数字图像处理中的边缘检测技术

合集下载

图像处理中的边缘检测算法分析与优化

图像处理中的边缘检测算法分析与优化

图像处理中的边缘检测算法分析与优化随着数字图像处理技术的不断发展,边缘检测在计算机视觉、模式识别和图像分割等领域中扮演着重要的角色。

边缘是图像中灰度变化较大的区域,通过检测边缘,我们可以提取图像的形状和结构信息,从而实现图像分析和理解。

本文将对常用的图像处理边缘检测算法进行分析,并探讨优化策略。

一、边缘检测算法概述1.1 Sobel算法Sobel算法是一种基于梯度的边缘检测算法,它通过计算图像梯度的大小和方向来确定边缘位置。

Sobel算法具有计算简单、鲁棒性较高的优点,但对噪声比较敏感,在图像边缘不够明显或存在噪声时容易引入误检。

1.2 Canny算法Canny算法是一种经典的边缘检测算法,它通过多个步骤来实现高效的边缘检测。

首先,通过高斯滤波器对图像进行平滑处理,以减少噪声的影响。

然后,计算图像的梯度幅值和方向,并进行非极大值抑制,以精确地定位边缘。

最后,通过滞后阈值法来进行边缘的连接和细化。

Canny算法具有良好的边缘定位能力和抗噪能力,在实际应用中被广泛使用。

1.3 Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算子,它通过计算图像的二阶导数来检测图像中的边缘。

Laplacian算子具有对灰度变化较大的边缘敏感的优点,但对噪声比较敏感,容易产生边缘断裂和误检。

为了提高Laplacian算子的效果,常常与高斯滤波器结合使用,以减少噪声的干扰。

二、边缘检测算法优化2.1 参数选择在边缘检测算法中,参数的选择对于最终的结果具有重要的影响。

例如,对于Canny算法来说,高斯滤波器的大小和标准差的选择直接影响到边缘的平滑程度和定位精度。

因此,在优化边缘检测算法时,需要根据具体的应用场景和图像特点选择合适的参数。

2.2 非极大值抑制非极大值抑制是Canny算法中的一种重要步骤,用于精确地定位边缘位置。

然而,在进行非极大值抑制时,会产生边缘断裂和不连续的问题。

为了解决这个问题,可以考虑使用像素邻域信息进行插值,从而减少边缘的断裂,并得到更连续的边缘。

数字图像处理中的边缘检测与提取技术

数字图像处理中的边缘检测与提取技术

数字图像处理中的边缘检测与提取技术数字图像处理是一门极为重要的技术,在现代化的科技时代中,其广泛性和应用性已经远远超越人们的想象。

因此,数字图像处理技术也得到了越来越多的研究和应用。

在这些技术中,边缘检测与提取技术无疑占据了很大的比重。

本文就来深入探讨数字图像处理中的边缘检测与提取技术。

一、数字图像的边缘概述在数字图像中,边缘指的是图像由一个物体和另一个物体之间的边界。

在物理世界中,边界就是物体的边界。

在数字图像中,边界则是不同区域之间颜色或亮度发生变化的地方。

在实际应用中,数字图像的边缘检测非常重要。

例如,在计算机视觉中,它是对象检测和跟踪的关键。

二、数字图像的边缘提取方法数字图像的边缘检测与提取一直是数字图像处理中的研究热点之一。

为了准确地检测和提取图像的边缘特征,现有许多不同的边缘检测和提取方法。

其主要的方法有:1. 基于梯度的边缘检测方法基于梯度的边缘检测方法通常使用Sobel、Prewitt或Roberts等算子来计算梯度。

这些算子可以对图像中每个像素的灰度值进行微分,以寻找灰度变化的最大值,以确定边界的位置。

虽然这种方法在大多数情况下能够有效地检测出边缘,但它对边缘噪声非常敏感。

因此,需要结合其他滤波器,如高斯滤波器或中值滤波器,对原始图像进行滤波。

2. 基于模板的边缘检测方法基于模板的边缘检测方法,也称为基于Laplace算子的边缘检测方法,通常使用Laplace算子将图像的高斯平滑滤波结果与模板相乘,以检测图像中的边界。

此外,也可以采用另一种常用的算子Canny算子。

3. 基于阈值的边缘检测方法基于阈值的边缘检测方法是最常见的边缘检测方法之一。

为了提取图像中的边缘,该方法使用预先定义的阈值将灰度值低于阈值的像素识别为背景像素,将灰度值高于阈值的像素视为边缘像素。

但是,这种方法通常对于灰度不稳定的图像效果不好,需要将阈值与其他滤波器结合使用,如先进行对比度增强。

三、数字图像的边缘检测算法的评价边缘检测算法被广泛用于许多领域的数字图像处理中。

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较边缘检测是在数字图像上寻找图像亮度变化的过程,它对于图像处理和计算机视觉任务非常重要。

常见的边缘检测算法有Sobel算子、Prewitt算子、Roberts算子和Canny边缘检测算法。

本文将对这几种算法进行比较。

1. Sobel算子:Sobel算子是一种常见的边缘检测算法,它通过计算图像像素点与其邻域像素点之间的差异来检测边缘。

Sobel算子具有简单、快速的优点,可以检测水平和垂直方向的边缘,但对于斜向边缘检测效果较差。

2. Prewitt算子:Prewitt算子也是一种常用的边缘检测算法,它类似于Sobel算子,通过计算图像像素点与其邻域像素点之间的差异来检测边缘。

Prewitt算子可以检测水平、垂直和斜向边缘,但对于斜向边缘的检测结果可能不够精确。

3. Roberts算子:Roberts算子是一种简单的边缘检测算法,它通过计算图像像素点与其对角线方向上的邻域像素点之间的差异来检测边缘。

Roberts算子计算简单,但对于噪声敏感,容易产生干扰边缘。

4. Canny边缘检测算法:Canny边缘检测算法是一种经典的边缘检测算法,它包含多个步骤:高斯滤波、计算梯度、非最大抑制和双阈值处理。

Canny算法具有良好的边缘定位能力,并且对于噪声和细节边缘具有较好的抑制效果。

但Canny算法计算复杂度较高,在处理大规模图像时可能较慢。

综上所述,不同的边缘检测算法具有各自的优缺点。

若要选择适合应用的算法,需要综合考虑图像特点、计算复杂度和应用需求等因素。

如果对图像边缘的方向要求不高,可以选择Sobel或Prewitt算子;如果对图像边缘的方向要求较高,可以选择Canny算法。

另外,为了获得更好的边缘检测结果,通常需要进行适当的预处理,如灰度化、滤波和阈值处理等。

最后,对于不同的应用场景,可能需要使用不同的算法或算法组合来满足特定需求。

数字图像处理中的边缘检测技术

数字图像处理中的边缘检测技术

数字图像处理中的边缘检测技术随着数字图像处理技术的日益发展,边缘检测技术不但在计算机视觉领域被广泛应用,而且在生物医学图像处理、遥感图像处理等领域也得到了广泛的应用。

边缘作为图像中物体分界线的表现,其精准提取对于图像处理和分析具有非常重要的意义。

本文将主要围绕数字图像处理中的边缘检测技术展开讨论。

一、边缘检测的概念边缘是指像素灰度值变化发生较大的位置或过渡区域,也可以定义为图像灰度值变化的一部分或所有的轮廓。

我们可以将边缘视为图像中相邻物体或目标之间的边缘线,边缘是图像不同区域之间不可或缺的分界线。

在数字图像处理中,边缘检测就是指从图像中提取出边缘信息的过程,从而把图像分割成不同的对象。

边缘检测技术主要分为两类:一类是基于模板匹配的滤波方法;另一类是基于阈值分割的方法。

由于现实图像中存在的噪声干扰等因素,边缘检测一直是计算机视觉领域中的难点问题之一。

二、基于模板匹配的滤波方法基于模板匹配的滤波方法许多基于微分算子的边缘检测方法,包括Sobel算子、Prewitt算子、Roberts算子、Laplacian算子等。

Sobel算子是一种基于模板匹配的滤波方法之一。

它是一种二维差分算法,可通过对图像应用模板进行卷积操作来检测图像中的边缘。

经过卷积后,结果的大小和方向可以用来提取垂直和水平方向的边缘信息。

Sobel算子在极少的计算量下可以实现较好的效果,但是其容易受噪声的影响,产生较多的假边缘。

Prewitt算子是一种和Sobel算子类似的卷积算子,它也是基于模板匹配的滤波方法。

与Sobel算子不同的是,Prewitt算子不仅可以提取水平和垂直方向的边缘,还可以提取45度和135度的斜向边缘。

但是,Prewitt算子同样也存在一定的缺陷,会对边缘方向检测不够敏感。

三、基于阈值分割的方法基于阈值分割的方法主要包括基于全局阈值和基于局部阈值的分割方法。

基于全局阈值的方法是一种最基本的分割方法,主要利用图像中的灰度值和满足预定义条件的像素点之间的关系来将图像分割成不同的物体。

图像处理中的边缘检测和特征提取方法

图像处理中的边缘检测和特征提取方法

图像处理中的边缘检测和特征提取方法图像处理是计算机视觉领域中的关键技术之一,而边缘检测和特征提取是图像处理中重要的基础操作。

边缘检测可以帮助我们分析图像中的轮廓和结构,而特征提取则有助于识别和分类图像。

本文将介绍边缘检测和特征提取的常见方法。

1. 边缘检测方法边缘检测是指在图像中找到不同区域之间的边缘或过渡的技术。

常用的边缘检测方法包括Sobel算子、Prewitt算子和Canny算子。

Sobel算子是一种基于梯度的边缘检测算法,通过对图像进行卷积操作,可以获取图像在水平和垂直方向上的梯度值,并计算获得边缘的强度和方向。

Prewitt算子也是一种基于梯度的边缘检测算法,类似于Sobel算子,但其卷积核的权重设置略有不同。

Prewitt算子同样可以提取图像的边缘信息。

Canny算子是一种常用且经典的边缘检测算法。

它结合了梯度信息和非极大值抑制算法,可以有效地检测到图像中的边缘,并且在边缘检测的同时还能削弱图像中的噪声信号。

这些边缘检测算法在实际应用中常常结合使用,选择合适的算法取决于具体的任务需求和图像特点。

2. 特征提取方法特征提取是指从原始图像中提取出具有代表性的特征,以便进行后续的图像分析、识别或分类等任务。

常用的特征提取方法包括纹理特征、形状特征和颜色特征。

纹理特征描述了图像中的纹理信息,常用的纹理特征包括灰度共生矩阵(GLCM)、局部二值模式(LBP)和方向梯度直方图(HOG)。

GLCM通过统计图像中像素之间的灰度变化分布来描述纹理特征,LBP通过比较像素与其邻域像素的灰度值来提取纹理特征,HOG则是通过计算图像中梯度的方向和强度来提取纹理特征。

这些纹理特征可以用于图像分类、目标检测等任务。

形状特征描述了图像中物体的形状信息,常用的形状特征包括边界描述子(BDS)、尺度不变特征变换(SIFT)和速度不变特征变换(SURF)。

BDS通过提取物体边界的特征点来描述形状特征,SIFT和SURF则是通过提取图像中的关键点和描述子来描述形状特征。

数字图像处理中的边缘检测方法与优化

数字图像处理中的边缘检测方法与优化

数字图像处理中的边缘检测方法与优化在数字图像处理中,边缘检测是一项重要的任务,它用于检测图像中物体的轮廓和边界。

边缘检测在计算机视觉、图像分析和模式识别等领域中具有广泛的应用。

本文将介绍几种常用的数字图像处理中的边缘检测方法以及相关的优化技术。

1. Roberts算子和Sobel算子Roberts算子和Sobel算子是最早也是最常用的边缘检测算子。

它们通过计算图像像素点的梯度或差分来确定边缘信息。

Roberts 算子利用两个3×3的模板对图像进行卷积操作,计算图像的水平和垂直边缘响应。

Sobel算子与之类似,但是使用了更大的模板和加权求和操作,以提高边缘检测的精度。

2. Canny边缘检测算法Canny边缘检测算法是一种经典的边缘检测算法,被广泛应用于图像处理领域。

它通过多步骤的操作来检测图像中的边缘。

首先,进行高斯滤波以平滑图像并减少噪声。

然后,计算图像的梯度和方向。

接下来,使用非极大值抑制技术来细化边缘。

最后,根据设定的高低阈值筛选出真正的边缘。

Canny边缘检测算法具有较高的准确性和鲁棒性,但是相对计算复杂。

3. Laplacian算子Laplacian算子在边缘检测中起到了关键作用,它可以通过计算图像像素点的拉普拉斯算子来确定边缘信息。

Laplacian算子具有较高的响应度,能够准确地检测出边缘,但是由于其二阶导数的性质,容易受到噪声和纹理的干扰。

因此,在使用Laplacian算子进行边缘检测时,需要进行适当的平滑处理。

4. 基于机器学习的边缘检测随着机器学习的快速发展,基于机器学习的边缘检测方法也得到了广泛的应用。

通过训练模型,可以使用机器学习算法来学习图像中的边缘模式,并进行边缘检测。

常用的机器学习算法包括支持向量机(SVM)、卷积神经网络(CNN)等。

这些算法可以自动从大量的图像数据中学习,对于复杂的边缘检测任务具有较好的性能。

优化方法:1. 阈值选择在边缘检测中,阈值选择是一个重要的优化问题。

数字图像处理的边缘检测算法

数字图像处理的边缘检测算法

数字图像处理中的边缘检测算法数字图像处理是计算机科学领域中的一个重要研究方向,其目的是通过计算机算法对图像进行处理和分析,以提取有用的信息和特征。

其中,边缘检测算法是数字图像处理中的一个基础问题,它在图像分割、目标识别和图像理解等方面具有广泛的应用。

边缘是图像中灰度值或颜色变化明显的区域,边缘检测算法的目标就是在图像中准确地找到这些边缘。

边缘检测算法可以分为基于梯度的方法和基于模型的方法两大类。

基于梯度的边缘检测算法是最常用的方法之一。

其中,Sobel算子和Prewitt算子是两种经典的基于梯度的边缘检测算法。

它们的基本思想是通过计算图像中像素点的梯度值来确定边缘的位置和方向。

Sobel算子通过对图像进行卷积操作来计算像素点的梯度值。

它使用了两个3×3的卷积核,分别对图像进行水平和垂直方向上的卷积运算。

通过计算两个方向上的梯度值,可以得到像素点的梯度幅值和梯度方向,从而确定边缘的位置和方向。

Prewitt算子与Sobel算子类似,也是通过卷积运算来计算梯度值。

不同的是,Prewitt算子使用了两个3×3的卷积核,分别对图像进行水平和垂直方向上的卷积运算。

通过计算两个方向上的梯度值,可以得到像素点的梯度幅值和梯度方向,从而确定边缘的位置和方向。

除了基于梯度的边缘检测算法,基于模型的边缘检测算法也是常用的方法之一。

其中,Canny算法是一种经典的基于模型的边缘检测算法。

它的基本思想是通过对图像进行多次平滑和差分运算,来提取图像中的边缘。

Canny算法首先对图像进行高斯平滑,以减少噪声的影响。

然后,通过计算图像中像素点的梯度值和方向,来确定边缘的位置和方向。

接下来,Canny算法使用非极大值抑制方法来细化边缘,以保留边缘的细节信息。

最后,Canny算法使用双阈值算法来检测和连接边缘。

除了上述的经典算法,还有一些其他的边缘检测算法也具有一定的研究和应用价值。

例如,拉普拉斯算子是一种基于二阶导数的边缘检测算法,可以提取图像中的高频信息。

边缘检测的原理

边缘检测的原理

边缘检测的原理边缘检测是数字图像处理中的常见任务,它能够识别并提取出图像中物体的边缘信息。

在计算机视觉和模式识别领域,边缘特征对于物体识别、分割以及图像理解非常重要。

本文将介绍边缘检测的原理及其常用的方法。

一、边缘的定义边缘是图像中亮度变化剧烈处的集合。

在图像中,边缘通常表示物体之间的分界线或物体自身的边界轮廓。

边缘通常由亮度或颜色的不连续性引起,可以用于图像分析、特征提取和图像增强等应用中。

二、边缘检测的原理边缘检测的目标是找到图像中的所有边缘,并将其提取出来。

边缘检测的原理基于图像亮度的一阶或二阶变化来进行。

常用的边缘检测原理包括:1. 一阶导数方法一阶导数方法利用图像亮度的一阶导数来检测边缘。

最常见的方法是使用Sobel算子、Prewitt算子或Roberts算子计算图像的梯度,然后通过设置合适的阈值将梯度较大的像素点判定为边缘。

2. 二阶导数方法二阶导数方法通过对图像亮度进行二阶导数运算来检测边缘。

其中,Laplacian算子是最常用的二阶导数算子,它可以通过计算图像的二阶梯度来获取边缘信息。

类似于一阶导数方法,二阶导数方法也需要设定适当的阈值来提取边缘。

3. Canny算子Canny算子是一种广泛使用的边缘检测算法,它综合了一阶和二阶导数方法的优点。

Canny算子首先使用高斯滤波平滑图像,然后计算图像的梯度和梯度方向,并根据梯度方向进行非极大值抑制。

最后,通过双阈值算法检测出真正的边缘。

三、边缘检测的应用边缘检测在计算机视觉和图像处理中具有广泛的应用。

以下是一些常见的应用:1. 物体检测与分割边缘检测可以帮助识别图像中的物体并进行分割。

通过提取物体的边缘,可以实现对图像内容的理解和分析。

2. 图像增强边缘检测可以用于图像增强,通过突出图像中的边缘信息,使图像更加清晰和饱满。

3. 特征提取边缘是图像中最重要的特征之一,可以用于物体识别、图像匹配和目标跟踪等应用中。

通过提取边缘特征,可以实现对图像的自动识别和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理中的边缘检测技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII课程设计报告设计题目:数字图像处理中的边缘检测技术学院:专业:班级:学号:学生姓名:电子邮件:时间:年月成绩:指导教师:目录1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1)1.1理论背景 (1)1.2图像边缘检测技术研究的目的和意义 (1)1.3国内外研究现状分析 (2)1.4常用边缘检测方法的基本原理 (3)2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7)2.1 小波边缘检测的原理 (7)2.2 数学形态学的边缘检测方法的原理 (7)3 算法实现部分:程序设计的流程图及其描述 (9)3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9)3.2 数学形态学的边缘检测方法程序设计算法描述 (10)4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11)5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15)参考文献 (17)附录:代码 (18)1前言查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义1.1 理论背景图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。

图像处理方法有光学方法和电子学方法。

从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。

图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。

计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。

(2)希望能由计算机自动识别和理解图像。

数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。

物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。

图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。

根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。

1.2 图像边缘检测技术研究的目的和意义数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。

边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。

首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。

前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。

两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。

早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。

经典的边缘检测算法是对原始图像中像素的某小领域来构造边缘检测算子,常用的边缘检测算子有Roberts算子、Sobel算子、Prewitt算子Kirsch算子、Laplacian算子、LOG算子、Canny算子。

这些算子主要应用于计算几何各个现实领域中,如遥感技术、生物医学工程、机器人与生产自动化中的视觉检验、零部件选取及过程控制等流程、军事及通信等。

在图像处理的过程中老算法也出现了许多的问题。

经过多年的发展,现在已经出现了一批新的图像处理算法。

如小波变换和小波包的边缘检测、基于形态学、模糊理论和神经网络的边缘检测等,这些算法扩展了图像边缘检测技术在原有领域中的运用空间,同时也使它能够适应更多的运用需要。

1.3国内外研究现状分析数字图像处理,指的是使用计算机对图像信号进行快速处理。

数字图像处理技术在二十世纪六十年代因客观需要而兴起,到二十一世纪初期,它已经处于发展的全盛时期。

图像处理技术进一步发展的另一个原因是计算机硬件的开发与软件系统的进一步完善,导致数字图像技术的精度更高、成本更低、速度更快及灵活性更好[1]。

由于数字图像处理包括很多方面,所以该文主要针对图像边缘检测进行研究和分析。

图像的边缘检测是图像最基本的特征,精度的提取出图像边缘可以对图像进行更多方面的研究。

早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。

经典的边缘检测算法是对原始图像中像素的某小领域来构造边缘检测算子,常用的边缘检测算子有Roberts算子、Sobel算子、Prewitt算子Kirsch算子、Laplacian算子、LOG算子、Canny算子等。

虽然这些算法已经提出并应用了很多年,不过任然有其发展空间[2]。

近年来随着数学理论以及人工智能的发展,又涌现出了许多新的边缘检测的方法,如小波变换和小波包的边缘检测、基于数学形态学、模糊理论和神经网络的边缘检测法[3]。

小波变换和小波包的边缘检测方法:在数字图像处理中,需要分析的图像往往结构复杂、形态各异,提取的图像边缘不仅要反应目标的整体轮廓,目标的局部细节也不能忽视,这就需要更多尺度的边缘检测,而小波变换具有天然的多尺度特征,通过伸缩平移运算对信号进行细化分析,达到高频处时间细分,低频出频率细分。

所以,小波变换非常适合复杂图像的边缘检测。

在Coifman、Meyer、Wickhauser引入小波理论后,小波包分解则更是为精细的一种图像分解方法,可以满足不同分辨率下对局部细节进行边缘检测提取的需要,尤其是含噪图像,提取图像边缘对抑制图像噪声更好[4]。

基于数学形态学的边缘检测方法:数学形态学是图像处理和模式识别领域中一门新兴的学科,具有严格的数学理论基础,现已在图像工程中得到广泛的运用。

基本思想是用具有一定形态学的结构元素去度量和提取图像中的对应形状已达到对图像分析和识别的目的。

获得的图像结构信息与结构元素的尺寸和形状都有关系,构造不同的结构元素,便可完成不同的图像分析。

数学形态学包括二值形态学、灰度形态学和彩色形态学,基本变换包括膨胀、腐蚀、开启、闭合四种运算,并由这四种运算演化出开、闭、薄化、厚化等,从而完成复杂的形态变换。

目前随着二值形态学的运用越来越成熟,灰度和彩色形态学在边缘检测中的运用也越来越引起人们的关注并逐渐走向成熟[5]。

基于模糊理论的边缘检测方法:模糊理论创立于1965年,由美国柏克莱加州大学电气工程系教授Zadeh在模糊焦合理论的基础上提出,模糊理论的特点是不对事物做简单的肯定和否定,而是用奴隶度来反映某一事物属于某一范畴的程度。

由于成像系统、视觉反映造成图像本身的模糊性再加上边缘定义区分的模糊性,使人们在处理图像时很自然的就想起模糊理论的作用。

其中有代表性的为国外学者Pal好King提出的模糊边缘检测算法,其中心思想是:利用模糊增强技术来增加不同区域之间的对比,从而能够提取模糊的边缘。

基于模糊理论的边缘检测算法的优势是自身的数学基础,缺点是计算要涉及变换以及矩阵求逆的较为复杂的预算,另外增加对比的同时,也增加了噪声[6]。

1.4常用边缘检测方法的基本原理1.4.1 Roberts算子的基本原理1963年,Roberts提出了这种寻找边缘的算子。

Roberts边缘算子是一个2x2的模板,采用的是对角方向相邻的两个像素之差。

从图像处理的实际效果来看,边缘定位较准,对噪声敏感。

Roberts算法的计算公式如下:g(x,y)=|f(x+1,y+1)-f(x,y)|+|(f(x+1,y)-f(x,y+1))|[g,t]=edge(f,’roberts’,T,dir)边缘检测算子相当于用模板[0 1;-1 0]和[1 0;0 -1]对图像进行卷积。

1.4.2 Sobel算子基本原理为了在边缘检测中减少噪声的影响,1970年Prewitt和Sobe1分别提出prewitt算子和Sobel算子。

sobel算子从不同的方向检测边缘,利用像素点上下、左右邻点的灰度加权算法,根据在缘点处达到极值进行边缘的检测。

Sobel 边缘检测是一种数学背景复杂但实现较为简单的技术,从加大边缘增强算子的模板大小出发,由2*2扩大到3*3来计算差分。

Sobel算子的两个卷积计算核如图3所示,图像中的每个点都用这两个核作卷积,第一个核对通常的垂直边缘响应最大,第二个核对水平边缘响应最大。

利核对3*3的区用两个卷积域进行卷积,并按cycxyxg22),(+=计算。

在边沿检测中,sobel算子对于像素的位置的影响做了加权,加权平均边宽≥2像素,因此效果较好。

1.4.3 Prewitt算子基本原理Sobel算法与Priwitt算法的思路相同,Prewitt算子的实现理论基础也是由两个卷子核形成Prewitt边缘检测算子,如图4。

图像中的每个点都用这两个核进行卷积,利用两个卷积核对3*3的区域进行卷积,并按22),(cycxyxg+=计算,结果产生一副边缘强度图像。

Prewitt算子如下:1.4.4 Kirsch算子基本原理利用一组模板分别计算在不同方向上的差分值,取其中最大的值作为边缘强度,而将与之对应的方向作为边缘方向。

Krisch算子实现是由8个卷积核组成了Krisch边缘检测算子,每个点都用8个掩模进行卷积,每个掩模都对某个特定边缘方向最初最大响应。

但在此程序中我们采用基于Kirsch边缘检测算子的一种快速算法--FKC算法,大大加快了程序运行速度。

1.4.5 Laplacian算子基本原理拉普拉斯高斯算子是一种二阶边缘检测方法,它通过寻找图像灰度值中二阶微分中的过零点来检测边缘点,其原理为:灰度缓变形成的边缘经过微分算子形成一个单峰函数,值位置对应边缘点;对单峰函数进行微分,则峰值处的微分值为0,峰值两侧符号相反,而原先的极值点对应二阶微分中的过零点,通过检测过零点即可将图像的边缘提取出来。

通常,拉普拉斯算子是对二维函数进行运算的二阶运算的二阶导数的算子,处理时,对以(x,y)为中心的3x3区域施以3x3加权屏蔽窗口,计算出此窗口的相关值(卷积和),求得拉普拉斯算子图像g(i,j)。

通常使用的拉普拉斯算子是3x3算子。

拉普拉斯算子的计算公式如下:1.4.6 LOG算子基本原理将高斯滤波和拉普拉斯边缘检测结合在一起,形成高斯Laplace算法,这种方法的特点是图像先与高斯滤波器g(x,y)进行卷积,这一步既平滑了图像又降低了噪声,孤立的噪声点和较小的结构组织将被滤除,然后利用无方向性的拉普拉斯算子实现边缘检测。

相关文档
最新文档