气凝胶的详细介绍课件
合集下载
气凝胶的应用-PPT精选文档

水
聚 合
前驱体
溶 胶
凝胶
胶
气 凝
气凝胶形成示意图
OC2H5 H5C2O Si OC2H5 + 4H2O HO
OH Si OH
OH OH OH HO Si OH O OH Si OH OH + H2O
Hale Waihona Puke OH + 4C2H5OH水解
缩聚
OC2H5
OH HO Si OH OH + HO
Si OH
OH HO Si OH OH HO
工业中气凝胶的应用
气凝胶的定义
气凝胶又称为干凝胶。当凝胶脱去大部分溶剂, 使凝胶中液体含量比固体含量少得多,或凝胶的 空间网状结构中充满的介质是气体,外表呈固体 状,这即为干凝胶,也称为气凝胶。 气凝胶也具凝胶的性质,即膨胀作用、触变作用、 离浆作用。
最轻的固体
美国宇航局科学家研制出的一种气凝胶,作为世 界最轻的固体,正式入选吉尼斯世界纪录。 密度为3.55千Kg/m3,仅为空气密度的2.75倍。 这种气凝胶呈半透明淡蓝色,重量极轻,因此人 们也把它称为“固态烟”。
折射率可调性 硅气凝胶的折射率接近l,而且对紫外和可见光的 湮灭系数之比达100以上,能有效地透过太阳光中 的可见光部分,并阻隔其中的紫外光部分,成为 一种理想的透明隔热材料,在太阳能利用和建筑 物节能方面已经得到应用。
气凝胶的应用
航天应用 彗星微粒中包含着太阳系中最原始、最古老的物质, 研究它可以帮助人类更清楚地了解太阳和行星的 历史。2019年,“星尘”号飞船带着人类获得的 第一批彗星星尘样品返回地球。 美国国家宇航局的“星尘”号空间探测器已经带着 它在太空中完成了一项十分重要的使命———收 集彗星微粒。
吸附性 它还有环保的优点。气凝胶被科学家们描述为 “终极海绵”,其表面的数百万小孔使其成为在 水中吸附污染物的理想材料。 卡纳茨迪斯已经研制出一种新型气凝胶,用于除 去水中的铅和水银。某些形式的气凝胶可吸附溢 出的油,可以用它来处理一些环境灾祸。
气凝胶

气凝胶因其半透明的色彩和超轻重量,有时也被称为“固态烟”或“冻住的烟”。这种新材料看似脆弱不堪, 其实非常坚固耐用,最高能承受1400摄氏度的高温。气凝胶的这些特性在航天探测上有多种用途。俄罗斯“和平” 号空间站和美国“火星探路者”探测器上,都用到了气凝胶材料。
美国国家宇航局研制出的一种新型气凝胶,由于密度只有每立方厘米3毫克,曾作为“世界上密度最低的固体” 入选《吉尼斯世界纪录》。
气凝胶
化学品Leabharlann 1 定义03 制备方法 05 超轻
目录
02 特性 04 作用
气凝胶是指通过溶胶凝胶法,用一定的干燥方式使气体取代凝胶中的液相而形成的一种纳米级多孔固态材料。 如明胶、阿拉伯胶、硅胶、毛发、指甲等。气凝胶也具凝胶的性质,即具膨胀作用、触变作用、离浆作用。
气凝胶是世界上密度最小的固体,2022年度化学领域十大新兴技术之一。
作用
研究单位
研究领域
其他用途
在分形结构研究方面。硅气凝胶作为一种结构可控的纳米多孔材料,其表现密度明显依赖于标度尺寸,在一 定尺度范围内,其密度往往具有标度不变性,即密度随尺度的增加而下降,而且具有自相似结构,在气凝胶分形 结构动力学研究方面的结构还表明,在不同尺度范围内,有三个色散关系明显不同的激发区域,分别对应于声子、 分形子和粒子模的激发。改变气凝胶的制备条件,可使其关联长度在两个量级的范围内变化。因此硅气凝胶已成 为研究分形结构及其动力学行为的最佳材料。
特性
气凝胶(2张)这种新材料密度仅为3.55千克每立方米,仅为空气密度的2.75倍;干燥的松木密度(500千克每 立方米)是它的140倍。这种物质看上去像凝固的烟,但它的成分与玻璃相似。由于它的密度极小,用于航空航 天方面非常合适。美宇航局喷气推进实验室,该实验室琼斯博士研制出的新型气凝胶,主要由纯二氧化硅等组成。 在制作过程中,液态硅化合物首先与能快速蒸发的液体溶剂混合,形成凝胶,然后将凝胶放在一种类似加压蒸煮 器的仪器中干燥,并经过加热和降压,形成多孔海绵状结构。琼斯博士最终获得的气凝胶中空气比例占到了 99.8%。
美国国家宇航局研制出的一种新型气凝胶,由于密度只有每立方厘米3毫克,曾作为“世界上密度最低的固体” 入选《吉尼斯世界纪录》。
气凝胶
化学品Leabharlann 1 定义03 制备方法 05 超轻
目录
02 特性 04 作用
气凝胶是指通过溶胶凝胶法,用一定的干燥方式使气体取代凝胶中的液相而形成的一种纳米级多孔固态材料。 如明胶、阿拉伯胶、硅胶、毛发、指甲等。气凝胶也具凝胶的性质,即具膨胀作用、触变作用、离浆作用。
气凝胶是世界上密度最小的固体,2022年度化学领域十大新兴技术之一。
作用
研究单位
研究领域
其他用途
在分形结构研究方面。硅气凝胶作为一种结构可控的纳米多孔材料,其表现密度明显依赖于标度尺寸,在一 定尺度范围内,其密度往往具有标度不变性,即密度随尺度的增加而下降,而且具有自相似结构,在气凝胶分形 结构动力学研究方面的结构还表明,在不同尺度范围内,有三个色散关系明显不同的激发区域,分别对应于声子、 分形子和粒子模的激发。改变气凝胶的制备条件,可使其关联长度在两个量级的范围内变化。因此硅气凝胶已成 为研究分形结构及其动力学行为的最佳材料。
特性
气凝胶(2张)这种新材料密度仅为3.55千克每立方米,仅为空气密度的2.75倍;干燥的松木密度(500千克每 立方米)是它的140倍。这种物质看上去像凝固的烟,但它的成分与玻璃相似。由于它的密度极小,用于航空航 天方面非常合适。美宇航局喷气推进实验室,该实验室琼斯博士研制出的新型气凝胶,主要由纯二氧化硅等组成。 在制作过程中,液态硅化合物首先与能快速蒸发的液体溶剂混合,形成凝胶,然后将凝胶放在一种类似加压蒸煮 器的仪器中干燥,并经过加热和降压,形成多孔海绵状结构。琼斯博士最终获得的气凝胶中空气比例占到了 99.8%。
气凝胶ppt课件

7
气凝胶样品进行的表面形貌分析 8
➢ 气凝胶属于一种固体,但99%是由气体构成,外 观看起来像云一样。它有数百万小孔和皱摺,如 果把1立方厘米的气凝胶拆开,它会填满一个有足 球场那么大的地方。它的小孔不仅能像一块海绵 一样吸附污染物,还能充当气穴。
➢ 气凝胶内含大量的空气,典型的孔洞线度在l—l00 纳米范围,孔洞率在80%以上,是一种具有纳米 结构的多孔材料,在力学、声学、热学、光学等 诸方面均显示其独特性质。它们明显不同于孔洞 结构在微米和毫米量级的多孔材料,其纤细的纳 米结构使得材料的热导率极低,具有极大的比表 面积.对光、声的散射均比传统的多孔性材料小 得多,这些独特的性质不仅使得该材料在基础研 究中引起人们兴趣,而且在许多领域蕴藏着广泛 的应用前景。
气凝胶太空服
✓派宇航员登陆火星预定于2018年进行 ✓气凝胶正用来为人类首次登陆火星时所穿
的太空服研制一种保温隔热衬里 ✓Aspen Aerogel公司的一位资深科学家马
克·克拉耶夫斯基认为,一层18毫米的气凝 胶将足以保护宇航员抵御零下130度的低温。 他说:“它是我们所见过的最棒的绝热材 料。”
➢导热性和折射率也很低,热绝缘能力比最 好的玻璃纤维还要强39倍。
➢由于具备这些特性,气凝胶便成为航天探 测中不可替代的材料,俄罗斯“和平”号 空间站和美国“勇气号”火星探测器都用 它来进行热绝缘。
15
16
➢彗星微粒中包含着太阳系中最原始、最古 老的物质,研究它可以帮助人类更清楚地 了解太阳和行星的历史。2006年,“星尘” 号飞船将带着人类获得的第一批彗星星尘 样品返回地球。
21
军事用途
✓气凝胶作未来的防弹住宅和军用车辆装甲。 ✓在实验室中,一个涂有6毫米气凝胶的金属
气凝胶样品进行的表面形貌分析 8
➢ 气凝胶属于一种固体,但99%是由气体构成,外 观看起来像云一样。它有数百万小孔和皱摺,如 果把1立方厘米的气凝胶拆开,它会填满一个有足 球场那么大的地方。它的小孔不仅能像一块海绵 一样吸附污染物,还能充当气穴。
➢ 气凝胶内含大量的空气,典型的孔洞线度在l—l00 纳米范围,孔洞率在80%以上,是一种具有纳米 结构的多孔材料,在力学、声学、热学、光学等 诸方面均显示其独特性质。它们明显不同于孔洞 结构在微米和毫米量级的多孔材料,其纤细的纳 米结构使得材料的热导率极低,具有极大的比表 面积.对光、声的散射均比传统的多孔性材料小 得多,这些独特的性质不仅使得该材料在基础研 究中引起人们兴趣,而且在许多领域蕴藏着广泛 的应用前景。
气凝胶太空服
✓派宇航员登陆火星预定于2018年进行 ✓气凝胶正用来为人类首次登陆火星时所穿
的太空服研制一种保温隔热衬里 ✓Aspen Aerogel公司的一位资深科学家马
克·克拉耶夫斯基认为,一层18毫米的气凝 胶将足以保护宇航员抵御零下130度的低温。 他说:“它是我们所见过的最棒的绝热材 料。”
➢导热性和折射率也很低,热绝缘能力比最 好的玻璃纤维还要强39倍。
➢由于具备这些特性,气凝胶便成为航天探 测中不可替代的材料,俄罗斯“和平”号 空间站和美国“勇气号”火星探测器都用 它来进行热绝缘。
15
16
➢彗星微粒中包含着太阳系中最原始、最古 老的物质,研究它可以帮助人类更清楚地 了解太阳和行星的历史。2006年,“星尘” 号飞船将带着人类获得的第一批彗星星尘 样品返回地球。
21
军事用途
✓气凝胶作未来的防弹住宅和军用车辆装甲。 ✓在实验室中,一个涂有6毫米气凝胶的金属
气凝胶简介演示

气凝胶在承受压力和稳定性方面 存在一定的局限性,需要优化制 备工艺和材料配方以提高其性能 。
降低导热系数
气凝胶的导热系数较高,限制了 其在一些需要低导热系数领域的 应用,需要研发新型材料和制备 方法来降低其导热系数。
增强隔声性能
气凝胶的隔声性能有待提高,需 要研究如何通过改进结构和材料 来增强其隔音效果。
性能优化与改性研究
表面修饰
通过化学或物理方法对气凝胶表 面进行修饰,以提高其润湿性、
耐腐蚀性和抗氧化性等性能。
多孔结构调控
通过改变制备工艺参数,调控气凝 胶的孔径、孔隙率和比表面积等参 数,以提高其吸附性能、隔热性能 和机械性能等。
复合增强
将气凝胶与其他材料进行复合,以 提高其力学性能、电学性能和光学 性能等。
04
气凝胶的研究进展
新型制备方法研究Biblioteka 溶胶-凝胶法通过将无机盐或金属醇盐溶液进行水解、聚合,形成凝胶,再经干燥和热处理得 到气凝胶。此方法制备的气凝胶孔径较小,结构均匀,但制备过程复杂,需要大 量有机溶剂。
超临界干燥法
在超临界状态下,将凝胶置于高压反应釜中,通过控制压力和温度,使凝胶中的 溶剂变成超临界流体,然后迅速释放压力,使凝胶内部形成大量微孔,得到气凝 胶。此方法制备的气凝胶孔径较大,结构较均匀,但需要高压力设备。
3
经过老化、干燥和高温处理后,即可得到气凝胶 。
化学气相沉积法
化学气相沉积法是一种常用于制 备无机气凝胶的方法。
该方法将气体反应物引入反应室 ,在一定条件下发生化学反应, 生成固态物质并沉积在基底上。
通过控制反应条件和沉积时间, 可以制备出具有不同结构和性能
的气凝胶。
模板法
模板法是一种通过使用模板来制备气 凝胶的方法。
降低导热系数
气凝胶的导热系数较高,限制了 其在一些需要低导热系数领域的 应用,需要研发新型材料和制备 方法来降低其导热系数。
增强隔声性能
气凝胶的隔声性能有待提高,需 要研究如何通过改进结构和材料 来增强其隔音效果。
性能优化与改性研究
表面修饰
通过化学或物理方法对气凝胶表 面进行修饰,以提高其润湿性、
耐腐蚀性和抗氧化性等性能。
多孔结构调控
通过改变制备工艺参数,调控气凝 胶的孔径、孔隙率和比表面积等参 数,以提高其吸附性能、隔热性能 和机械性能等。
复合增强
将气凝胶与其他材料进行复合,以 提高其力学性能、电学性能和光学 性能等。
04
气凝胶的研究进展
新型制备方法研究Biblioteka 溶胶-凝胶法通过将无机盐或金属醇盐溶液进行水解、聚合,形成凝胶,再经干燥和热处理得 到气凝胶。此方法制备的气凝胶孔径较小,结构均匀,但制备过程复杂,需要大 量有机溶剂。
超临界干燥法
在超临界状态下,将凝胶置于高压反应釜中,通过控制压力和温度,使凝胶中的 溶剂变成超临界流体,然后迅速释放压力,使凝胶内部形成大量微孔,得到气凝 胶。此方法制备的气凝胶孔径较大,结构较均匀,但需要高压力设备。
3
经过老化、干燥和高温处理后,即可得到气凝胶 。
化学气相沉积法
化学气相沉积法是一种常用于制 备无机气凝胶的方法。
该方法将气体反应物引入反应室 ,在一定条件下发生化学反应, 生成固态物质并沉积在基底上。
通过控制反应条件和沉积时间, 可以制备出具有不同结构和性能
的气凝胶。
模板法
模板法是一种通过使用模板来制备气 凝胶的方法。
气凝胶简介ppt课件

14
气凝胶的热学特性及其应用
Ⅰ.气凝胶材质透明,光线可自由透射 Ⅱ.低折射率,对入射光几乎没有反射损失,太阳光透过率高达87% Ⅲ.纳米孔状材料,内部存在大量微小孔洞,孔隙率在80%~99.8%。 布满了无限多的孔壁,而这些孔壁都是辐射的反射面和折射面,极大 地阻滞了辐射的热量散失。
太阳能利用:因此气凝胶特别适合于用作太阳能集热器及其它集热装 置的保温隔热材料,当太阳光透过气凝胶进入集热器内部,内部系统 将太阳光的光能转化为热能,气凝胶又能有效阻止热量流失。
• 热传导:由于近于无穷多纳米孔的存在,热流在固体
中传递时就只能沿着气孔壁传递,近于无穷多的气孔壁构 成了近于“无穷长路径”效应,使得固体热传导的能力下 降到接近最低极限
9
气凝胶在太空任务的应用
美“火星探路者”探测器 (保护机器人电子仪器设备)
“火星漫步者”,抵挡入夜-100℃超低温
俄罗斯“和平号”空间
气凝胶可以作为飞机上使用的隔热消音材料 。据报道,航天飞机及宇宙飞船在重返大气 层时要经历数千摄氏度的白炽高温,保护其 安全重回地球的绝热材料正是SiO2气凝胶。 美国NASA在“火星流浪者”的设计中,使用 了SiO2气凝胶作为保温层,用来抵挡火星夜晚 的超低温。
20
工业设备及管道的保温
锅炉、炼解炉、 干燥机和窑的 保温
28
安装示意图
29
气凝胶复合材料
应用在暖气管道上的效果图
30
一层6mm厚的气凝胶复合材料 可使热水管的温度从86度降到30度
31
包裹在汽车的发动机上
应用在高速列车上
包裹在储油罐上
铺在地板上
32
33
房屋隔热效果对比
34
冷藏集装箱、保温集装箱
气凝胶的热学特性及其应用
Ⅰ.气凝胶材质透明,光线可自由透射 Ⅱ.低折射率,对入射光几乎没有反射损失,太阳光透过率高达87% Ⅲ.纳米孔状材料,内部存在大量微小孔洞,孔隙率在80%~99.8%。 布满了无限多的孔壁,而这些孔壁都是辐射的反射面和折射面,极大 地阻滞了辐射的热量散失。
太阳能利用:因此气凝胶特别适合于用作太阳能集热器及其它集热装 置的保温隔热材料,当太阳光透过气凝胶进入集热器内部,内部系统 将太阳光的光能转化为热能,气凝胶又能有效阻止热量流失。
• 热传导:由于近于无穷多纳米孔的存在,热流在固体
中传递时就只能沿着气孔壁传递,近于无穷多的气孔壁构 成了近于“无穷长路径”效应,使得固体热传导的能力下 降到接近最低极限
9
气凝胶在太空任务的应用
美“火星探路者”探测器 (保护机器人电子仪器设备)
“火星漫步者”,抵挡入夜-100℃超低温
俄罗斯“和平号”空间
气凝胶可以作为飞机上使用的隔热消音材料 。据报道,航天飞机及宇宙飞船在重返大气 层时要经历数千摄氏度的白炽高温,保护其 安全重回地球的绝热材料正是SiO2气凝胶。 美国NASA在“火星流浪者”的设计中,使用 了SiO2气凝胶作为保温层,用来抵挡火星夜晚 的超低温。
20
工业设备及管道的保温
锅炉、炼解炉、 干燥机和窑的 保温
28
安装示意图
29
气凝胶复合材料
应用在暖气管道上的效果图
30
一层6mm厚的气凝胶复合材料 可使热水管的温度从86度降到30度
31
包裹在汽车的发动机上
应用在高速列车上
包裹在储油罐上
铺在地板上
32
33
房屋隔热效果对比
34
冷藏集装箱、保温集装箱
SiO气凝胶的特性及应用PPT课件

Page ▪ 3
2 SiO2 气凝胶特性
2.1 优越的隔热性能 由于SiO2 气凝胶的纳米孔超级绝热性能,常温常压下SiO2 气凝胶粉体总导
热率<0.015W/m.K,块体总导热率<0.013W/m·K,真空条件下粉体总导热率<0.0 03W/m·K,块体总导热率<0.007W/m·K,为目前世界上高温隔热领域导热系数最 低的材料之一.
iO2,在300℃以下使用具有超级疏水性.
2.4 优异的隔声性 SiO2气凝胶还具极低的密度、极低的声传播速度、极低的介电常数、极高的
比表面积等优异性能.SiO2气凝胶以其优异的保温隔声性能有望成为一种环保型高 效保温隔声轻质建材.
Page ▪ 5
2 SiO2 气凝胶特性
2.5 较好的透光性 SiO2气凝胶还具有透光性,可以有效地透过可见光,同时可以高效地阻隔红外
Page ▪ 6
3 SiO2 气凝胶的应用
热学特性及应用
具体应用涵盖了科研、工业、国防的保温隔热场合, 尤其是三航,还可用于生活日用的多种场合,如建筑隔热板 材、玻璃、衣物保暖、冰箱隔热、管道保温等,乃至提高 阳能集热器的效率.
SiO2 气凝胶采光隔热板
Page ▪ 7
4 研发方向
存在问题
在实际应用方面,SiO2气凝胶的高度松脆性、有限透明度以及吸湿性等问题的 存在,抑制了其商业前途.提高SiO2气凝胶的质量和品质,是SiO2气凝胶研究的主要 方向.
研发方向
1. 掺杂改性SiO2气凝胶是获得气凝胶新品种及其优良性质的有效方法,通过掺杂其 他的元素,实现对SiO2气凝胶结构的优化,以达到提高SiO2气凝胶的品质的效果; 2.研发新的制备工艺,尽可能地降低SiO2气凝胶的制备成本,也是目前研究的重点之 一.
2 SiO2 气凝胶特性
2.1 优越的隔热性能 由于SiO2 气凝胶的纳米孔超级绝热性能,常温常压下SiO2 气凝胶粉体总导
热率<0.015W/m.K,块体总导热率<0.013W/m·K,真空条件下粉体总导热率<0.0 03W/m·K,块体总导热率<0.007W/m·K,为目前世界上高温隔热领域导热系数最 低的材料之一.
iO2,在300℃以下使用具有超级疏水性.
2.4 优异的隔声性 SiO2气凝胶还具极低的密度、极低的声传播速度、极低的介电常数、极高的
比表面积等优异性能.SiO2气凝胶以其优异的保温隔声性能有望成为一种环保型高 效保温隔声轻质建材.
Page ▪ 5
2 SiO2 气凝胶特性
2.5 较好的透光性 SiO2气凝胶还具有透光性,可以有效地透过可见光,同时可以高效地阻隔红外
Page ▪ 6
3 SiO2 气凝胶的应用
热学特性及应用
具体应用涵盖了科研、工业、国防的保温隔热场合, 尤其是三航,还可用于生活日用的多种场合,如建筑隔热板 材、玻璃、衣物保暖、冰箱隔热、管道保温等,乃至提高 阳能集热器的效率.
SiO2 气凝胶采光隔热板
Page ▪ 7
4 研发方向
存在问题
在实际应用方面,SiO2气凝胶的高度松脆性、有限透明度以及吸湿性等问题的 存在,抑制了其商业前途.提高SiO2气凝胶的质量和品质,是SiO2气凝胶研究的主要 方向.
研发方向
1. 掺杂改性SiO2气凝胶是获得气凝胶新品种及其优良性质的有效方法,通过掺杂其 他的元素,实现对SiO2气凝胶结构的优化,以达到提高SiO2气凝胶的品质的效果; 2.研发新的制备工艺,尽可能地降低SiO2气凝胶的制备成本,也是目前研究的重点之 一.
超材料气凝胶.pptx

一、气凝胶:世界上最轻的气体
英文aerogel,又称为干凝胶。当凝胶脱去大部分溶剂,使凝胶 中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质 是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。
被称为冷烟、固体烟、固体空气或者蓝烟的气凝胶是目前已知 固体物质中最轻并且性能最好的隔热材料,其体积的90%以上都是 极微小的纳米孔洞,其余部分由三维纳米网状孔壁构成。
气凝胶内部充满了两端开放并与表面相通的纳米孔,其 高达1000m2/g的比表面积说明了其中包含孔的数量之多, 因此声音在其中传播时,声能将被其大量存在的孔壁大 大消耗,这使得气凝胶具有比普通多孔材料高数十倍的 吸声效果。
第12页/共20页
由于气凝胶的密度可以通过改变制备条件对其进行控制,因此使得声 阻亦可调。这一特性使得气凝胶可作为声阻耦合材料,如作为压电陶 瓷与空气的声阻耦合材料。 水声反声材料是指声波由水中入射到材料层上能无损耗地全部反射 出去的材料。
第13页/共20页
3、催化特性及其应用
超微粒子特定的表面结构有利于活性组分的分散,从而可以对许多催化 过程产生显著的影响。气凝胶是一种由纳米粒子组成的固体材料,具有小 粒径、高比表面积和低密度等特点,这些特点使气凝胶催化剂的活性和选 择性均远远高于常规催化剂,而且活性组分可以非常均匀地分散于载体中, 同时它还具有优良的热稳定性,可以有效的减少副反应发生。因此气凝胶 作为催化剂,其活性、选择性和寿命都可以得到大幅度地提高,具有非常 良好的催化特性
三、基本特性(5大特性,主要介绍3点)
1、热学特性及其应用 气凝胶的纳米多孔结构使它具有极佳的绝热性能,其热导率甚至比
空气还要低,空气在常温真空状态下的热导率为0.026W/(m·k),而 气凝胶在常温常压下的热导率一般小于0.020W/(m·k),在抽真空的 状态下,热导率可低至0.004W/(m·k)。
英文aerogel,又称为干凝胶。当凝胶脱去大部分溶剂,使凝胶 中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质 是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。
被称为冷烟、固体烟、固体空气或者蓝烟的气凝胶是目前已知 固体物质中最轻并且性能最好的隔热材料,其体积的90%以上都是 极微小的纳米孔洞,其余部分由三维纳米网状孔壁构成。
气凝胶内部充满了两端开放并与表面相通的纳米孔,其 高达1000m2/g的比表面积说明了其中包含孔的数量之多, 因此声音在其中传播时,声能将被其大量存在的孔壁大 大消耗,这使得气凝胶具有比普通多孔材料高数十倍的 吸声效果。
第12页/共20页
由于气凝胶的密度可以通过改变制备条件对其进行控制,因此使得声 阻亦可调。这一特性使得气凝胶可作为声阻耦合材料,如作为压电陶 瓷与空气的声阻耦合材料。 水声反声材料是指声波由水中入射到材料层上能无损耗地全部反射 出去的材料。
第13页/共20页
3、催化特性及其应用
超微粒子特定的表面结构有利于活性组分的分散,从而可以对许多催化 过程产生显著的影响。气凝胶是一种由纳米粒子组成的固体材料,具有小 粒径、高比表面积和低密度等特点,这些特点使气凝胶催化剂的活性和选 择性均远远高于常规催化剂,而且活性组分可以非常均匀地分散于载体中, 同时它还具有优良的热稳定性,可以有效的减少副反应发生。因此气凝胶 作为催化剂,其活性、选择性和寿命都可以得到大幅度地提高,具有非常 良好的催化特性
三、基本特性(5大特性,主要介绍3点)
1、热学特性及其应用 气凝胶的纳米多孔结构使它具有极佳的绝热性能,其热导率甚至比
空气还要低,空气在常温真空状态下的热导率为0.026W/(m·k),而 气凝胶在常温常压下的热导率一般小于0.020W/(m·k),在抽真空的 状态下,热导率可低至0.004W/(m·k)。
气凝胶的详细介绍课件

实验案例分析
案例一
采用正硅酸乙酯为硅源,乙醇为溶剂,氨水为催化剂,采用 溶胶凝胶法制备气凝胶。通过改变氨水的浓度,研究催化剂 对气凝胶性能的影响。
案例二
以甲基三甲氧基硅烷为硅源,采用乳化法制备气凝胶。通过 改变乳化剂的种类和浓度,研究乳化剂对气凝胶性能的影响 。
实验注意事项与安全措施
01
02
03
03
气凝胶的生产工艺及设备
气凝胶的生产工艺
气凝胶的生产工艺流程
01
从原料开始,经过一系列的化学反应和物理处理,最终得到气
凝胶产品。
气凝胶生产工艺的分类
02
根据生产工艺的不同,气凝胶可以分为化学气凝胶、物理气凝
胶和复合气凝胶等。
气凝胶生产工艺的特点
03
这些生产工艺具有不同的特点,如生产效率、产品性能等,根
气凝胶市场发展趋势
随着科技的不断进步和应用的深入拓 展,气凝胶市场将迎来更加广阔的发 展空间,预计未来几年将持续保持快 速增长态势。
气凝胶的技术发展趋势
气凝胶制备技术
目前,气凝胶的制备技术已经比较成熟,但制备效率、成本、环保性等方面仍 需进一步改进。未来,研究者将致力于开发更加高效、环保、低成本的制备技 术,以进一步推动气凝胶的应用。
气凝胶生产过程中的问题及解决方案
原料问题
气凝胶生产过程中,原料的纯度、稳定性等因素会影响产 品质量。解决方案:对原料进行严格筛选和检测,确保原 料的质量和稳定性。
反应控制问题
化学反应过程中,温度、压力、浓度等参数的控制会影响 产品质量。解决方案:采用先进的控制系统和检测设备, 对反应过程进行精确控制。
气凝胶的表面覆盖了大量的极性基团,使其具有很高的化学活性和吸附性能,可以 用于催化剂、吸附剂、隔热材料等领域。