湘教版九年级数学下册全套精品PPT课件

合集下载

湘教版九年级数学下册电子课本课件【全册】

湘教版九年级数学下册电子课本课件【全册】
湘教版九年级数学下册电子课本 课件【全册】目录
0002页 0048页 0075页 0117页 0174页 0209页 0240页 0258页 0282页 0309页 0341页
第1章 二次函数 1.2 二次函数的图像与性质 1.4 二次函数与一元二次方程的联系 第2章 圆 2.2 圆心角、圆周角 2.4 过不共线三点作圆 2.6 弧长与扇形面积 第3章 投影与视图 3.2 直棱柱、圆锥的侧面展开图 第4章 概率 4.2 概率及其计算
第1章 二次函数
湘教版九年级数学下册电子课本课 件【全册】
1.1 二次函数
湘教版九年级数学下册电子课本课 件【全册】
1.2 二次函数的图像与性质
湘教版九年数的 表达式
湘教版九年级数学下册电子课本课 件【全册】

湘教版九年级数学下册:1.2 二次函数的图象与性质课件 (共26张PPT)

湘教版九年级数学下册:1.2 二次函数的图象与性质课件 (共26张PPT)

情境引入
市场调查得出某商品现在的利润y(元)与售 价x(元)满足函数关系式如下:
y 10 x2 100 x 6000 (0≤X≤30)
若我们想直观的了解利润y与售价x之间的变化 情况以及最大利润情况,我们还需对该函数做哪些 研究呢?
二次函数y=ax2的图象和性质
教学目标
1、让学生经历描点法画函数图象的过程; 2、让学生学会观察、思考、概括函数图象的性质; 3、掌握y=ax2型二次函数图像及其性质。
2
当x=0时,最大值为0. 越大a .,开口越小.
抛物线
y=ax2 (a>0)
y= ax2 (a<0)
顶点坐标
(0,0)
(0,0)
对称轴
y轴(直线x=0) y轴(直线x=0)
位置 在x轴的上方(除顶点外) 在x轴的下方( 除顶点外)
开口方向
向上
向下
增减性 x<0时,y随着x的增大而减小. X<0时,y随着x的增大而增大.
X>0时, y随着x的增大而增大. X>0时, y随着x的增大而减小.
最值
当x=0时,最小值为0.
开口大小
aa 越大,开口越小.
当x=0时,最大值为0.
aa .越大,开口越小.
(答对的也加分哦)
1、函数y=5x2的图象的开口 向上 ,对称轴 是 y轴 ,顶点是(0,0) ;在对称轴的左 侧,y随x的增大而 减小 ,在对称轴的右侧, y随x的增大而 增大 ;
(答对的加3分哦)
71、.若若mm>0>,0,点点(m(m+1+,1,y1y)、1)、(m(m+2+,2,y2y)、2)、
(m+3,y3)在抛物线

最全最新湘教版初中数学九年级下册数学知识点大全 ppt课件

最全最新湘教版初中数学九年级下册数学知识点大全 ppt课件

d=r
点P在圆上; 的距离与半径之间的关
系;反过来,也可以通
d>r
点P在圆外. 过这种数量关系判断点
与圆的位置关系.
2.直线与圆的位置关系 设r为圆的半径,d为圆心到直线的距离
直线与圆的 位置关系
相离
相切
图形
相交
d与r的关系 d>r 公共点个数 0个 公共点名称
直线名称
d=r 1个 切点 切线
d<r 2个 交点 割线
(4)中心角:正多边形每一条边对应所对的外接圆 的圆心角都相等,叫做正多边形的中心角.
二、与圆有关的位置关系 1.点与圆的位置关系 判断点与圆的位置关系可由点到圆心的距离d与圆 的半径r比较得到. 设☉O的半径是r,点P到圆心的距离为d,则有
d<r
[注意]点与圆的位置关 点P在圆内; 系可以转化为点到圆心
y=ax2+bx+c
开口
a>0 开口向上
方向
a < 0 开口向下
对称轴
顶点坐标
最 a>0 值 a<0
x=h (h , k) y最小=k y最大=k
x b
2a
(
b
4ac b2
,
)
2a 4a
y最小=44aacc4a
b2 b2
y最大= 4a
增 a>0 在对称轴左边,x↗ y↘;在对称轴右边, x↗ y↗
第2章 圆
要点梳理
一.与圆有关的概念 1.圆:平面内到定点的距离等于定长的所有点组成的图形. 2.弦:连接圆上任意两点的线段. 3.直径:经过圆心的弦是圆的直径,直径是最长的弦. 4.劣弧:小于半圆周的圆弧. 5.优弧:大于半圆周的圆弧.
·
6.等弧:在同圆或等圆中,能够互相重合的弧. 7.圆心角:顶点在圆心,角的两边与圆相交. 8.圆周角:顶点在圆上,角的两边与圆相交. [注意] (1)确定圆的要素:圆心决定位置,半径决定 大小.(2)不在同一条直线上的三个点确定一个圆.

湘教版九年级数学下册.1二次函数的图象和性质课件

湘教版九年级数学下册.1二次函数的图象和性质课件
对称轴与图象的交点是__O_(_0_,_0_)_;
图象的开口向____上____; 图象在对称轴左边的部分, 函数值随自变量取值的增 大而___减__小____,简称为 “左降”; 当 x =___0_时,函数值最__小__.
类似地,当a>0时,y=ax2的图象也具有上述性质, 于是我们在画y=ax2(a>0)的图象时,可以先画 出图象在y轴右边的部分,然后利用对称性,画 出图象在y轴左边的部分,在画右边部分时,只 要“列表、描点、连线”三个步骤就可以了(因 为我们知道了图象的性质).
2.图象在对称轴右边的部分,函数值随自变量取值的增大而 ____增__大______,简称为右___升__;
3.图象在对称轴左边的部分,函数值随自变量取值的增大而 ____减__小______,简称为左____降___;
4.当x=____0_时,函数值最___小____.
ቤተ መጻሕፍቲ ባይዱ
1、已知抛物线y=ax2经过点A(-2,8)。 (1)求此抛物线的函数解析式; (2)判断点B(-1,- 4)是否在此抛
二次函数
y x2
y=x2的图象
形如物体抛
射时所经过
的路线,我们 这条抛物线关于
把它叫做抛 y轴对称,y轴就
物线
是它的对称轴.
.
典例解析:
例1: 画二次函数 y 1 x2 的图象.
2
解:因为二次函数的图像关于y轴对称,因此列 表时,自变量x应该从原点的横坐标0开始取值。
x
0
1
2
3 ...
y 1 x2 2
我猜想都有这一性质.
可以证明上述两个猜测都是正确的,即y=x2的图象关于
y轴对称;图象在y轴右边的部分,函数值随自变量取

湘教版九年级数学下册二次函数的图象与性质课件

湘教版九年级数学下册二次函数的图象与性质课件
得到的?(
B)
A.向左平移 2 个单位
B.向右平移 2 个单位
C.向上平移 2 个单位
D.向下平移 2 个单位
3. 抛物线 y= a(x-h)2 向左平移 3 个单位得到抛物线
4
-2 h=_____.
y=-2(x-1)2, 则 a=______,
当堂练习
y=-2x2
4、抛物线y=-2(x+3)2是把抛物线_________沿x轴向
平移前解析式
平移后解析式
简记
向左平移h
个单位
y=ax2
y=a(x+h)2
左加
向右平移h
个单位
y=ax2
y=a(x-h)2
右减
知识要点
二次函数y=a(x-h)2的性质
y=a(x-h)2
开口方向
a>0
a<0
向上
向下
对称轴
直线x=h
顶点坐标
(h,0)
最值
增减性
当x=h时,y最小=0
当x=h时,y最大=0

− 向

左平移1个单位,就得到抛物线 =




− (+) ;把抛物线 = − 向右平移1
个单位,就得到抛物线 =

− (−) .


= − (+)


=−


= − (−)

知识要点
二次函数y=ax2与y=a(x-h)2之间的关系
移动方向
y=a(x-h)2
开口方向
a>0
a<0
向上
向下
对称轴
直线x=h
顶点坐标

湘教版九年级下册数学精品课件 第1章 二次函数 第5课时 二次函数y=ax2+bx+c的图象与性质

湘教版九年级下册数学精品课件 第1章  二次函数 第5课时 二次函数y=ax2+bx+c的图象与性质

大而减小;当 x > 6 时,函数
值随 x 的增大而增大.
O
(6,3)
5 10 x
归纳总结 二次函数 y = ax2+bx+c的图象和性质
抛物线 y = ax2+bx+c 的顶点坐标是:
b 4ac b2
( ,
).
2a 4a
对称轴是:直线 x b . 2a
二次函数 y = ax2+bx+c的图象和性质
y
x b 2a
O (1)
如果 a>0,当 x< b 时,y 随x
的增大而减小;当
2a
x>
b
时,
2a
y 随 x 的增大而增大;当 x = b
x
2a
时,函数达到最小值,最小值
为 4ac b2 .
4a
二次函数 y = ax2+bx+c的图象和性质
y x b
2a
O (2)
如果 a < 0,当 x< b 时,y 随 x
(2) y 5x2 80x 319; 直线 x = 8
(3)
y
2
x
1 2
x
2
;
直线 x = 1.25
(4) y x 12 x.
直线 x = 0.5
3, 5
8, 1
5 4
,
9 8
1 2
,
9 4
2. 把抛物线 y=x2+bx+c 的图象向右平移 3 个单位长
度,再向下平移 2 个单位长度,所得图象的解析式为
那么现在你会画这个二次函2 数的图象吗?2
根据顶点式 y 1 (x 6)2 3 确定对称轴,顶点坐标.

湘教版九年级下册数学精品教学课件 第1章 二次函数 第1课时 抛物线形二次函数

湘教版九年级下册数学精品教学课件 第1章 二次函数 第1课时 抛物线形二次函数

实际 问题
建立二次 函数模型
利用二次函数的图象 和性质求解
实际问题的解
典例精析 例1 某公园要建造圆形喷水池,在水池中央 垂直于水面处安装一个柱子 OA,O 恰在水面中心, OA=1.25 m,由柱子顶端 A 处的喷头向外喷水,水流在各 个方向沿形状相同的抛物线落下,为使水流形状较为漂
亮,要求设计成水流在离 OA 距离为 1 m处达到距水面最 大高度 2.25 m.如果不计其它因素,那么水池的半径至少 要多少才能使喷出的水流不致落到池外?
探究 你能想出办法来吗?
建立函数模型
这是什么样的函数呢? 拱桥的纵截面是抛物线, 所以应当是个二次函数
怎样建立直角坐标系比较简单呢?
以拱顶为原点,抛物线的对称轴为 y 轴,建立直角坐标系,如图.
从图看出,什么形式的二次函数图象是 这条抛物线呢?
由于顶点坐标是(0,0), 因此这个二次函数的
形式为 y ax2 (a 0)
-2 -1 -2
-4
12
A
如何确定 a 是多少? 已知水面宽 4 m 时,
-2 -1
12
拱顶离水面高 2 米,
-2
A
因此点 A( 2,-2)在抛物线上,
由此得出 2 a 22,解得 a 1 .
-4
因此,y 1 x2
2
,其中 |x|是水面宽度的一半,y 是
2
拱顶离水面高度的相反数,这样我们就可以了解到水
设最多可安装 n 扇窗户, ∴1.5n + 0.8(n﹣1) + 0.8×2 ≤10.14, 解得 n ≤ 4.06.则最大的正整数为 4. 答:最多可安装 4 扇窗户.
5. 悬索桥两端主塔塔顶之间的主悬钢索,其形状可近似

湘教版数学九年级下册1.1《二次函数》课件(共22张PPT)

湘教版数学九年级下册1.1《二次函数》课件(共22张PPT)

二次函数y=(2x-1)2+2的二次项系 数是________,常数项是______.
2+1 k 当k=_______时,函数y=(k-1)x +3x
是二次函数
说出二次函数y=-x2+8x-1的一次 项系数,二次项系数,常数项
对于任意实数k,下列函数一定是二次函数的是( A、y=(k-1)2x2 C、 y=(k2+1)x2 B、y= (k+1)2x2 D、 y=(k2-1)x2
x
3.下列函数中,哪些是二次函数? (1)y=3x-1 (3)y=3x3+2x2 (5)y= (2)y=3x2 (4)y=2x2-2x+1 (6)y=x2-x(1+x)
请举1个符合以下条件的y关于x的二次函数 的例子 (1)二次项系数是一次项系数的2倍, 常数项为任意值。 (2)二次项系数为-5,一次项系数为 常数项的3倍。
例1、若函数 求m的值。
y (m 1)x
2
m 2 m
为二次函数,
解:因为该函数为二次函数, 则
2 m m 2(1) 2 m 1 0( 2)
解(1)得:m=2或-1 解(2)得: m 1且m 1 所以m=2
例2:已知二次函数y=x² +px+q,当x=1时,函 数值为4,当x=2时,函数值为- 5, 求这个二 次函数的解析式.
解:把x=1,y=4和x=2,y=-5分别代入 函数y x px q, 得:
2

1 p q 4 4 2 p q 5
注意:当二次函 数表示 某个实际问题时,还必 须根据题意确定自变 量的取值范围.
函数y ax2 bx c(其中a,b, c是常数), 当a,b, c满足什么条件时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.我们学习过哪些函数?它们的一般解析式怎么表 示?
一次函数 y=kx+b (k≠0)

(正比例函数) y=kx (k≠0)

反比例函数
y=
k x
(k≠0)
首页
观察图片,这些曲线能否用函数关系式来表示?
合作探究
问题1:学校准备在校园里利用围墙的一段和篱笆 墙围成一个矩形植物园,已知篱笆墙的总长度为
上面所列的函数式与以前学过的相同 吗?看看它们有什么共同点?
首页
知识要点
定义:一般地,形如y=ax²+bx+c 的函数叫做x的二次函数.
(a,b,c是常数,a≠ 0)
有何特 点?
提示: (1)关于自变量的代数式一定是二次整式,a,b,c为常 数,且a≠0. (2)等式的右边最高次数为2,可以没有一次项和常数 项,但不能没有二次项.
求m的值.
解:依题意得 m 1 0 且 m2 m 2 ,解得 m 2 .
注意:二次函数的二次项系数不能为零
例2:写出下列各函数关系,并判断它们是什么类
型的函数.
(1)写出正方体的表面积S与正方体棱长a之间的
函数关系;
பைடு நூலகம்
(2)写出圆的面积y与它的周长x之间的函数关系;
(3)菱形的两条对角线的和为26,求菱形的面积S
第1章 二次函数
1.1 二次函数
一、复习引入
函数 你知道吗?
一次函数 反比例函数
y=kx+b (k≠0)
正比例函数
y=kx(k≠0)
一条直线
y=
k x

k

0
双曲线
首页
二、合作探究
探究点一 二次函数的定义
问题1:某果园有100棵橙子树,每一棵树平均结600个橙子.现 准备多种一些橙子树以提高产量,但是如果多种树,那么树之间 的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多 种一棵树,平均每棵树就会少结5个橙子. 假设果园增种x棵橙子树,果园橙子的总产量为y(个), 那么请你写出y与x之间的关系式.
2.定义的实质是:ax²+bx+c是整式,自变量x的最高次数是二次, 自变量x的取值范围是全体实数.
首页
四、课后作业
见《学练优》本课时课后巩固提升
学.科.网
首页
第1章 二次函数
1.1 二次函数
情景 引入
合作 探究
随堂 训练
课堂 小结
情景引入 1.一元二次方程的一般形式是什么?
2
ax +bx+c=0(a ≠0)
经化简后都具有y=ax²+bx+c(a,b,c是常数,a≠0)的 形式
概念归纳
我们把形如y=ax²+bx+c(其中a,b,c是常数,a≠0) 的函数叫做二次函数 称:a为二次项系数,ax2叫做二次项;
b为一次项系数,bx叫做一次项; c为常数项.
例题学习 例1:关于x的函数 y (m 1)xm2m是二次函数,
y 60001 x2 ,0 x 1
即 y 6000x2 12000x 6000,0 x 1
观察上面所列的函数表达式有什么共同点?它 们与一次函数的表达式有什么不同?
s 2x2 100x,0 x 50
y 6000x2 12000x 6000,0 x 1
(1) k为何值时,y是x的一次函数?
(2) k为何值时,y是x的二次函数?
解:(1)根据题意得
k2 k 0 k 0
∴k=1时,y是x的一次函数。
(2) 当k2 - k ≠0,即k ≠0且k ≠1时 y是x的二次函数
三、课堂小结
定义中应该注意的几个问题:
1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数叫 做x的二次函数. y=ax²+bx+c(a,b,c是常数,a≠0)的几种不同表示形式: (1)y=ax²(a≠0,b=0,c=0,). (2)y=ax²+c(a≠0,b=0,c≠0). (3)y=ax²+bx(a≠0,b≠0,c=0).
首页
典例精析
例1:下列函数中,哪些是二次函数?
(1)
y=3(x-1)²+1(是)
(2) y =
x+
1
(否)
x
(3) s=3-2t²
(是)
(4) y =
1 x2 - x
(否)
(5)y=(x+3)²-x²(否) (6)v=10πr²(是)
(7) y=x²+x³+25 (否) (8)y=2²+2x (否)
首页
例2:如图,一块矩形木板,长为120cm、宽为80cm,在 木板4个角上各截去边长为x(cm)的正方形,求余下面积 S(cm)与x之间的函数表达式.
解:木板余下面积S与截去正方形边长x有如下 函数关系: S=120×80-4×x2+9600,0<x≤40.
首页
例3:已知函数 y (k2 k)x2 kx 2 k
首页
解: 果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子, y=(100+x)(600-5x)
=-5x²+100x+60000.
首页
问题2:设人民币一年教育储蓄的年利率是x,一年
到期后,银行将本金和利息自动按一年定期储蓄转存.如 果存款是100元,那么请你写出两年后的本息和y(元)的 表达式(不考虑利息税).
与一对角线长x之间的函数关系.
解:(1)
S
6a2 ;(2) y
x2
4
;
(3) y 13x 338 .
随堂训练
1.下列函数中,哪些是二次函数?
(1) y x2
(2)
y


1 x2
(3) y x(1 x)
(4) y (x 1)2 x2
先化简后判断
首页
2.做一做: (1)正方形边长为x(厘米),它的面积y(平方 厘米)是多少?
y=100(x+1)²=100x²+200x+100.
首页
问题3:用总长为60m的篱笆围成矩形场地,场地面积S(m²)与矩 形一边长a(m)之间的关系是什么?
解:S=a( 60-a)=a(30-a)
2
=30a-a²= a²+30a .
首页
y=-5x²+100x+60000, y=100x²+200x+100 . s= -a²+30a .
100m,设与围墙相邻的一篱笆墙的长度都为x(m), 求矩形植物园的面积S( m2 )与x之间函数关系式.
s x(100 2x),0 x 50
即 s 2x2 100x,0 x 50
首页
问题2:某型号的电脑两年前的销售为6000元,现
降价销售,若每年的平均降价率为x,求现在售价 为y(元)与平均降价率x之间的函数关系.
相关文档
最新文档