齿轮传动
齿轮传动

接触面↓,承载能力↓
传动失效
改善措施:
1)HB↑——[σH] ↑ 2)↑ρ(综合曲率半径) 3)↓表面粗糙度,↑加工精度 4)↑润滑油粘度 ↑接触强度
3.齿面的胶合:
齿面粘连后撕脱
原因:
高速重载;滑动速度大; 散热不良;齿面金属熔化粘连 后撕脱——热胶合 低速重载,由于齿面间油膜 破坏,也会出现胶合——冷胶合
交错轴斜齿轮传动
蜗 轮 蜗 杆 传 动
8avi
4、按齿轮啮合方式
直 齿 圆 柱 齿 轮 传 动
外齿轮 外啮合齿轮传动 内齿轮 内啮合齿轮传动
齿轮齿条啮合
齿
条Байду номын сангаас
5、按齿轮传动工作条件
◆ 闭式齿轮传动
◆
开式齿轮传动
6、按齿轮圆周速度高低
◆ ◆ ◆ 极低速齿轮传动 低速齿轮传动 中速齿轮传动 小于0.5 m/s
——蜗杆的螺旋升角;
d1 ——蜗杆直径,有标准值,mm; n1 ——蜗杆转速,r/min。
由上式可见,Vs值较大,而且这种滑动是沿着齿长方向 产生的,所以容易使齿面发生磨损及发热,致使齿面产生胶 合而失效。因此,蜗杆传动最易出现的失效形式是磨损和胶 合。当蜗轮齿圈的材料为青铜时,齿面也可能出现疲劳点蚀。 在开式蜗杆传动中,由于蜗轮齿面遭受严重磨损而使轮齿变 薄,从而导致轮齿的折断。 在一般情况下,由于蜗轮材料强度较蜗杆低,故失效大多 发生在蜗轮轮齿上。 避免蜗杆传动失效的措施有:供给足够的和抗胶合性能好 的润滑油;采用有效的散热方式;提高制造和安装精度;选 配适当的蜗杆和蜗轮副的材料等。
原因:σH>[σH]
脉动循环应力 1)齿面受多次交变应力作用,产生接触疲劳裂纹; 2)节线处常为单齿啮合,接触应力大; 3)节线处为纯滚动,靠近节线附近滑动速度小,油膜不易形成,
齿轮传动

齿轮传动第一节、齿轮传动的类型及应用一、概念:齿轮机构是由齿轮副组成的传递运动和动力的装置。
二、齿轮传动的类型:(一)两轴平行:按轮齿方向分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动按啮合情况分为人字齿圆柱齿轮传动、外啮合齿轮传动、内啮合齿轮传动(二)两轴不平行时:相交轴齿轮传动齿轮的种类很多,可以按不同方法进行分类。
(1) 根据轴的相对位置,可分为两大类:即平面齿轮传动(两轴平行)与空间齿轮传动(两轴不平行时)(2)按工作时圆周速度的不同,分低速、中速、高速三种。
(3)按工作条件不同,分为闭式齿轮传动(封闭在箱体内,并能保证良好润滑的齿轮传动)、半开式齿轮传动(齿轮浸入油池,有护罩,但不封闭)和开式齿轮传动(齿轮暴露在外,不能保证良好的润滑)三种。
(4)按齿宽方向齿与轴的歪斜形式,分直齿、斜齿和曲齿三种。
(5)按齿轮的齿廓曲线不同,分为渐开线齿轮、摆线齿轮和圆弧齿轮等几种。
(6)按齿轮的啮合方式,分为外啮合齿轮传动、内啮合齿轮传动和齿条传动。
三、齿轮传动的应用:1、传动比:122112z z n n i == 式中n1、n2表示主从动轮的转速,z1、z2表示主从动轮的齿数2、应用特点:优点:缺点:第二节、渐开线齿廓一、齿轮传动对齿廓曲线的基本要求:一是传动要平稳,二是承载能力要强二、渐开线的形成、性质:1、渐开线的形成:2、渐开线的性质:三、渐开线齿廓啮合基本定律:四、渐开线齿廓的啮合特点:1、传动比恒定2、3、4、第三节、渐开线标准直齿圆柱齿轮的基本参数和几何尺寸计算【复习】1、齿轮传动的分类及特点2、渐开线齿轮的性质【新授】一、齿轮各部分的名称:1、齿槽:2、齿顶圆:3、齿根圆:4、齿厚:5、齿槽宽:6、分度圆:7、齿距:8、齿高:9、齿顶高:10、齿根高:11、齿宽:二、主要参数:1、齿形角就单个齿轮而言,在端平面上,过断面齿廓上任意一点的径向直线与齿廓在该点的切线所夹的锐角为该点的齿形角。
分度圆压力角——齿形角——2、齿数Z——一个齿轮的牙齿数目即齿数。
齿轮传动

Kα取决于轮齿刚度、pb误差、修缘量等。
KHα——用于σH KFα ——用于σF
10-4 齿轮传动的计算载荷
26
4、齿向载荷分配系数Kβ 考虑使轮齿沿接触线产生载荷分布不均匀现象。 制造方面:齿向误差 影响因素 安装方面:轴线不平行等 使用方面:轴变形、轮齿变形、支承变形等
讨论:
a)轴承作非对称布置时, 弯曲变形对Kβ的影响。
10-2 齿轮传动的失效形式及设计准则 6
失效形式
齿轮的失效发生在轮齿,其它部分很少失效。
失效形式
轮齿折断 齿面损伤
齿面接触疲劳磨损(齿面点蚀) 齿面胶合 齿面磨粒磨损
齿面塑性流动 一、轮齿折断
常发生于闭式硬齿面或开式传动中。
现象:①局部折断 ②整体折断
10-2 齿轮传动的失效形式及设计准则 7
3、有良好的加工工艺性,便于齿轮加工。 1)大直径d>400 用ZG 2)大直径齿轮:齿面硬度不宜太高,HB<200,以免中途换刀
4、材料易得、价格合理。 举例:起重机减速器:小齿轮45钢调质 HB230~260 大齿轮45钢正火 HB180~210 机床主轴箱:小齿轮40Cr或40MnB 表淬 HRC50~55 大齿轮40Cr或40MnB 表淬 HRC45~50
第十章 齿 轮 传 动
§10-1 齿轮传动概述 §10-2 齿轮传动的失效形式及设计准则 §10-3 齿轮的材料及其选择原则 §10-4 齿轮传动的计算载荷 §10-5 标准直齿圆柱齿轮传动的强度计算 §10-6 齿轮传动设计参数、许用应力与精度选择 §10-7 标准斜齿圆柱齿轮传动的强度计算 §10-8 标准锥齿轮传动的强度计算 §10-9 齿轮的结构设计 §10-10 齿轮传动的润滑
动载系数
2024年机械设计基础课件齿轮传动-(带特殊条款)

机械设计基础课件齿轮传动-(带特殊条款) 机械设计基础课件:齿轮传动1.引言齿轮传动是机械设计中的一种基本传动方式,广泛应用于各种机械设备的运动和动力传递。
齿轮传动具有结构简单、传动效率高、可靠性好、寿命长等优点,因此在工业生产和日常生活中得到广泛应用。
本课件将介绍齿轮传动的基本原理、分类、设计方法和应用。
2.齿轮传动的基本原理齿轮传动是利用齿轮副的啮合来传递动力和运动的一种传动方式。
齿轮副由两个或多个齿轮组成,其中主动齿轮通过旋转驱动从动齿轮,从而实现动力和运动的传递。
齿轮副的啮合是通过齿轮齿廓的接触来实现的,齿廓的形状和尺寸决定了齿轮传动的性能和精度。
3.齿轮传动的分类齿轮传动根据齿轮的形状和布置方式可分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动和蜗轮蜗杆传动等。
直齿圆柱齿轮传动是应用最广泛的一种齿轮传动方式,具有结构简单、制造容易、精度高等优点。
斜齿圆柱齿轮传动具有传动平稳、噪声低、承载能力强等优点,适用于高速和重载的传动场合。
直齿圆锥齿轮传动适用于空间狭小和角度传动的场合。
蜗轮蜗杆传动具有大传动比、自锁性和精度高等特点,适用于低速、大扭矩的传动场合。
4.齿轮传动的设计方法齿轮传动的设计主要包括齿轮的几何设计、强度设计和精度设计。
齿轮的几何设计是根据传动比、工作条件、材料等因素确定齿轮的齿数、模数、压力角等参数。
强度设计是保证齿轮传动在规定的工作条件下具有足够的承载能力和寿命,主要包括齿面接触强度和齿根弯曲强度的计算。
精度设计是保证齿轮传动的精度和运动平稳性,主要包括齿轮的加工精度和装配精度的控制。
5.齿轮传动的应用齿轮传动在工业生产和日常生活中得到广泛应用。
在机床、汽车、船舶、飞机等机械设备中,齿轮传动用于传递动力和运动,实现各种复杂的运动轨迹和速度变化。
在风力发电、水力发电等能源领域,齿轮传动用于传递高速旋转的动力,实现能源的转换和利用。
在、自动化设备等高科技领域,齿轮传动用于实现精确的运动控制和动力传递,提高设备的性能和效率。
齿轮传动

齿轮传动科技名词定义中文名称:齿轮传动英文名称:gear drive 定义:利用齿轮传递运动和动力的传动方式。
应用学科:机械工程(一级学科);传动(二级学科);齿轮传动(三级学科)以上内容由全国科学技术名词审定委员会审定公布求助编辑百科名片齿轮传动是利用两齿轮的轮齿相互啮合传递动力和运动的机械传动。
具有结构紧凑、效率高、寿命长等特点。
(一)特点齿轮传动是利用两齿轮的轮齿相互啮合传递动力和运动的机械传动。
按齿轮轴线的相对位置分平行轴圆柱齿轮传动、相交轴圆锥齿轮传动和交错轴螺旋齿轮传动。
具有结构紧凑、效率高、寿命长等特点。
齿轮传动是指用主、从动轮轮齿直接、传递运动和动力的装置。
在所有的机械传动中,齿轮传动应用最广,可用来传递相对位置不齿轮传动远的两轴之间的运动和动力。
齿轮传动的特点是:齿轮传动平稳,传动比精确,工作可靠、效率高、寿命长,使用的功率、速度和尺寸范围大。
例如传递功率可以从很小至几十万千瓦;速度最高可达300m/s;齿轮直径可以从几毫米至二十多米。
但是制造齿轮需要有专门的设备,啮合传动会产生噪声。
(二)类型(1)根据两轴的相对位置和轮齿的方向,可分为以下类型:<1>直齿圆柱齿轮传动;<2> 斜齿圆柱齿轮传动<3>人字齿轮传动;<4>锥齿轮传动;<5>交错轴斜齿轮传动。
(2)根据齿轮的工作条件,可分为:<1>开式齿轮传动式齿轮传动,齿轮暴露在外,不能保证良好的润滑。
<2>半开式齿轮传动,齿轮浸入油池,有护罩,但不封闭。
<3>闭式齿轮传动,齿轮、轴和轴承等都装在封闭箱体内,润滑条件良好,灰沙不易进入,安装精确,轮传动有良好的工作条件,是应用最广泛的齿轮传动。
齿轮传动可按其轴线的相对位置分类。
齿轮传动按齿轮的外形可分为圆柱齿轮传动、锥齿轮传动、非圆齿轮传动、齿条传动和蜗杆传动。
按轮齿的齿廓曲线可分为渐开线齿轮传动、摆线齿轮传动和圆弧齿轮传动等。
齿轮传动

→ 是开式齿轮传动主要失效形式。
措施:开式→闭式。
§1 齿轮传动的失效形式及设计准则
(一)齿轮传动的失效形式
5、 齿面塑性变形
软齿面在低速、重载条件下→齿面压力↑及摩擦力的作 用→表层局部塑性流动 。
是低速重载软齿 面齿轮传动的失 效形式之一
措施: ↑齿面硬度、 ↑润滑油粘度。
失效形式与传动类型
2、齿轮传动的分类
⑴按工作条件
①闭式 润滑条件好, 能防尘。
②开式 润滑条件差,不 能防尘。 ③半开式 齿轮护罩只起 防尘作用,润 滑条件较差。
⑵按齿面硬度
①软齿面齿轮 齿面硬度≤350HBS ①硬齿面齿轮 齿面硬度>350HBS
二、圆柱齿轮的基本参数
1. 模数 m 对于一般动力传动,要求:m>1.5~2。 2. 传动比 i和齿数比 u
Fnc= KFn
其中:K 为载荷系数,查P192表12.4选取
§3 强度计算
1.齿面接触疲劳强度计算
3
减小σH的措施: E ↓, T ↓, u↓,
(u 1) KT1 E 改善工况(K ↓) , 校核公式 H 0.59 [ H ] MPa 2 uba sin 2 a↑,b↑
0.59 KT1 E 设计公式 a (u 1)3 [ ] u sin 2 H a
F’ Fn F’
Fa
2T1 Ft d m1
Fr F cos 1 Ft tan cos 1
轴向力:
Fr Ft
Fa F sin 1 Ft tan sin 1
一对圆锥齿轮传动
★力的方向: 圆周力: ◆主动轮上与啮合 点速度方向相反; ◆从动轮上与啮合 点速度方向相同; 径向力: ◆指向各自的轮心; 轴向力:
齿轮传动知识点总结

齿轮传动知识点总结1. 齿轮传动的结构齿轮传动由两个或多个啮合的齿轮组成,通常包括主动轮和从动轮。
主动轮一般由电机或其他动力源驱动,从动轮则是被动接受主动轮的传动力。
齿轮的结构包括齿轮齿数、模数、齿扭角等参数。
齿轮传动的结构设计需要根据具体的工作条件和要求来确定,包括传动比、传动效率、传动精度等。
2. 齿轮传动的工作原理齿轮传动的工作原理是利用齿轮的啮合运动传递动力。
当主动轮转动时,通过齿轮的啮合,从动轮也会产生相应的转动。
齿轮传动的工作原理可以利用啮合轮的圆周速度比来描述,即主动轮和从动轮的圆周速度之比等于它们的齿数之比,即V1/V2=N1/N2。
3. 传动比的计算传动比是齿轮传动的一个重要参数,它表示主动轮转速与从动轮转速之比。
传动比的计算通常根据齿轮的齿数来确定,传动比等于主动轮齿数与从动轮齿数之比,可以通过传动比来调整传动系的转速。
传动比的计算对于齿轮传动的设计和选型非常重要。
4. 齿轮材料齿轮传动的工作环境通常要求齿轮具有良好的强度和耐磨性,因此齿轮的材料选型是一个重要的设计参数。
常用的齿轮材料包括钢、铸铁、铜合金、尼龙等。
不同的工作环境和要求需要选择不同的齿轮材料,并通过表面处理来提高齿轮的耐磨性和强度。
5. 齿轮的设计齿轮的设计是齿轮传动系统设计的关键环节,它需要考虑齿轮的啮合黏着条件、载荷及强度等参数。
齿轮的设计包括齿轮的模数、压力角、齿宽、齿顶高、齿根圆径等,通过这些参数的设计来满足齿轮传动系统的工作要求和性能指标。
总的来说,齿轮传动作为一种重要的动力传递机构,在工程设计和生产制造中得到了广泛的应用。
齿轮传动的结构、工作原理、传动比的计算、齿轮材料和齿轮的设计等方面都是齿轮传动设计中需要重点考虑的问题。
通过对齿轮传动知识的全面了解和掌握,能够有效地提高工程设计和生产制造的效率和质量,并为工程技术人员在实际工作中提供有效的参考和指导。
第九章 齿轮传动

⌢⌢ BK = AB
2、发生线即是渐开线任意点的法线, 又是基圆的切线。 3、渐开线齿廓接触点的法线与该点速 度方向线所夹的锐角 α 称为该点压 k 力角。
cos α k = OB rb = OK rk
4、基圆内无渐开线。 5、切点B是K点的曲率中心, 线段BK是K点的曲率半径。
2、渐开线的特性 、
§ 9.5.4齿轮传动精度的选择
§ 9.6.1 轮齿的失效形式
• 1 轮齿折断 发生在齿根部分: 齿根弯曲应力最 大、受到脉动循 环或对称循环的 变应力;有应力 集中。 严重过载或大的 冲击载荷。
2 齿面疲劳点蚀
• 对于开式齿轮传动,因其齿 面磨损的速度较快,当齿面 还没有形成疲劳裂纹时,表 层材料已被磨掉,故通常见 不到点蚀现象。因此,齿面 点蚀一般发生在软齿面闭式 齿轮传动中。
3齿面磨损 齿面磨损
• 齿面磨损是开式齿 轮传动的主要失效 形式。 形式。
4 齿面胶合
• 齿面胶合通常出现在齿 面相对滑动速度较大的 齿顶和齿根部位。 齿顶和齿根部位。齿面 发生胶合后,也会使轮 齿失去正确的齿廓形状, 从而引起冲击、振动和 噪声并导致失效。
§ 9.6.2
齿轮材料
1.锻钢 锻钢 锻钢因具有强度高、韧性好、便于制造、便于热处理等 优点,大多数齿轮都用锻钢制造。 (1)软齿面齿轮:齿面硬度<350HBS,常用中碳钢和中碳 合金钢,如45钢.40Cr,35SiMn等材料,进行调质或正火 处理。这种齿轮适用于强度。精度要求不高的场合,轮坯 经过热处理后进行插齿或滚齿加工,生产便利、成本较低。 在确定大.小齿轮硬度时应注意使小齿轮的齿面硬度比 大齿轮的齿面硬度高30一50HBS,这是因为小齿轮受载荷 次敷比大齿轮多,且小齿轮齿根较薄.为使两齿轮的轮齿 接近等强度,小齿轮的齿面要比大齿轮的齿面硬一些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7级 8级 9级
≤ 10
≤ 17
≤6
高速中载或低速重载齿轮传动, 如飞机、汽车和机床中的重要 齿轮;分度机构的齿轮传动。
机械制造中对精度无特殊要求 的齿轮。 低速及对精度要求低的齿轮
≤5 ≤3
≤ 10 ≤ 3.5
≤3 ≤ 2.5
新疆大学专用
作者: 潘存云教授
§11-4 直齿圆柱齿轮传动的作用力及计算载荷
3 2
mm
模数m不能成为衡量齿轮接触强度的依据。
新疆大学专用
当一对齿轮的材料,传动比 以及齿宽系数一定时,由齿 面接触强度所决定的承载能 力,仅与中心距a或齿轮得 分度圆有关。分度圆直径分 别相等的两对齿轮,不论其 模数是否相等,具有相同的 承载能力。 当配对齿轮的材料不同时, 公式中的系数也不同。
轮的各项公差分成三组,分别反映传递运动的准确性,
传动的平稳性和载荷分布的均匀性。
新疆大学专用 作者: 潘存云教授
表11-2 齿轮传动精度等级的选择及其应用
精度等级 圆周速度 v(m/s)
直齿圆 柱齿轮 斜齿圆 柱齿轮 直齿圆 锥齿轮
应
用
6级
≤ 15
≤ 25
≤9
高速重载齿轮传动,如飞机、 汽车和机床中的重要齿轮;分 度机构的齿轮传动。
新疆大学专用
作者: 潘存云教授
§11-1 轮齿的失效形式
失效形式
轮齿折断 齿面点蚀 齿面胶合 齿面磨损
跑合磨损、磨粒磨损。
跑合磨损 磨粒磨损
设计:潘存云
措施:1.减小齿面粗糙度
2.改善润滑条件
新疆大学专用
作者: 潘存云教授
§11-1 轮齿的失效形式
失效形式
轮齿折断 齿面点蚀 齿面胶合 齿面磨损 齿面塑性变形
此外轮齿变形和误差还会引起附加动载荷,且 精度越低,圆周速度越高,动载荷越大。
载荷集中 附加动载荷
( Fn ) b max ( Fn ) b min
用计算载荷KFn代替名义载荷Fn以考虑载荷集中和附加 动载荷的影响,K----载荷系数 表11-3 载荷系数K
原动机 电动机 多缸内燃机 单缸内燃机
新疆大学专用
齿轮传动的精度等级
制造和安装齿轮传动装置时,不可避免会产生齿形误 差、齿距误差、齿向误差、两轴线不平行误差等。.
误差的影响: 1.转角与理论不一致,影响运动的不准确性; 2.瞬时传动比不恒定,出现速度波动,引起震动、 冲击和噪音影响运动平稳性; 3.齿向误差导致轮齿上的载荷分布不均匀,使轮齿提 前损坏,影响载荷分布的不均匀性。 国标GB10095-88给齿轮副规定了12个精度等级。其中1 级最高,12级最低,常用的为6~9级精度。 按照误差的特性及它们对传动性能的主要影响,将齿
主动齿
设计:潘存云
从动齿
新疆大学专用
作者: 潘存云教授
§11-2
齿轮材料及热处理
优质碳素钢 常用齿轮材料 合金结构钢 铸钢 铸铁 表面淬火 ----高频淬火、火焰淬火 渗碳淬火 调质 热处理方法 正火 渗氮 1.表面淬火 一般用于中碳钢和中碳合金钢,如45、40Cr等。表面 淬火后轮齿变形小,可不磨齿,硬度可达52~56HRC, 面硬芯软,能承受一定冲击载荷。
新疆大学专用
作者: 潘存云教授
特点及应用: 调质、正火处理后的硬度低,HBS ≤ 350,属软齿面, 工艺简单、用于一般传动。当大小齿轮都是软齿面时, 因小轮齿根薄,弯曲强度低,故在选材和热处理时, 小轮比大轮硬度高: 20~50HBS 表面淬火、渗碳淬火、渗氮处理后齿面硬度高,属硬 齿面。其承载能力高,但一般需要磨齿。常用于结构 紧凑的场合。
Fn
c
设计:潘存云
N2 α t t
N1
小齿轮上的转矩:
6 6 P T1 10 9.5510 1 n1
d1 T1 2
P
N mm
α
ω1 (主动) O
1
新疆大学专用
P为传递的功率(KW) ω 1----小齿轮上的角速度, n1----小齿轮上的转速 d1----小齿轮上的分度圆直径, α----压力角
1 2
2 2(d 2 d1 ) u 1 2 ( u 1 ) d1d 2 sin u d1 sin ua sin
作者: 潘存云教授
2T1 Ft Fn 在节点处,载荷由一对轮齿来承担: cos d1 cos
一对钢制齿轮:
弹性模量:E1=E2=2.06×105 MPA 泊松比:μ 1=μ 2= 0.3, α=20˚
(u(u 1) 13 )3 KT KT 11 335 335 [ H ] 285 250 代入赫兹公式得: H H 22 uba uba
引入齿宽系数:ψa=b/a
250 335 KT1 285 a (u 1) 得设计公式: u [ ] H a
第11章 齿轮传动
§11-1 §11-2 §11-3 轮齿的失效形式 齿轮材料及热处理 齿轮传动的精度
§11-4
§11-5 §11-6 §11-7 §11-8 §11-9
直齿圆柱齿轮传动的作用力及计算载荷
直齿圆柱齿轮传动的齿面接触强度计算 直齿圆柱齿轮传动的弯曲强度计算 斜齿圆柱齿轮传动 直齿圆锥齿轮传动 齿轮的构造
新疆大学专用
作者: 潘存云教授
表11-1
类 别 牌 号
35
常用的齿轮材料
热处理
正火 调质 表面淬火 正火 调质 表面淬火 正火 调质 表面淬火 调质 表面淬火 调质 …… 正火 ……
设计:潘存云
硬度(HBS或HRC)
150~180 HBS 180~210 HBS 40~45 HRC 170~210 HBS 210~230 HBS 43~48 HRC 180~220 HBS 240~285 HBS 52~56 HRC 200~260 HBS 40~45 HRC 240~280 HBS
新疆大学专用
作者: 潘存云教授
§11-1 轮齿的失效形式
失效形式
轮齿折断 齿面点蚀 齿面胶合
高速重载传动中,常因啮合区温 度升高而引起润滑失效,致使齿 面金属直接接触而相互粘连。当 齿面向对滑动时,较软的齿面沿 滑动方向被撕下而形成沟纹。
措施: 1.提高齿面硬度 2.减小齿面粗糙度 3.增加润滑油粘度低速 4.加抗胶合添加剂高速
SH SF
1.0~1.1
1.3~1.4
新疆大学专用
作者: 潘存云教授
600
σHlim(N/mm) 500
球墨铸铁
σHlim(N/mm)
600
800 700 σHlim(N/mm)
普通碳素 500 钢正火
400
合金钢调质
400
300 200 100
灰铸铁
300
铸钢 正火
优质碳素钢 600 调质或正火 合金铸 钢调质 500 铸钢调质 400 100 200 300 HBS
工作机械的载荷特性 中等冲击 大的冲击 均 匀 1.1~1.2 1.6~1.8 1.1~1.2 1.2~1.6 1.6~1.8 1.6~1.8
1.8~2.0
1.9~2.1 2.2~2.4
作者: 潘存云教授
§11-5
直齿圆柱齿轮传动的齿面接触强度计算
齿轮强度计算是根据齿轮可能出现的失效形式来进行的。在一般闭式齿轮传动中,轮齿的失效主要是齿 面接触疲劳点蚀和轮齿弯曲疲劳折断。齿面疲劳点蚀与齿面接触应力的大小有关,而齿面的最大接触应 2 力可近似用赫兹公式进行计算。
§11-10 齿轮传动的润滑和效率
新疆大学专用 作者: 潘存云教授
第11章
齿轮传动
作用: 不仅用来传递运动、而且还要传递动力。 要求: 运转平稳、足够的承载能力。
分类
开式传动
闭式传动
----裸露、灰尘、易磨损,适于 低速传动。 ----润滑良好、适于重要应用;
新疆大学专用
作者: 潘存云教授
§11-1 轮齿的失效形式
为了计算轮齿强度,设计轴和轴承,有必要分析轮齿上的作用力。
一、轮齿上的作用力及计算载荷 各作用力的方向如图
2T1 圆周力: Ft d 1
d2 2 t N1 Fn
O2 α ω2 (从动)
O2
α Fn N2 Fr α t c Ft d1 T1 2 ω1 α (主动) O1
设计:潘存云
径向力: Fr1 Fr 2 Ft tg 法向力: Fn Ft / cos
新疆大学专用 作者: 潘存云教授
2. 渗碳淬火 渗碳钢为含碳量0.15~0.25%的低碳钢和低碳合金钢, 如20、20Cr等。齿面硬度达56~62HRC,齿面接触强 度高,耐磨性好,齿芯韧性高。常用于受冲击载荷的 重要传动。通常渗碳淬火后要磨齿。 3.调质 调质一般用于中碳钢和中碳合金钢,如45、40Cr、 35SiMn等。调质处理后齿面硬度为: 220~260HBS 。因为硬度不高,故可在热处理后精 切齿形,且在使用中易于跑合。
渗氮钢氮化
1200
1100 1000 900 800
调质钢 表面淬火
40
50
60 HRC
齿轮的接触疲劳极限σHlim
新疆大学专用
作者: 潘存云教授
§11-6
直齿圆柱齿轮传动的弯曲强度计算
假定载荷仅由一对轮齿承担,按悬臂梁计算。齿顶啮合 时,弯矩达最大值。 Fn 危险截面:齿根圆角30˚ 切线两切点连线处。 αF F1 齿顶受力:Fn,可分解成两个分力: F1 = Fn cosαF F2 = Fn sinαF
钢----铸铁 取:285 ,铸铁----铸铁 取: 250
作者: 潘存云教授
许用接触应力:[ H ]
H lim
SH
MPa
σHlim ----接触疲劳极限, 由实验确定,