全球卫星定位论文

合集下载

全球导航卫星系统(GNSS)在大地测量中的精度分析与改进

全球导航卫星系统(GNSS)在大地测量中的精度分析与改进

全球导航卫星系统(GNSS)在大地测量中的精度分析与改进摘要:随着全球导航卫星系统(GNSS)的发展和广泛应用,它在大地测量领域中扮演了重要角色。

然而,由于多种因素的影响,GNSS测量存在一定的误差和不确定性,对于一些高精度测量需求的项目来说,这些误差可能是不可忽视的。

因此,本论文旨在分析GNSS在大地测量中的精度问题,并提出相关改进方法。

关键词:全球导航卫星系统(GNSS);大地测量;精度分析引言全球导航卫星系统(GNSS)是一种基于卫星定位和测量技术的全球性导航系统,包括美国的GPS、俄罗斯的GLONASS、欧洲的Galileo和中国的北斗系统。

随着GNSS技术的不断发展和应用,它在大地测量中的作用越来越重要。

传统的大地测量方法受到时间、空间和人力资源等因素的限制,而GNSS提供了高精度、实时、全球覆盖的测量服务,广泛应用于地形测量、海洋测量、工程测量等领域。

然而,在实际应用中,由于多种因素的影响,GNSS测量存在一定的误差和不确定性。

这些误差包括信号传播中的大气延迟、多径效应、钟差误差,以及接收机硬件误差等。

特别对于那些高精度测量需求的项目,这些误差可能对测量结果产生较大的影响,甚至导致数据的不可靠性。

因此,本论文旨在通过对GNSS在大地测量中的精度进行分析,了解误差来源和影响因素,并提出相应的改进方法,以提高GNSS在大地测量中的精度和可靠性。

一、GNSS基本原理和误差来源分析(一)GNSS基本原理GNSS(全球导航卫星系统)是一种基于卫星进行导航和定位的技术。

它包括多个卫星组成的卫星系统和用户接收机。

GNSS基本原理是通过测量卫星信号的传播时间差,从而计算用户接收机与卫星之间的距离,进而实现定位和导航。

(二)GNSS信号传播中的误差来源:在GNSS信号传播过程中,存在多种误差来源,包括:大气延迟误差,GNSS 信号在穿过大气层时会受到大气折射的影响,导致信号传播时间延迟。

多径效应误差,当GNSS信号在传播过程中遇到地面、建筑物等物体的反射,导致信号产生多个路径,从而引入多径效应误差。

gps论文[1]2篇

gps论文[1]2篇

gps论文GPS(全球定位系统)是一种卫星导航系统,用于确定地球上任意点的位置和时间。

它由一组卫星、接收器和控制站组成,可以为用户提供准确的定位、导航和时间服务。

本论文将探讨GPS的原理、应用以及对社会的影响。

第一篇:GPS的原理和技术GPS系统是一种由美国建立和维护的全球性导航卫星系统。

它由约30颗工作卫星组成,这些卫星环绕地球运行,并通过无线电信号与地面上的接收器进行通信。

GPS接收器通过接收来自多颗卫星的信号,并对这些信号进行处理,以确定接收器的位置、速度和时间。

GPS的原理是基于距离测量的三角定位原理。

接收器通过接收卫星发送的无线电信号,并记录信号的到达时间。

由于信号的传播速度已知,接收器可以根据信号的到达时间计算接收器与卫星之间的距离。

通过至少三颗卫星的信号,接收器可以确定自身的位置,并通过更多的卫星信号提高定位精度。

GPS系统的技术主要有信号传输、卫星轨道、接收器系统和数据处理。

信号传输使用无线电波作为信息传输介质,通过射频技术在卫星和接收器之间进行通信。

卫星轨道是GPS系统的关键部分,它决定了卫星的分布和运行轨迹,以确保卫星可以覆盖地球的各个区域。

接收器系统由接收器硬件和软件组成,可以接收、处理和分析卫星信号。

数据处理涉及对接收器记录的信号进行计算和分析,从而确定接收器的位置和时间。

GPS的应用十分广泛。

它可以用于导航系统,为用户提供准确的地理位置信息和路线规划。

许多车辆和移动设备都配备了GPS导航功能,以帮助用户在陌生地区导航。

此外,GPS还被用于航空、航海和军事领域,以帮助飞行器和船只进行导航和定位。

另外,GPS还被用于科学研究、天文学、地质学等领域,以支持地球测量和环境监测。

GPS对社会产生了深远的影响。

它为出行提供了更方便、精确的导航服务,节省了时间和精力。

同时,它也为紧急救援提供了重要的辅助工具,可以在紧急情况下准确定位受困人员的位置。

此外,GPS还在环境监测和资源调查中发挥重要作用,有助于保护和管理地球资源。

定位系统————物联网论文

定位系统————物联网论文

定位系统————物联网论文在当今数字化的时代,物联网已经成为了推动社会发展和变革的重要力量。

而在物联网的众多关键技术中,定位系统无疑是其中的核心之一。

定位系统的出现和发展,为物联网的广泛应用提供了精确的位置信息,使其能够实现更加智能化、高效化的服务和管理。

定位系统的基本原理是通过测量物体与已知位置的参考点之间的距离、角度或信号强度等参数,来确定物体的位置坐标。

常见的定位技术包括全球定位系统(GPS)、北斗卫星导航系统、蓝牙定位、WiFi定位、射频识别(RFID)定位等。

GPS 作为全球应用最为广泛的定位系统,通过接收来自卫星的信号,能够在全球范围内为用户提供高精度的定位服务。

其在导航、物流运输、地质勘探等领域发挥着不可替代的作用。

然而,GPS 也存在一些局限性,比如在室内、城市峡谷等环境中,信号容易受到遮挡和干扰,导致定位精度下降。

北斗卫星导航系统是我国自主研发的卫星导航系统,具有与 GPS 类似的功能和性能。

随着北斗系统的不断完善和发展,其在国内的应用范围越来越广泛,为我国的国防安全、交通运输、农业生产等领域提供了可靠的定位保障。

除了卫星定位系统,蓝牙定位和 WiFi 定位在室内环境中也有着广泛的应用。

蓝牙定位通过测量蓝牙设备之间的信号强度来确定位置,通常用于商场、机场等室内场所的导航和定位服务。

WiFi 定位则利用WiFi 接入点的信号强度和位置信息来计算终端设备的位置,在智能建筑、智能家居等领域有着重要的应用价值。

RFID 定位技术通过读取电子标签中的信息来实现对物体的定位和追踪,适用于对物品的管理和监控,如仓库管理、物流配送等领域。

定位系统在物联网中的应用场景丰富多样。

在智能交通领域,通过车辆定位系统,可以实现实时交通监控、智能导航、车辆调度等功能,提高交通运输的效率和安全性。

在物流领域,对货物的实时定位和跟踪,能够优化物流路径,提高物流配送的准确性和及时性。

在智能家居中,定位系统可以实现人员和设备的定位,从而实现智能照明、智能家电控制等个性化的服务。

gps控制网的布设流程与实践论文2万字

gps控制网的布设流程与实践论文2万字

gps控制网的布设流程与实践论文2万字在经典测量中,控制网的优化十分重要,它直接影响到最后成果的精度。

GPS出现后,控制图的结构概念起了重大变化,原来的一些控制网方案的优化已不再适用,如何分析和讨论GPS网观测方案优化问题,便出现在测量工作者面前,本文就GPS网的布设作一简要分析。

简述了GPS测量技术的发展状态,及GPS工程网的布设,介绍了GPS测量所具有特点,GPS测量在公路中的应用,最后对GPS测量作出了展望。

1、GPS技术的发展概况全球定位系统(GlobalPositioningSystem简称GPS)是美国国防部从上世纪70年代开始研制的新一代卫星导航与定位系统,历时20年,耗资200亿美元,于1994年全面建成。

该系统利用导航卫星进行测时和测距,有在海、陆、空进行全方位实时三维导航与定位能力。

GPS是继阿波罗登月计划、航天飞机后的美国第三大航天工程,如今,它已成为当今世界上最实用,也是应用最广泛的全球精密导航、指挥和调度系统。

1.1GPS系统的结构组成GPS系统主要包括三大组成部分:即空间星座部分、地面监控部分和用户设备部分。

(1)空间星座部分由21颗工作卫星和3颗在轨备用卫星组成GPS卫星星座,亦即(21+3)GPS 星座。

24颗卫星均匀分布在6个轨道平面内,各个轨道平面之间交角60度。

卫星距地面的平均高度为20200km,卫星绕地球运行周期为11小时58分。

地面观测者每天至少可以观测到4颗卫星,最多还可观测到11颗卫星。

(2)地面监控部分GPS工作卫星的地面监控系统主要由分布在全球的1个主控站、3个注入站和5个监测站组成。

对于导航定位来说,GPS卫星是一动态已知点。

卫星的位置是依据卫星发射的星历,即描述卫星运动及其轨道的参数算得的。

每颗GPS 卫星所播发的星历,是由地面监控系统提供的。

卫星上的各种设备是否正常工作,以及卫星是否一直沿着预定轨道运行,都要由地面设备进行监测和控制。

地面监控系统另一重要作用是保持各颗卫星处于同一时间标准――GPS时间系统。

GPS技术在现代交通中应用方向论文

GPS技术在现代交通中应用方向论文

GPS技术在现代交通中应用方向探讨摘要:本文以gps技术在现代交通中的应用为研究对象,首先分析了道路工程中gps的技术特点,探讨了gps在隧道工程中的特点,进而分析了几种gps解算方法,最后探讨了gps在现代交通中的应用。

关键词:gps 道路工程中图分类号:p2 文献标识码:a 文章编号:1672-3791(2011)10(c)-0000-00全球卫星定位系统(gps)是美国军方在”子午仪卫星导航定位”技术上发展的全球性、全能性(即陆地、海洋、航空与航天)和全天候优势的导航定位、定时、测速系统,它由空间卫星系统、地面监控系统、用户接收系统三大子系统构成,已大量应用于军事和民用等很多领域。

目前,多国已将gps技术已经开始应用于交通运输和道路工程之中。

我国在此应用也已逐渐起步。

1 道路工程中gps的技术特点现在gps主要用于建立道路工程控制网和测定航测外控点等。

高高速公路因为线路长、已知控制点少,用常规手段不仅布网困难而且精度也达不到要求。

在几十公里范围内点位误差有2cm左右,实现了常规方法难以达到的精度,并且缩短了工期。

gps技术也可应用于特大桥梁的控制测量中,无需通视,网形强,点位精度高,对测量支点也相当有效。

2 gps在隧道工程中的特点gps在隧道测量中具有很大的应用前景,测量不用通视,速度快、精度高,具有很好的经济和社会效益。

3 几种gps解算方法的应用3.1 差分动态gps差分动态gps在道路勘测过程中主要应用于建立数字地面模型的数据采集、控制点加密、中线放样、纵断面测量以及无需外控点的机载gps航测等方面。

gps测量包含三维坐标数据使其可以用于数字地面模型数据采集、中线放样以及纵断面的测量;在中线平面位置放样的同时,可获得纵断面,将数据输入相应系统,便可在计算机上显示测绘位置与设计坐标之间的差距。

3.2 机载动态差分gps机载动态差分gps应用于航测,现在发达国家都有了很好应用,用载波相位差分技术测出摄影中心的三维坐标,不需要测量外控点,效果很好。

北斗三号卫星议论文范文

北斗三号卫星议论文范文

北斗三号卫星议论文范文
北斗卫星导航系统是中国正在实施自主研发的独立运行的全球卫星导航系统,与美国的GPS,俄国的格洛纳斯,欧盟的伽利略系统兼容共用的全球卫星导航系统。

2018年6月23日,北斗三号最后一颗全球组网卫星发射成功,北斗三号30颗组网卫星已全部到位,北斗三号全球卫星导航系统星座部署全面完成。

北斗三号全球卫星导航系统由MEO卫星(地球中圆轨道卫星)、IGSO卫星(倾斜地球同步轨道卫星)和GEO卫星(地球静止轨道卫星)三种不同轨道的卫星组成包括24颗MEO卫星,3颗IGSO卫星和3颗GEO卫星。

据了解,目前世界上已有半数以上的国家使用北斗,今年全球系统建成后,无论在世界的任何角落北斗都会提供服务。

为何我国要自主研发北斗卫星定位系统?因为在北斗卫星还未研发成功的时候,我国一直使用的都是美国的GPS定位系统。

但美国数次关闭系统,给我国带来很大的不利影响。

为了不受制于人,我国选择自主研发定位系统,将自主权牢牢把握在自己手里。

北斗卫星定位系统应运而生。

北斗三号的顺利发射也进一步体现了我国高端装备制造业的实力。

作为机械工业的核心部分,高端装备制造业是先进生产力的代表和竞争力的关键,其发展程度已成为体现国家综合国力的重要因素。

全球卫星定位系统在公路测量中的应用

全球卫星定位系统在公路测量中的应用

全球卫星定位系统在公路测量中的应用王闻宇1彭树鸿2朱光珠21.内蒙古自治区测绘院呼和浩特0100512.内蒙古航空遥感测绘院呼和浩特010010摘要:随着我国经济的不断增长,高速公路建设也得到了快速的发展,同时GPS定位测量技术在高速公路测量中发挥了巨大的作用,并充分发挥了它们的优势。

GPS技术应用于公路测量是公路外业勘测的一项重大技术革命,其应用及开发前景十分广阔,尤其是实时动态(RTK)定位技术在公路测量中蕴含着巨大的技术潜力。

本文主要介绍了GPS中的RTK技术在公路测量中的应用及其对公路勘测的巨大推进作用。

关键词:公路测量全球卫星定位系统GPS静态定位动态定位1.概述全球卫星定位系统(global positioning system,GPS)诞生于上世纪七十年代的美国,它是一种采用距离交会法的、能够向全球用户全天候提供高精度的、连续实时三维导航、定位能力的无线电导航系统,具有良好的保密性和抗干扰性。

随着GPS工作卫星的不断入轨和GPS接收机性能的不断提高,GPS测量技术已广泛用于大地测量、地形测量和工程测量等诸多方面,而在公路勘测中的应用尤为常见。

GPS由空间卫星群(由24颗高约20万公里,均匀分布于六个轨道面上的卫星组成)、地面控制系统(包括一个主控站、三个注入站和五个监测站)、用户接收系统(主要由无线电传感和计算机技术支撑的GPS接收机、GPS数据处理软件等组成)三大部分构成。

其应用模式有GPS静态测量和GPS动态观测(快速静态方法)两种。

GPS技术在公路测量中的应用前景随着我国国民经济的快速增长,我省的高等级公路建设迎来前所未有的发展机遇,这就对勘测设计提出了更高的要求。

随着公路设计行业软件技术和硬件设备的发展,公路设计已实现CAD化,有些软件本身还要求提供地面数字化测绘产品的支持,建立勘测、设计、施工、后期管理一体化的数据链,减少数据转抄、输入等中间环节,是公路勘测设计“内外业一体化”的要求,也是影响高等级公路设计技术发展的“瓶颈”所在。

北斗的发展及应用小论文

北斗的发展及应用小论文

北斗的发展及应用小论文北斗导航系统(Beidou Navigation Satellite System)是中国自主研发的卫星导航系统,具有全球覆盖能力。

它由北斗卫星导航实验室研发和运营,广东波导导航科技公司承担了系统的商业化建设任务。

北斗系统是我国国家重大科技基础设施,通过静止轨道卫星和倾斜轨道卫星提供全球定位、导航和时间服务,广泛应用于交通运输、渔业海洋、电力能源、地质勘查、矿产资源等各个领域。

北斗导航系统在过去几十年的发展中正在成为中国实现自主科技创新和提升国家综合国力的重要支撑之一。

首先,北斗系统的建设为中国提供了独立可靠的全球卫星导航系统,减少了对GPS系统的依赖,提高了国家的安全性和自主性。

其次,北斗系统的建设推动了国内相关产业链的发展和升级,涉及卫星研发、导航终端制造、应用服务等多个领域,形成了一个庞大的产业集群。

第三,北斗系统的应用推动了科技创新和社会经济发展,提高了各行业的生产效率和管理水平。

特别是在交通运输领域,北斗系统为船舶、飞机、汽车等提供了准确的导航定位服务,提高了交通运输的安全性和效率。

此外,北斗系统还为渔业海洋、电力能源、地质勘查、矿产资源等领域提供了有效的定位导航服务,推动了这些领域的发展。

随着北斗系统的不断完善和发展,其应用范围也在不断扩大。

首先,在交通运输领域,北斗系统广泛应用于船舶、飞机、汽车、铁路等各个交通工具中,提供精准的定位导航服务,实现了智能交通管理。

其次,在渔业海洋领域,北斗系统可以跟踪渔船位置,提供渔业资源调查和监控服务,帮助渔民增加捕捞收益。

第三,在电力能源领域,北斗系统可以监控电力设备的位置和状态,实现智能电网管理,提高能源利用效率。

在地质勘查和矿产资源领域,北斗系统可以为勘探人员提供准确的定位和导航服务,提高勘探效率和资源开发利用率。

然而,北斗系统在应用过程中也面临一些挑战和问题。

首先,由于北斗系统是全球导航系统,需要和其他导航系统(如GPS)相互兼容和互操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全球卫星定位系统及其应用论文GPS系统原理及应用学院:哲学与法学学院班级:法学091姓名:刘硕学号:2009092024摘要:本文系统介绍了GPS的原理和其三大子系统,着重介绍了GPS系统在交通运输中的应用,包括在道路工程、汽车导航和交通管理中的应用以及其他应用。

关键字:用途,作用,GPS应用,系统,数据处理一、全球定位系统GPS简介全球卫星定位系统GPS是美军70年代初在"子午仪卫星导航定位"技术上发展而起的具有全球性、全能性(陆地、海洋、航空与航天)、全天候性优势的导航定位、定时、测速系统。

GPS由三大子系统构成:空间卫星系统、地面监控系统、用户接收系统。

1.空间卫星系统空间卫星系统由均匀分布在6个轨道平面上的24颗高轨道工作卫星构成,各轨道平面相对于赤道平面的倾角为55Ο,轨道平面间距60Ο。

在每一轨道平面内,各卫星升交角距差90Ο,任一轨道上的卫星比西边相邻轨道上的相应卫星超前30Ο。

事实上,空间卫星系统的卫星数量要超过24颗,以便及时更换老化或损坏的卫星,保障系统正常工作。

该卫星系统能够保证在地球的任一地点向使用者提供4颗以上可视卫星。

空间系统的每颗卫星每12小时(恒星时)沿近圆形轨道绕地球一周,由星载高精度原子钟(基频F=10.23MHZ)控制无线电发射机在"低噪音窗口"(无线电窗口中,2至8区间的频区天线噪声最低的一段是空间遥测及射电干涉测量优先选用频段)附近发射L1、L2两种载波,向全球的用户接收系统连续地播发GPS导航信号。

GPS工作卫星组网保障全球任一时刻、任一地点都可对4颗以上的卫星进行观测(最多可达11颗),实现连续、实时地导航和定位。

GPS卫星向广大用户发送的导航电文是一种不归零的二进制数据码D(t),码率fd=50HZ。

为了节省卫星的电能、增强GPS信号的抗干扰性、保密性,实现遥远的卫星通讯,GPS卫星采用伪噪声码对D码作二级调制,即先将D码调制成伪噪声码(P码和C/A码),再将上述两噪声码调制在L1、L2两载波上,形成向用户发射的GPS射电信号。

因此,GPS信号包括两种载波(L1、L2)和两种伪噪声码(P码、C/A码)。

这四种GPS信号的频率皆源于10.23MHZ (星载原子钟的基频)的基准频率。

基准频率与各信号频率之间存在一定的比例。

其中,P 码为精确码,美国为了自身的利益,只供美国军方、政府机关以及得到美国政府批准的民用用户使用,C/A码为粗码,其定位和时间精度均低于P码,目前,全世界的民用客户均可不受限制地免费使用。

2.地面监控系统地面监控系统由均匀分布在美国本土和三大洋的美军基地上的5个监测站、一个主控站和三个注入站构成。

该系统的功能是:对空间卫星系统进行监测、控制,并向每颗卫星注入更新的导航电文。

地面监控系统各站的主要任务是:监测站:用GPS接收系统测量每颗卫星的伪距和距离差,采集气象数据,并将观测数据传送给主控点。

5个监控站均为无人守值的数据采集中心。

主控站:主控站接收各监测站的GPS卫星观测数据、卫星工作状态数据、各监测站和注入站自身的工作状态数据。

根据上述各类数据,完成以下几项工作:(1)及时编算每颗卫星的导航电文并传送给注入站。

(2)控制和协调监测站间、注入站间的工作,检验注入卫星的导航电文是否正确以及卫星是否将导航电文发给了GPS用户系统。

(3)诊断卫星工作状态,改变偏离轨道的卫星位置及姿态,调整备用卫星取代失效卫星。

(4)注入站:接受主控站送达的各卫星导航电文并将之注入飞越其上空的每颗卫星。

(5)用户接收系统:用户接收系统主要由以无线电传感和计算机技术支撑的GPS卫星接收机和GPS数据处理软件构成。

(6)GPS接收机:GPS卫星接收机的基本结构是天线单元和接收单元两部分。

天线单元的主要作用是:当GPS卫星从地平线上升起时,能捕获、跟踪卫星,接收放大GPS信号。

接收单元的主要作用是:记录GPS信号并对信号进行解调和滤波处理,还原出GPS卫星发送的导航电文,解求信号在站星间的传播时间和载波相位差,实时地获得导航定位数据或采用测后处理的方式,获得定位、测速、定时等数据。

微处理器是GPS接收机的核心,承担整个系统的管理、控制和实时数据处理。

视屏监控器是接收机与操作者进行人机交流的部件。

目前,国际上已推出几十种测量用GPS接收机,各厂商的产品朝着实用、轻便、易于操作、美观价廉的方向发展。

GPS数据处理软件,GPS数据处理软件是GPS用户系统的重要部分,其主要功能是对GPS接收机获取的卫星测量记录数据进行"粗加工"、"预处理",并对处理结果进行平差计算、坐标转换及分析综合处理。

解得测站的三维坐标,测体的坐标、运动速度、方向及精确时刻。

GPS定位技术是正在发展中的高新技术,数据处理技术也处在不断更新之中,各系列GPS接收机制造厂家研制的处理软件也各具特色。

GPS定位的基本方法:GPS定位采用空间被动式测量原理,即在测站上安置GPS用户接收系统,以各种可能的方式接收GPS卫星系统发送的各类信号,由计算机求解站星关系和测站的三维坐标。

由对GPS信号观测量的不同,GPS定位的基本方法有以下几种形式:伪距测量,载波相位测量,多普勒测量,卫星射电干涉测量为了精密定位,一台GPS接收机往往不是单纯采用一种测量方式,而是以某种方式为主,并辅以其他方法。

目前,全球定位系统已广泛应用于军事和民用等众多领域中。

GPS技术按待定点的状态分为静态定位和动态定位两大类。

静态定位是指待定点的位置在观测过程中固定不变的,如GPS在大地测量中的应用。

动态定位是指待定点在运动载体上,在观测过程中是变化的,如GPS在船舶导航中的应用。

静态相对定位的精度一般在几毫米几厘米范围内,动态相对定位的精度一般在几厘米到几米范围内。

对GPS信号的处理从时间上划分为实时处理及后处理。

实时处理就是一边接收卫星信号一边进行计算,获得目前所处的位置、速度及时间等信息;后处理是指把卫星信号记录在一定的介质上,回到室内统一进行数据处理。

一般来说,静态定位用户多采用后处理,动态定位用户采用实时处理或后处理。

二、GPS在交通运输中的应用1、GPS在道路工程中的应用GPS在道路工程中的应用,目前主要是用于建立各种道路工程控制网及测定航测外控点等。

随着高等级公路的迅速发展,对勘测技术提出了更高的要求,由于线路长,已知点少,因此,用常规测量手段不仅布网困难,而且难以满足高精度的要求。

目前,国内已逐步采用GPS技术建立线路首级高精度控制网,如沪宁、沪杭高速公路的上海段就是利用GPS建立了首级控制网,然后用常规方法布设导线加密。

实践证明,在几十公里范围内的点位误差只有2cm左右,达到了常规方法难以实现的精度,同时也大大提前了工期。

浙江省测绘局利用Wild 200 GPS接收机的快速静态定位功能施测了线路的全部初测导线,快速、高精度的建立了数百公里的高速公路控制网,取得了良好的效果。

GPS技术也同样应用于特大桥梁的控制测量中。

由于无需通视,可构成较强的网形,提高点位精度,同时对检测常规测量的支点也非常有效。

如在江阴长江大桥的建设中,首先用常规方法建立了高精度边角网,然后利用GPS对该网进行了检测,GPS检测网达到了毫米级精度,与常规精度网的比较符合较好。

GPS 技术在隧道测量中具有广泛的应用前景,GPS测量无需通视,减少了常规方法的中间环节,因此,速度快、精度高,具有明显的经济和社会效益。

差分动态GPS在道路勘测方面主要应用于数字地面模型的数据采集、控制点的加密、中线放样、纵断面测量以及无需外控点的机载GPS航测等方面。

1994年6月在同济大学试验了KART实时相位差分卫星定位系统,在1km范围内达到了优于2cm的精度,因此能够用于线路控制网的加密。

GPS测量包含有三维信息,可用于数字地面模型的数据采集、中线放样以及纵断面测量。

在中线平面位置放样的同时,可获得纵断面,在中线放样中需实时把基准站的数据由数据链传到移动站,从而提供移动站的实时位置,由于GPS仪器不象经纬仪那样可以指示方向,因此需与计算机辅助设计系统相结合,从而可在计算机屏幕上看到目前位置与设计坐标的差异。

机载动态差分GPS应用于航测在德国和加拿大已取得了成功,用载波相位差分测出每个摄影中心的三维坐标,而不再需要外控点测量,取得了良好的效果。

2、GPS在汽车导航和交通管理中的应用三维导航是GPS的首要功能,飞机、船舶、地面车辆以及步行者都可利用GPS导航接收器进行导航。

汽车导航系统是在全球定位系统GPS基础上发展起来的一门新型技术。

汽车导航系统由GPS导航、自律导航、微处理器、车速传感器、陀螺传感器、CD-ROM驱动器、LCD显示器组成。

GPS导航是由GPS接收机接收GPS卫星信号(三颗以上),求出该点的经纬度坐标、速度、时间等信息。

为提高汽车导航定位精度,通常采用差分GPS技术。

当汽车行驶到地下隧道、高层楼群、高速公路等遮掩物而与捕获不到GPS卫星信号时,系统可自动导入自律导航系统,此时由车速传感器检测出汽车的行进速度,通过微处理单元的数据处理,从速度和时间中直接算出前进的距离,陀螺传感器直接检测出前进的方向,陀螺仪还能自动存储各种数据,即使在更换轮胎暂时停车时,系统也可以重新设定。

由GPS卫星导航和自律导航所测到的汽车位置坐标数据、前进的方向都与实际行驶的路线轨迹存在一定误差,为修正这两者的误差,与地图上的路线统一,需采用地图匹配技术,加一个地图匹配电路,对汽车行驶的路线与电子地图上道路误差进行实时相关匹配作自动修正,此时地图匹配电路是通过微处理单元的整理程序进行快速处理,得到汽车在电子地图上的正确位置,以指示出正确行驶路线。

CD-ROM用于存储道路数据等信息,LCD显示器用于显示导航的相关信息。

GPS导航系统与电子地图、无线电通信网络及计算机车辆管理信息系统相结合。

可以实现车辆跟踪和交通管理等许多功能,这些功能包括:(1)车辆跟踪:利用GPS和电子地图可以实时显示出车辆的实际位置,并任意放大、缩小、还原、换图;可以随目标移动,使目标始终保持在屏幕上;还可实现多窗口、多车辆、多屏幕同时跟踪。

利用该功能可对重要车辆和货物进行跟踪运输。

(2)提供出行路线规划和导航,提供出行路线规划是汽车导航系统的一项重要辅助功能,它包括自动线路规划和人工线路设计。

自动线路规划是由驾驶者确定起点和目的地,由计算机软件按要求自动设计最佳行驶路线,包括最快的路线、最简单的路线、通过高速公路路段次数最少的路线等的计算。

人工线路设计是由驾驶者根据自己的目的地设计起点、终点和途经点等,自动建立线路库。

线路规划完毕后,显示器能够在电子地图上显示设计线路,并同时显示汽车运行路径和运行方法。

相关文档
最新文档