRNA〕:遗传信息的传递,翻译模板 ② 转运RNA 〔tRNA〕:氨基酸载体 ③ 核糖体RNA 〔rRNA〕:提供蛋白质合成的场所
2、核不均一RNA〔hnRNA〕:mRNA的前体 3、核内小RNA 〔snRNA〕:参与hnRNA的剪接、转运 4、 核仁小RNA〔snoRNA〕:参与rRNA的加工修饰 5、胞质小RNA 〔hnRNA〕: 运输新合成的Pr到高尔基体加工 6、小片段干扰RNA〔siRNA〕:诱发外源mRNA的降解
分子生物学基础知识
一、核酸分子的根本组成
脱氧核糖核酸 (deoxyribonucleic acid, DNA)
核苷酸
核糖核酸 (ribonucleic acid, RNA)
核糖
戊糖
核苷
脱氧核糖碱基 磷酸 Nhomakorabea嘌呤 嘧啶
分子生物学基础知识(两篇)2024

引言概述:分子生物学是一个关于生物体内分子结构、功能和相互作用的研究领域。
它涵盖了遗传物质DNA与RNA的复制、转录和翻译过程,以及蛋白质的合成、修饰和功能调控等方面。
在本文中,我们将继续探讨分子生物学的基础知识,为读者提供更深入的了解。
正文内容:一、DNA复制1.DNA复制的意义和基本原理2.DNA双螺旋结构的解开3.DNA复制酶的作用和分类4.模板链与新合成链的配对规则5.DNA复制的错误修复机制二、转录和RNA合成1.转录的基本概念和意义2.RNA聚合酶的作用和机制3.RNA合成的调控方式4.剪接和RNA后修饰5.转录的异质性和后转录调控三、翻译和蛋白质合成1.翻译的基本原理和意义2.tRNA的结构和功能3.翻译的起始、延伸和终止机制4.翻译后修饰和蛋白质的折叠5.翻译的调控途径和功能多样性四、蛋白质的修饰和功能调控1.蛋白质修饰的类型和作用2.磷酸化和酶的调控3.乙酰化和转录因子的激活4.泛素化和蛋白降解的调控5.蛋白质的定位和分子交互作用五、分子生物学技术1.聚合酶链式反应(PCR)和其应用2.荧光标记和共定位技术3.基因克隆和基因工程的原理4.单细胞测序和组学研究方法5.CRISPRCas9基因编辑技术和应用总结:分子生物学是现代生命科学领域中至关重要的一个分支,它研究了生物体内分子水平上的各种基本过程和调控机制。
本文逐一介绍了DNA复制、转录和RNA合成、翻译和蛋白质合成、蛋白质的修饰和功能调控以及分子生物学技术等方面的基础知识。
通过深入了解这些内容,读者将能更好地理解生物体的基本生命过程,并为进一步的研究和应用奠定扎实的基础。
引言概述:分子生物学是研究生物体内的分子结构、生物的化学组成、分子间相互作用以及分子在生物体内的功能和调控的学科。
对分子生物学基础知识的理解是理解生物学的基础,它涵盖了DNA的结构和功能、RNA的生物合成、基因表达调控、蛋白质合成等重要内容。
在本文中,我们将深入探讨分子生物学的基础知识。
临床分子生物学检验复习提纲

临床分子生物学检验复习提纲临床分子生物学是现代医学中非常重要的一个领域,它涉及到了分子生物学和临床医学的结合,以及各种分子生物学技术在临床诊断和治疗中的应用。
以下是一个临床分子生物学检验的复习提纲,希望能够帮助你更好地准备考试。
一、分子生物学基础知识复习1.DNA结构和功能-核苷酸的组成和结构-DNA链的方向性-DNA的雙螺旋结构-DNA复制的过程2.RNA结构和功能-mRNA、tRNA和rRNA的结构和功能-转录和翻译的过程3.基因组和染色体-基因组的组成和结构-染色体结构和功能-遗传密码子表4.基因表达调控-转录调控的机制-翻译调控的机制-转录后调控的机制5.基因突变和遗传变异-突变的类型和机制-染色体缺失、重复和易位等遗传变异二、临床分子生物学技术复习1.PCR技术-PCR的原理和步骤-PCR引物设计和优化-PCR产物的检测和分析2.DNA测序技术- Sanger测序法的原理和步骤-高通量测序技术的原理和应用3.基因组学研究技术-基因芯片技术的原理和应用-下一代测序技术在基因组学研究中的应用4.基因突变检测技术-PCR-RFLP分析-聚合酶链反应单链构象多态性分析-测序检测技术在基因突变检测中的应用5.基因表达分析技术-实时荧光定量PCR- Northern blotting-基因芯片技术在基因表达分析中的应用三、临床分子诊断和治疗复习1.临床遗传病的分子诊断-基因突变检测在临床遗传病诊断中的应用-基因芯片技术在临床遗传病诊断中的应用-高通量测序技术在临床遗传病诊断中的应用2.分子病理学的应用-分子病理学技术在肿瘤诊断中的应用-微卫星不稳定性的检测和分析-液体活检技术在肿瘤诊断中的应用3.分子靶向治疗技术-靶向药物的分子设计原理-靶向药物的应用和限制-基因突变检测在靶向治疗中的应用4.群体遗传学和个体化医疗-群体遗传学研究的意义和方法-个体化医疗的概念和发展-药物基因组学在个体化医疗中的应用。
分子生物学基础

分子生物学基础分子生物学是研究生物体内生命活动的最基本单位——分子的结构、功能和相互关系的科学。
它是现代生物学的重要分支之一,为我们深入了解生命的奥秘提供了强有力的工具和理论支持。
本文将从基本概念、研究方法和应用等几个方面介绍分子生物学的基础知识。
一、基本概念1.1 DNA与RNADNA(脱氧核糖核酸)是构成遗传信息的分子。
它由核苷酸组成,包括脱氧核糖骨架、磷酸基团和四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶)。
1.2 基因基因是遗传信息的基本单位。
它位于DNA上,通过转录形成RNA,并最终编码成蛋白质。
基因不仅决定了生物个体的遗传特征,还参与了生命过程的调控。
1.3 蛋白质蛋白质是生物体内最重要的功能性分子,负责维持生命的各种活动。
它由氨基酸经肽键连接而成,结构多样,功能多样。
二、研究方法2.1 基因克隆基因克隆是分子生物学中常用的技术手段之一。
通过将DNA片段插入载体(如质粒),再将其导入宿主细胞,使其进行复制和表达,从而研究基因的功能和调控。
2.2 PCR技术PCR(聚合酶链反应)是分子生物学中的一项重要技术。
它通过在体外扩增特定DNA片段,使其数量呈指数级增加,为基因分析和研究提供了高效、快速的手段。
2.3 基因测序基因测序是获得DNA和RNA序列信息的技术。
通过测定DNA或RNA中碱基的排列顺序,可以揭示基因的结构、功能和调控机制,为分子生物学研究提供重要依据。
三、应用领域3.1 基因治疗基因治疗是利用分子生物学的手段来治疗因基因突变引起的疾病。
通过修复、替换或增强患者体内的异常基因,实现疾病的治愈或控制。
3.2 基因工程基因工程是将外源基因导入宿主细胞,使其产生特定的蛋白质或表现特定的性状。
这对农业、医学和工业等领域都有着广泛的应用。
3.3 基因组学基因组学是研究生物体基因组的结构、功能和调控的学科。
它通过对整个基因组的研究,揭示了生命现象的复杂性和多样性。
四、结语分子生物学作为现代生物学的重要组成部分,为我们认识生命的奥秘提供了独特的视角和方法。
公共基础知识分子生物学基础知识概述

《分子生物学基础知识概述》一、引言分子生物学是一门在生命科学领域中具有核心地位的学科,它深入研究生物大分子的结构、功能和相互作用,为我们理解生命现象的本质提供了关键的理论和技术支持。
从揭示遗传信息的传递规律到开发新型生物技术,分子生物学的发展深刻地改变了我们对生命的认识和改造自然的能力。
本文将全面阐述分子生物学的基础知识,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、基本概念1. 生物大分子分子生物学主要研究生物大分子,包括核酸(DNA 和 RNA)、蛋白质和多糖。
DNA 是遗传信息的携带者,通过特定的碱基序列编码生物体的遗传信息。
RNA 在遗传信息的表达中起着重要作用,包括信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体 RNA(rRNA)等。
蛋白质是生命活动的主要执行者,具有各种催化、结构和调节功能。
多糖则在细胞结构和信号传导等方面发挥着重要作用。
2. 中心法则中心法则是分子生物学的核心概念之一,它描述了遗传信息从DNA 到 RNA 再到蛋白质的传递过程。
DNA 通过复制将遗传信息传递给子代细胞,同时通过转录将遗传信息转化为 RNA,RNA 再通过翻译合成蛋白质。
中心法则的发现为我们理解生命的遗传和进化提供了重要的理论基础。
3. 基因基因是具有遗传效应的 DNA 片段,它决定了生物体的遗传特征。
基因通过编码蛋白质或 RNA 来控制生物体的生长、发育和代谢等生命活动。
基因的表达受到多种因素的调控,包括转录因子、表观遗传修饰和环境因素等。
三、核心理论1. 核酸的结构与功能DNA 具有双螺旋结构,由两条反向平行的脱氧核苷酸链组成,通过碱基互补配对原则结合在一起。
DNA 的结构稳定性为遗传信息的准确传递提供了保障。
RNA 则具有多种结构形式,包括单链、双链和环状等,不同的 RNA 分子在生命活动中发挥着不同的功能。
2. 蛋白质的结构与功能蛋白质的结构决定了其功能。
蛋白质的一级结构是指氨基酸的线性序列,二级结构包括α-螺旋和β-折叠等,三级结构是由二级结构进一步折叠形成的三维结构,四级结构是由多个亚基组成的蛋白质复合物。
(完整版)分子生物学知识点归纳

分子生物学1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。
2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。
3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。
4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。
甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。
真核生物中的DNA甲基化则在基因表达调控中有重要作用。
真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’.5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。
“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。
6.DNA双螺旋结构模型要点:(1)DNA是反向平行的互补双链结构。
(2)DNA双链是右手螺旋结构。
螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。
每个碱基旋转角度为36度。
DNA双螺旋分子表面存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。
(3)疏水力和氢键维系DNA双螺旋结构的稳定。
DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。
7.核小体的组成:染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。
各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。
核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。
8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。
9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。
分子生物学的知识点

基因的表达调控是分子生物学的重要研究内容之一。它包括转录调控和翻译调控两个层次。转录调控通过转录因子的结合来调节基因的转录水平,而翻译调控则通过调控mRNA的翻译过程来控制蛋白质的合成。
5.基因突变和遗传疾病
基因突变是指基因序列发生改变,它可以导致基因功能的改变或丧失。一些基因突变与遗传疾病的发生有关,如遗传性疾病、癌症等。通过研机制,并为疾病的预防和治疗提供理论基础。
2. RNA的结构和功能
RNA是DNA的转录产物,也是生物体内的重要分子。它由核苷酸组成,包括腺苷酸、鸟苷酸、胸苷酸和尿苷酸。RNA的结构包括mRNA、tRNA和rRNA等不同类型,它们分别参与基因的转录、翻译和蛋白质合成等过程。
3.蛋白质的结构和功能
蛋白质是生物体内最重要的分子之一,它由氨基酸组成,通过肽键连接成链状结构。蛋白质的结构包括一级结构、二级结构、三级结构和四级结构等不同层次,它们决定了蛋白质的功能和性质。蛋白质的功能包括酶的催化作用、结构支持、信号传导和免疫防御等。
6. PCR技术和基因克隆
PCR技术是分子生物学中常用的一种技术,它可以在体外扩增DNA片段。PCR技术的原理是通过DNA的复制过程,使用引物选择性地扩增目标DNA片段。基因克隆是指将DNA片段插入到载体中并复制出多个相同的DNA分子。基因克隆技术在基因工程和生物医学研究中有着广泛的应用。
7.基因组学和蛋白质组学
基因组学是研究基因组的科学,它包括基因的组成、结构和功能等方面的研究。蛋白质组学是研究蛋白质组的科学,它包括蛋白质的组成、结构和功能等方面的研究。基因组学和蛋白质组学的发展,为我们更好地理解生物体的功能和调控机制提供了重要的工具和方法。
总结起来,分子生物学是研究生物体内分子的结构、功能和相互作用的学科。它涉及到DNA、RNA、蛋白质等生物分子的研究,对于理解生命的本质和生物体的功能具有重要意义。通过对分子生物学的学习和研究,我们可以更好地了解生物体的基本结构和功能,为生物医学研究和生物技术的发展提供基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 生物中分子
分子量介于1 000至 10 000 Dalton之间的分子
3 生物大分子
分子量大于10 000 Dalton的分子
3
水是生物体中最小的分子。 • • • 水是生物体中重要的分子之一。 水是生命之源。 水在分子生物学实验中用量最大、每时每刻都 必不可缺少。
学习分子生物学必须首先充分认知水!
O
Methyltransferase
Arginine
Methylarginine
21
Acidic amino acid and aminoacyl amino acids
Glutamic acid
H N C C H C H2 C H2 C O OO
Glutamine
H O
? ?
N C C H C H2 C H2 C O NH2
钠盐的形式存在的。
结果:100bp的RNA单链分子的分子量为33550 Dolton。
100 bp ssRNA 33550 Dolton
例三的引伸意义:
10000 Dolton ssRNA = 29.81 bp 30 bp
12
分子生物学的研究范畴
1. 生物分子的种类与组成(元素组成) 2. 生物分子的结构 3. 生物分子的功能
(2)在氨基酸缩合成多肽过程中,由于脱水,因此
每形成一个肽键,其分子质量减少18 Dolton。
计算公式 10000 /(126.7-18) = 91.996 aa 92 aa
10000 Dolton 92 aa
7
Molecular Weight of Amino Acids
Nr
01 02 03 04 05 06
4. 生物分子的代谢(摄取与吸收、转运与定位、 合成与分解)
5. 生物分子的相互作用 6. 生物分子的损伤(疾病的分子基础) 7. 生物分子的变异与进化
8. 生物分子的体外克隆扩增、改构、重组与相关 药物开发
13
生物大分子的种类
1 核酸
DNA 正常人:46个分子,35 000 gene…… Genomics
Glycine Proline
H N C C H H
O
H N C C H C H2 C H2 C O OO
O
H N C C H C H2 C O O-
O
N H
NH H2N C NH2+
19
Modification of Lysine
H N H
H N C C H C H2 C H2 HO C H C H2 NH2
H
-N-Methyllysine
H O N C C H C H2 C H2 C H2 C H2 NH2+ C H3 H H N C C C H2 C H2 C H2 C H2 H3C NH+ C H3
O
N C C H CH2 SH
?
H
?
O
Methionine
H N C C H CH2 CH2 S CH3 O
CH2 O N C C H H H
O
N C C H CH2 SH CH3
N C C
H
CH2 CH2 SH
Methylcysteine
Homocysteine
23
Aromatic acids
H
O
N C C CH2 O HO P O O-
Phosphatase
Serine
H N C C H HC OH CH3 O
H O CH3
Phosphoserine
Phosphorylase Phosphatase
N C C H HC O HO P O O-
Threonine
H N C C H C H2
O
H N C HC C CH3 O
Proline
H C C N O
CH3
CH3
Leucine
H N C H H3C CH CH3 C O
H
Isoleucine
H N C HC C C H3 O
Phenylalanine
H N C C H C H2 O
CH2
C H2 C H3
26
Two distinct amino acids
4
O
-
O
H
+
H
H
H
1 水是一个极性的分子。
水中有如下的电离平衡: H2O H++OH-
-14
20C下, [H+][OH-]=10
2 3
,pH= -log10[H+]
水的分子量M=18, 即每摩尔水重18g 1L体积水中H2O分子的mmol数=55555mmol。
5
通过对水这种最简单的生物分子的 认知,树立“定量” 观念和微环境意识。 加深对复杂的分子生物学实验现象的定 量化理解与分子水平注释,构筑起真正 的分子生物学理论。
RNA mRNA、rRNA、tRNA、snRNA、snoRNA、 ribozyme、 antisense RNA、telomerase RNA 人类 70 000 ?…… RNomics
2 蛋白质多肽人类约 200 000种……Proteomics 3 多糖 …… Polysaccharidomics 4 脂类 …… lipomics? 5 其他 ……‘X’omics
Amino Acid
Glycine Alanine Serine Proline Valine Threonine
MW
75.05 89.05 105.06 115.08 117.09 119.18
Nr
11 12 13 14 15 16
Amino Acid
Aspartic Acid Glutamine Lysine Glutamic Acid Methionine Histidine
14
利用分子生物学技术平台研究揭示
生物大分子之间的相互作用是解决诸多
未知生物医学问题的关键环节。然而,
生命体系中,生物大分子之间的相互作
用往往十分复杂。
15
大肠杆菌5SrRNA的二级结构:六环四柄
大肠杆菌16SrRNA的二级结构:约九十环八十柄
18SrRNA结构的复杂程度 ! 23SrRNA结构的复杂程度 !!
28SrRNA结构的复杂程度 !!!
原核核蛋白体结构的复杂程度 !!!! 真核核蛋白体结构的复杂程度 !!!!!!
16
Peptide bond
H O H N C C OH H R1
H O H N C C OH H R2
H O H O N C C OH H R2
H N C C H R1
17
Partial hydrolysis of polypeptide
分子生物学基础知识
1
分子生物学的概念
1 分 子 生 物 学 2 生 物 体 中 的 分 子 学 3 生 物 分 子 学 4 生 物 体 中 的 大 分 子 学 5 生 物 大 分 子 学
2
生物分子的定义 存在于生物体内的,具有确切生理功能的分子 生物分子大中小的界定 1 生物小分子 分子量小于1 000 Dalton的分子
MW
133.6 146.08 146.13 147.08 149.15 155.09
07
08 09
Cysteine
Leucine Isoleucine
121.12
131.11 131.11
17
18 19
Phenylalanine
Arginine Tyrosine
165.09
174.4 181.09
10
6
分子生物学常用定量数据举例
例一:一条10 000 Dolton无糖基化或磷酸化等修饰的多肽链含 多少氨基酸残基? 已知条件 (1)20种氨基酸分子量加权平均值=126.7
分子量最轻的氨基酸 glycine:75.05,
分子量最重的氨基酸 tryptophan:204.11
分子量最接近加权平均值的氨基酸 cysteine :121.12
H N C C H C H2 C H2 C H2 O
Hydroxylase -Hydroxylysine
HO C H C H2 NH3+
C H2 -N,N,N-Trimethyllysine H3C N + C H3 C H3
Methylase
20
Methylation of histidine and arginine
100 bp dsDNA 6000065000 Dolton
例二的引伸意义:
10000 Dolton dsDNA = 15.75 bp 16 bp
11
例三 100bp的RNA单链分子的分子量大约是多少? 已知条件:(1)单链RNA钠盐每bp 的平均重量为335.5 Dolton。 (2)在pH8.0的Tris缓冲液中,单链RNA分子是以
H
O
H N C C
O
Phosphothreonine
Phosphorylase Phosphatase
C H2
Phosphotyrosine
O HO P O O-
OH
Tyrosine
25
Nonpolar amino acids
Glycine
H N C H H C
H
Alanine
O
H N C C
H
Valine
9
例一的引伸意义 2
大于92 (100)aa的多肽链将可能有较强的免疫原 性。
10
例二 100bp的DNA双链分子的分子量大约是多少? 已知条件:(1)双链DNA钠盐每bp 的平均重量为635 Dolton。 (2)在pH8.0的Tris缓冲液中,双链DNA分子是以 钠盐的形式存在的。 结果:100bp的DNA双链分子的分子量为63500 Dolton。