热电式传感器的应用与发展 毕业论文
热电式传感器的原理和应用

热电式传感器的原理和应用一、热电式传感器的原理热电式传感器是一种使用热电效应来测量温度的传感器。
它利用了热电效应在两个不同材料接合处产生的温度差,从而生成一个电压或电流信号,用于测量温度。
1. 热电效应的基本原理热电效应是指两个不同材料的接触处由于温度差异而产生的电势差。
根据这个原理,热电式传感器通常由两种不同材料的导线或导体构成。
2. 热电偶原理热电偶是热电式传感器的一种常见类型,它由两根不同材料的导线通过焊接连接而成。
当一个导线的接触处受到热源的加热时,会产生一个电势差,这个电势差与温度成正比。
通过测量这个电势差,可以间接测量热源的温度。
3. 温度与电势差的关系热电偶的电势差与温度之间的关系可以通过热电势-温度特性曲线来描述。
每种材料的热电性质都不同,因此每根导线的热电特性也不同。
通过测量两个导线的电势差,可以确定温度的值。
二、热电式传感器的应用热电式传感器由于其简单、可靠的原理,被广泛应用于温度测量以及其他相关领域。
1. 工业自动化在工业自动化中,热电式传感器常用于测量各种流体、气体以及固体的温度。
它可以实时监测温度变化,并与控制系统相连,实现温度的自动调控。
2. 热处理过程热电式传感器在热处理过程中起到关键作用。
通过测量加热炉、熔炉等设备的温度,可以确保热处理过程的准确性和稳定性。
3. 医疗设备热电式传感器在医疗设备中也有广泛应用。
例如,体温计和血糖仪等便携式医疗设备都采用了热电式传感器来测量体温和血糖水平。
4. 环境监测热电式传感器还可以用于环境监测。
例如,测量室内和室外温度、湿度等参数,可以帮助调节室内环境,提供舒适的生活和工作环境。
结论热电式传感器是一种常见且有效的温度测量工具。
它利用热电效应的原理,通过测量热源产生的电势差来间接测量温度。
热电式传感器应用广泛,在工业自动化、热处理过程、医疗设备和环境监测等领域都有重要作用。
热电式传感器的原理和应用对提升生活和工作环境的舒适性,以及保证工业生产过程的准确性和稳定性都起到了关键作用。
热电式传感器的应用与发展 毕业论文

热电式传感器的应用与发展摘要:热电式传感器是一种将温度变化转换为电量变化的装置。
其工作原理的不同,常用热电式传感器分别分为热电偶和热电阻(金属)、热敏电阻(半导体)。
它们分别具有测量精度高、范围广、构造简单、使用方便,信号输出较大、易于测量,体积小、重量轻、热惯性小、寿命长等一系列优点。
广泛应用于工业,家庭,国防等中温度的测量。
本文主要介绍热电式传感器的分类、原理、结构、特点、应用及发展、关键词:热电式传感器,温度,热电偶,热电阻,热敏电阻。
目录1 引言 (1)1.1热电式传感器的重要性 (1)1.2传感器的组成 (1)1.3传感器的发展 (1)2 热电式传感器 (2)2.1热电偶 (2)2.1.1基本概念 (3)2.1.2热电偶构造及工作原理 (4)2.1.3热电偶的应用与发展 (5)2.2热电阻 (6)2.2.1基本原理 (6)2.2.2金属热电阻 (7)2.2.3热敏电阻 (7)2.2.4热电阻的发展与应用 (8)3热电式传感器的发展趋势 (10)结论 (12)致谢 (13)参考文献 (14)1 引言1.1热电式传感器的重要性热电式传感器是将温度变化转换为电量变化的装置。
而温度是一个基本的物理量,它在许多学科领域具有重要的作用,热力学、流体力学、传热学、空气动力学、宇航学、化学及物理等学科中所研究的基本规律都与温度密切相关,在国民经济的各个重要领域,例如交通运输、汽车工业、动力资源开发,工业测量与控制、防灾安全技术等方面都需要把温度作为设计或控制的重要参数。
随着现代工业技术的迅速发展温度的测量显得越来越重要,在现代化的钢铁冶炼、内燃机,火箭发动机的研究改良、工业加工、零件制造、兵器科学以及医学发展的研究中都需要精确的温度测量,并依据测得的温度两为设计制造提供理论依据,监控产品的质量,实现工业生产的自动化与安全生产,改善发动机的工作性能、对病人的临床监护等等,因此对于温度的测量任务显得越来越重要和紧迫,所以随之热电式传感器的重要性也越来越突出。
温度传感器论文 (2)

温度传感器论文摘要本论文研究了温度传感器在工业自动化领域中的应用。
首先介绍了温度传感器的原理和分类。
然后详细讨论了温度传感器在自动化控制系统中的作用。
接着探讨了温度传感器的性能指标以及影响温度传感器精度的因素。
最后,通过实验验证了温度传感器的可靠性和精度。
引言温度是一个重要的物理量,在工业生产和实验研究中具有广泛的应用。
温度传感器作为测量温度的主要工具,其在工业自动化领域中起到了至关重要的作用。
本论文旨在研究温度传感器的原理和应用,以及其在自动化控制系统中的作用。
温度传感器的原理和分类温度传感器是一种能够将物理量(温度)转换成电信号的装置。
根据原理的不同,温度传感器可以分为电阻式温度传感器、热电偶和热敏电阻等多种类型。
电阻式温度传感器电阻式温度传感器是利用材料的温度对电阻值产生影响的原理来测量温度的。
常见的电阻式温度传感器有铂电阻温度传感器(PT100)、铜电阻温度传感器(CT100)等。
其中,PT100是一种常用的高精度温度传感器,广泛应用于温度测量领域。
热电偶热电偶是利用两种不同金属的热电效应来测量温度的。
它由两段不同金属的导线组成,两段导线的接触处称为冷端,另一端则称为热端。
当热电偶的热端与被测温度相接触时,产生的温差会在电压表上显示出热电动势,进而推算出温度。
热敏电阻热敏电阻是指在不同温度下电阻值发生变化的电阻。
常见的热敏电阻有二极管热敏电阻和热敏电阻。
热敏电阻的工作原理是基于半导体材料的特性,通过测量电阻值来间接反映温度。
温度传感器在自动化控制系统中的作用温度传感器在自动化控制系统中扮演着非常重要的角色。
它可以实时感知环境温度,并将温度信号转换为电信号输送给控制器。
控制器根据温度传感器的反馈信号来调整系统的工作状态,以达到设定温度的目标。
温度传感器的准确性和稳定性对系统的控制精度至关重要,因此选择合适的温度传感器对系统性能至关重要。
温度传感器的性能指标精度精度是指温度传感器输出值与真实温度之间的误差。
热电偶传感器的应用与发展

HEFEI UNIVERSITY热电偶式传感器的应用与发展系别电子信息与电气工程系班级 09自动化1班学号09050750020905075014 0905075023 姓名王林吴红田坤完成时间2011.11.25热电偶传感器应用与发展摘要:目前,对于热电偶传感器的研究已经很透彻。
在很多领域里,热电偶的应用是达到了举足轻重的程度,应用很广泛,效果也很理想。
但是,其发展还有很大的空间,对于它的性能、用途以及使用范围还需进一步了解。
鉴于热电偶的高速发展,本文主要对它的应用与发展进行阐述。
关键字:热电偶传感器测温应用发展一、热电偶传感器的简介热电偶传感器在许多方面都具备了一种理想温度传感器的条件,是一种典型的自发电传感器。
在温度测量领域获得广泛应用。
在《自动检测技术》、《传感器技术》等课教学中,热电偶传感器也是比较重要的内容,它涉及较多的理论与基本定律。
在温度测量中,热电偶的应用极为广泛,它的优点是:结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等等。
热电偶是一个有源元件,测量时不需要外加电源。
所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。
二、热电偶的工作原理及热电动势两种不同材料的导体组合成为一个闭合回路(图1),当回路的两个接触点分别置于不同的温度场中时,回路就会产生一个电动势(图2),即为“热电动势”。
图1热电偶回路图2热电偶回路的电动势热电动势有两部分组成:接触电动势,温差电动势。
(1)接触电动势公式:e AB(t)=U At-U Bte AB(t0)=U At0-U Bt0(2)差动电动势公式:e A(t,t0)=U At-U At0e B(t,t0)=U Bt-U Bt0e AB(t)-e AB(t0)+e A(t,t0)-e B(t,t0)(3)热电偶回路电动势:E AB(t,t0)=由上我们可以得出结论:热电偶回路中的电动势的大小,只与组成热电偶的导体材料和接触点的温度有关,而与热电偶的形状和尺寸无关。
传感器作业——热电式传感器

光电式传感器原理及应用院系:物电学院电子信息工程班级:学生姓名:学号:光电式传感器原理及应用摘要:本文着重研究压光电式传感器的原理及光电式传感器的应用,即基于光电式传感器的科学原理及其在实际生产生活中的运用。
本文通过对传感器原理、光电效应、传感器的应用等的学习,分析了热电式传感器的基本原理及其电量转化等的工作过程。
在目前自动化、智能化发展的趋势下,传感器的应用越来越广泛与重要,本文的研究目的即在于深入了解传感器的原理与基本结构以期站在本源的角度分析与应用光电式传感器。
关键词:光电效应;光电式传感器引言:传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
基于光电效应的传感器—光电式传感器在受到可见光照射后即产生光电效应,将光信号转换成电信号输出。
它除能测量光强之外,还能利用光线的透射、遮挡、反射、干涉等测量多种物理量,如尺寸、位移、速度、温度等,因而是一种应用极广泛的重要敏感器件。
光电测量时不与被测对象直接接触,属于非接触式测量。
光束的质量又近似为零,在测量中不存在摩擦和对被测对象几乎不施加压力。
因此在许多应用场合,光电式传感器比其他传感器有明显的优越性。
其缺点是在某些应用方面,光学器件和电子器件价格较贵,并且对测量的环境条件要求较高。
一.光电式传感器的基本原理:光电式传感器基于光电效应的传感器,在受到可见光照射后即产生光电效应,将光信号转换成电信号输出。
它除能测量光强之外,还能利用光线的透射、遮挡、反射、干涉等测量多种物理量,如尺寸、位移、速度、温度等,因而是一种应用极广泛的重要敏感器件。
光电效应:它是光照射到某些物质上,使该物质的导电特性发生变化的一种物理现象,可分为外光电效应和内光电效应和光生伏特效应三类。
外光电效应是指,在光线作用下物体内的电子逸出物体表面向外发射的物理现象。
传感器技术论文范文

传感器技术论文范文传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。
这是店铺为大家整理的传感器技术论文范文,仅供参考!传感器技术论文范文篇一传感器及其概述摘要传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。
目前,传感器转换后的信号大多是电信号,因而从狭义上讲,传感器是把外界输入的非电信号转换为电信号的装置。
【关键词】传感器种类新型1 前言传感器是测试系统的一部分,其作用类似于人类的感觉器官,也可以认为是人类感官的延伸。
人们借助传感器可以去探测那些人们无法用或不便用感官直接感知的事物,如用热电偶可以测量炽热物体的温度;用超声波换能器可以测海水深度;用红外遥感器可从高空探测地面形貌、河流状态及植被的分布等。
因此,可以说传感器是人们认识自然界事物的有力工具,是测量仪器与被测量物体之间的接口。
通常情况下,传感器处于测试装置的输入端,是测试系统的第一个环节,其性能直接影响着整个测试系统,对测试精度有很大影响。
2 传感器的分类按被测物理量的不同,可以分为位移、力、温度、流量传感器等;按工作的基础不同,可以分为机械式传感器、电气式传感器、光学式传感器、流体式传感器等;按信号变换特征可以分为物性型传感器和结构型传感器;根据敏感元件与被测对象直接的能量关系,可以分为能量转换型传感器与能量控制型传感器。
3 常见传感器介绍3.1 电阻应变式传感器电阻应变式传感器又叫电阻应变计,其敏感元件是电阻应变。
应变片是在用苯酚,环氧树脂等绝缘材料浸泡过的玻璃基板上,粘贴直径为0.025mm左右的金属丝或金属箔制成。
敏感元件也叫敏感栅。
其具有体积小、动态响应快、测量精度高、使用简单等优点。
在航空、机械、建筑等各行业获得了广泛应用。
电阻应变片的工作原理是基于金属的应变效应,即金属导体在外力作用下产生机械形变,其电阻值随机械变形的变化而变化。
传感器的应用

传感器的应用
在工业自动化领域,热电式传感器被广泛应 用于温度控制和监测。例如,在塑料加工行 业中,热电式传感器可以用于测量注塑机模 具的温度,以确保塑料制品的质量和性能。 在钢铁制造行业中,热电式传感器可以用于 监测轧钢机的温度,防止过热或过冷,以保 证钢材的质量。此外,热电式传感器还可以 用于检测工业炉内的温度,实现精准的温度 控制
总之,热电式传感器的应用非常 广泛,几乎渗透到各个领域。随 着科技的不断发展,热电式传感 器的性能和精度也将不断提高, 为人类的生产和生活带来更多的 便利和发展机遇
7
传感器的应用
航空航天
在航空航天领域,热电式传感器被广泛应用 于各种极端环境下的温度监测和控制。例如 ,在火箭发射中,热电式传感器可以测量燃 料罐内的温度,确保燃料在发射过程中不会 过热或过冷。在太空探测器中,热电式传感 器可以测量太阳能电池板的温度,帮助科学 家和研究人员优化能源利用效率。此外,热 电式传感器还可以用于监测航天器内部设备 的温度和热量,保障航天器的安全和稳定运 行
总之热电式传感器在科研实验领域也有着广泛的应用价值随着技术的 不断进步和发展热电式传感器的性能和精度也将得到不断的提升和完 善为人类的生产和生活带来更多的便利和发展机遇
-
THANKS
化工行业
传感器的应用
在化工行业,热电式传感器被广泛应用于各 种化学反应和工艺过程的温度监测和控制。 例如,在化学反应器中,热电式传感器可以 测量反应液的温度,帮助工程师控制化学反 应的速度和产物的质量。在蒸馏塔中,热电 式传感器可以监测各个馏分的温度变化,以 提高蒸馏过程的效率和产品质量。此外,热 电式传感器还可以用于监测化学储罐的温度 和热量,保障生产过程的安全性
总之,热电式传感器在各个行业 和领域都有广泛的应用价值。随 着技术的不断进步和发展,热电 式传感器的性能和精度也将得到 不断的提升和完善,为人类的生 产和生活带来更多的便利和发展 机遇
温度传感器论文.

温度传感器论文徐彬杰(四川大学 物理学院 学号:1142021030)摘要: 温度是表征物体冷热程度的物理量。
温度只能通过物体随温度变化的某些特性来间接测量。
测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。
传感器属于信息技术的前沿尖端产品,尤其是温度传感器被广泛用于工农业生产、科学研究和生活等领域,数量高居各种传感器之首。
半导体传感器是利用某些半导体的电阻随温度变化而变化的特性制成的。
半导体具有很宽的温度反应特性,各种半导体的温度反应区段不同。
本文主要论述了通过使用DH-SJ5温度传感器实验装置探究几种不同类型的温度传感器的原理和温度特性。
本文主要讨论了DH-SJ5通过使用DH-SJ5温度传感器实验装置探索一些不同类型的温度传感器原理及温度特性。
关键词:温度传感器,DH-SJ5恒温装置,九孔板一、温度传感器概述温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。
温度传感器是最早开发,应用最广的一类传感器。
温度传感器的市场份额大大超过了其他的传感器。
在半导体技术的支持下,相继开发了半导体热电偶传感器、PN 结温度传感器和集成温度传感器。
二 、温度传感器的类型2.1电阻式传感器热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。
热电阻是中低温区最常用的一种温度检测器。
它的主要特点是测量精度高,性能稳定。
它分为金属热电阻和半导体热电阻两大类。
金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=R t0[1+α (t -t 0)]式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。
半导体热敏电阻的阻值和温度关系为 tB t Ae R式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。
常用的热电阻有铂热电阻、热敏电阻和铜热电阻。
其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热电式传感器的应用与发展摘要:热电式传感器是一种将温度变化转换为电量变化的装置。
其工作原理的不同,常用热电式传感器分别分为热电偶和热电阻(金属)、热敏电阻(半导体)。
它们分别具有测量精度高、范围广、构造简单、使用方便,信号输出较大、易于测量,体积小、重量轻、热惯性小、寿命长等一系列优点。
广泛应用于工业,家庭,国防等中温度的测量。
本文主要介绍热电式传感器的分类、原理、结构、特点、应用及发展、关键词:热电式传感器,温度,热电偶,热电阻,热敏电阻。
目录1 引言 (1)1.1热电式传感器的重要性 (1)1.2传感器的组成 (1)1.3传感器的发展 (1)2 热电式传感器 (2)2.1热电偶 (2)2.1.1基本概念 (3)2.1.2热电偶构造及工作原理 (4)2.1.3热电偶的应用与发展 (5)2.2热电阻 (6)2.2.1基本原理 (6)2.2.2金属热电阻 (7)2.2.3热敏电阻 (7)2.2.4热电阻的发展与应用 (8)3热电式传感器的发展趋势 (10)结论 (12)致谢 (13)参考文献 (14)1 引言1.1热电式传感器的重要性热电式传感器是将温度变化转换为电量变化的装置。
而温度是一个基本的物理量,它在许多学科领域具有重要的作用,热力学、流体力学、传热学、空气动力学、宇航学、化学及物理等学科中所研究的基本规律都与温度密切相关,在国民经济的各个重要领域,例如交通运输、汽车工业、动力资源开发,工业测量与控制、防灾安全技术等方面都需要把温度作为设计或控制的重要参数。
随着现代工业技术的迅速发展温度的测量显得越来越重要,在现代化的钢铁冶炼、内燃机,火箭发动机的研究改良、工业加工、零件制造、兵器科学以及医学发展的研究中都需要精确的温度测量,并依据测得的温度两为设计制造提供理论依据,监控产品的质量,实现工业生产的自动化与安全生产,改善发动机的工作性能、对病人的临床监护等等,因此对于温度的测量任务显得越来越重要和紧迫,所以随之热电式传感器的重要性也越来越突出。
1.2传感器的组成传感器由三部分组成:敏感元件、转换元件和测量电路。
传感器中的敏感元件感受被测量并按照某种确定的关系将之转换为电量的其它量,再由转换元件转换为电量,然后经测量电路转换为有用电信号。
即使这么说,还是觉得它很抽象。
形象点说,传感器相当如人的五官(眼、耳、口、鼻、舌)和皮肤,采集各种信息并送入计算机进行处理,产生并发出各种控制信号到执行机构。
1.3 传感器发展随着科学技术的迅猛发展, 在机械制造、交通运输、石油化工以及医疗卫生等领域,传感器技术的应用越来越广泛,它正逐渐地渗透到人们的日常生活中去。
从某种程度上来讲, 衡量一个国家科学技术现代化程度的重要标志是传感器技术水平的高低,主要体现在传感器能够较好地实现自动控制水平和测试技术的高低。
作为测量与自动控制的重要环节的传感器,不仅是新技术革命的重要技术基础,而且还是当今信息社会的重要技术基础。
笔者就当前一些重要的领域里,讲述了传感器技术的应用情况,并按照目前传感器技术的发展现状,对其将来的发展方向加以预测。
2 热电式传感器热电式传感器是一种将温度变化为电量变化的装置。
在各种热电式传感器中,其中最常用的是热电偶和热电阻,,热电偶是将温度变化为电势变化,而热电阻是将温度变化转换为电阻值的变化。
这两种热电式传感器目前在工业生产中已得到广泛应用,而且有与其相配套的显示仪表与记录仪表。
分类介绍:2.1热电偶热电偶是温度测量仪表中常用的测温元件,是由两种不同成分的导体两端接合成回路时,当两接合点热电偶温度不同时,就会在回路内产生热电流。
如果热电偶的工作端与参比端存有温差时,显示仪表将会指示出热电偶产生的热电势所对应的温度值。
热电偶的热电动热将随着测量端温度升高而增长,它的大小只与热电偶材料和两端的温度有关,与热电极的长度、直径无关。
各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表,记录仪表和电子调节器配套使用。
它在许多方面都具备了一种理想温度传感器的条件,是一种典型的自发电传感器。
在温度测量领域获得广泛应用。
在《自动检测技术》、《传感器技术》等课教学中,热电偶传感器也是比较重要的内容,它涉及较多的理论与基本定律。
在温度测量中,热电偶的应用极为广泛,它的优点是:结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等等。
热电偶是一个有源元件,测量时不需要外加电源。
所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。
2.1.1基本概念热电偶是一种感温元件,是一种仪表。
它直接测量温度,并把温度信号转换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。
热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,其中两个接点的温度假设分别为T和T0。
当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,利用EAB(T和T0)表示,这种现象称为热电效应,也就是所谓的塞贝克效应(如图1)。
两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。
根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。
在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。
因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。
图(1)2.1.2热电偶构造及工作原理:热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
工作原理两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。
热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。
热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数; 2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。
4:两种不同材料的导体组合成为一个闭合回路(图2),当回路的两个接触点分别置于不同的温度场中时,回路就会产生一个电动势(图3),即为“热电动势”。
图2热电偶回路图3热电偶回路的电动势热电动势有两部分组成:接触电动势,温差电动势。
(1)接触电动势公式: eAB(t)=UAt-UBteAB(t0)=UAt0-UBt0(2)差动电动势公式: eA(t,t0)=UAt-UAt0 eB(t,t0)=UBt-UBt0(3)热电偶回路电动势:EAB(t,t0)=eAB(t)-eAB(t0)+eA(t,t0)-eB(t,t0)由上我们可以得出结论:热电偶回路中的电动势的大小,只与组成热电偶的导体材料和接触点的温度有关,而与热电偶的形状和尺寸无关。
2.1.3 热电偶的应用与发展上述已经说过,热电偶的应用很是广泛.在此,举两点应用:(1)N型热电偶在主蒸汽温度测量中的应用近年来,N型热电偶在火电厂得到了广泛的应用。
N型热电偶在中子辐射环境下具有良好的稳定性, 是因为N型热电偶去除了易蜕变元素Mn、Co等。
因此,N型热电偶具有很好的耐核辐射的能力。
在一个机组主蒸汽管道上放一个温度保护套管,将N型热电偶放入其内部,测量的温度将其转化为电动势,通过控制电动势来控制温度。
N型热电偶具有以下优点:A、用N 型热电偶测主蒸汽温度可提高监控系统的准确性和可靠性, 从而保证了火力发电机组的安全和经济运行。
B、型热电偶的高温稳定性好和使用寿命高可与大修周期同步。
因此,在N型热电偶对主蒸汽温度测量成功应用的基础上, 可进行用N 型热电偶测过热器和汽缸等金属壁温的试验研究, 这对保证仪表的完好率、降低仪表的故障率有着十分重要的意义。
C、随着N 型热电偶生产量的逐年增加, 其价格不会太高。
(2)热电偶技术供暖目前,热电偶在很多领域里都有很大的发展。
由新的热电偶替代了旧的热电偶,由性能好的替代了性能比较差的,这一步一步的发展,使现在的热电偶种类多,使用范围广,精度高,经济性好越来越方便我们日常生活的应用。
在此,仅提出几点发展。
由以前应用以工业为主的热电偶引入我们的生活。
近年来,由于提倡环保,对于以前以燃煤为主的锅炉取暖方式已经不适用了。
公共建筑的冬季的供热选择只有两个:一个是以电的形式来提供,再有一种就是以燃气为能源的资源;再有燃气有时候往往从计算上或是费用上可能都是不划算的,那在这种情况下电热泵可能就是一个最好的选择。
热泵热水器是一种新型热水和供暖热泵产品,是一种可替代锅炉的供暖设备和热水装置。
与传统太阳能相比,热泵热水器不仅可吸收空气中的热量,还可吸收太阳能。
热泵热水器通过制冷剂温差吸热和压缩机压缩制热后,与水换热,大大提高热效率,充分利用了新能源,是将电热水器和太阳能热水器的各自优点完美的结合于一体的新型热水器。
目前,热泵热水器有热电偶热水器、水源热泵和太阳能型三种系列,是开拓和利用新能源最好的设备之一。
空气源(太阳能)热泵是当今世界上最先进的产品之一,该产品以制冷剂为媒介,制冷剂在风机盘管(或太阳能板)中吸收空气中(或阳光)中的能量,再经压缩机压缩制热后,通过换热装置将热量传递给水,来制取热水,热水通过水循环系统送入用户散热器进行采暖或直接用于热水供应。
2.2 热电阻热电阻是利用电阻随温度变化的特性制成的传感器叫做电阻温度传感器,按采用的电阻材料可分为金属热电阻(简称热电阻)和半导体热敏电阻(简称热敏电阻)两大类。
2.2.1 基本原理热电阻与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。
因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。
金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即R t =R t 0【1+a (t-t 0)】其式中,R t 为温度t 时的阻值:R t 0为温度t0(一般t0=0·c )时对应电阻值:a 为温度系数。