电场与磁场的区别

电场与磁场的区别

电场与磁场区别

电场是电荷及变化磁场周围空间里存在的一种特殊物质。电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。电场具有通常物质所具有的力和能量等客观属性。电场的力的性质表现为:电场对放入其中的电荷有作用力,这种力称为电场力。电场的能的性质表现为:当电荷在电场中移动时,电场力对电荷作功(这说明电场具有能量)。静止电荷在其周围空间产生的电场,称为静电场;随时间变化的磁场在其周围空间激发的电场称为有旋电场[1](也称感应电场或涡旋电场)。静电场是有源无旋场,电荷是场源;有旋电场是无源有旋场。普遍意义的电场则是静电场和有旋电场两者之和。

电场是一个矢量场,其方向为正电荷的受力方向。电场的力的性质用电场强度来描述。

对放入其中的小磁针有磁力的作用的物质叫做磁场。磁场是一种看不见,而又摸不着的特殊物质。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力距皆源于此。而现代理论则说明,磁力是电场力的相对论效应。与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。

电磁场(electromagnetic field)是有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。

电场与电磁场的区别

电场与电磁场 电场是电荷及变化磁场周围空间里存在的一种特殊物质。电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。电场具有通常物质所具有的力和能量等客观属性。电场的力的性质表现为:电场对放入其中的电荷有作用力,这种力称为电场力。电场的能的性质表现为:当电荷在电场中移动时,电场力对电荷作功(这说明电 场具有能量)。 静止电荷在其周围空间产生的电场,称为静电场;随时间变化的磁场在其周围空间激发的电场称为有旋电场[1](也称感应电场或涡旋电场)。静电场是有源无旋场,电荷是场源;有旋电场是无源有旋场。普遍意义的电场则是静电场和有旋电场两者之和。 电场是一个矢量场,其方向为正电荷的受力方向。电场的力的性质用电场强度来描述。 对放入其中的小磁针有磁力的作用的物质叫做磁场。磁场是一种看不见,而又摸不着的特殊物质。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。

电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力距皆源于此。而现代理论则说明,磁力是电场力的相对论效应。 与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。 电磁场(electromagnetic field)是有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,

高中物理力学、电场、磁场综合复习题.

图1 物理力学、电场、磁场综合复习题 一.单项选择题 1.物理学中研究问题有多种方法,有关研究问题的方法叙述错误.. 的是 A .在现实生活中不存在真正的质点,将实际的物体抽象为质点是物理学中一种重要的科学研究方法 B .探究加速度a 与力F 、质量m 之间的关系时,保持m 恒定的情况下,探究a 与F 的关系, 采用的是控制变量法 C .电场强度的定义式,采用的是比值法 D .伽利略比萨斜塔上的落体实验,采用的是理想实验法 2.如图1所示,2008北京奥运会上中国选手曹磊毫无悬念地 以总成绩282kg 轻取金牌。 赛前曹磊在一次训练中举起125kg 的杠铃时,两臂成120°,此时曹磊沿手臂向上撑的力F 及曹磊 对地面的压力N 的大小分别是(假设她的体重为75kg ,g 取10m/s 2 ) A .F =1250N N =2000N B .F =1250N N =3250N C .F =325N N =2000N D .F =722N N =2194N 3.如图2所示,在水平地面上做匀速直线运动的小车,通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一时刻速度分别为v 1和v 2,绳子对物体的拉力为T,物体所受重力为G,则下面说法正确的是 A .物体做匀速运动,且v 1=v 2 B .物体做加速运动,且v 2>v 1 C .物体做加速运动,且T>G D .物体做匀速运动,且T=G 4.在如图3所示的电路中,R 1、R 2、R 3和R 4为定 值电阻,R 5为可变电阻,电源的电动势为E ,内 阻为r ,设电流表A 的读数为I ,电压表V 的读数为U ,当R 5的滑动触点向图中a 端移动时,则 A .I 变大,U 变小 B .I 变大,U 变大 C .I 变小,U 变大 D .I 变小,U 变小 5.某同学通过对电学的学习后得出如下结论,则其中正确的是 A .计算真空中两个点电荷之间的相互作用力,应使用公式F=kQq/r 2 B .形状相同的两个绝缘金属小球若一个带电,另一个不带电,接触后每个小球所带电量各为总电量的一半 C .电容器放电时,其储存的电场能增大 D .白炽灯泡的灯丝越粗,电阻越大,功率越大 6.总质量为80kg 的跳伞运动员从离地500m 高的直升机上跳下,经过2 s 拉开绳索开启降落伞,如图所示是跳伞过程中的v-t 图,试根据图像可知:(g 取10m/s 2) A .在t=1s 时运动员的加速度约为8m/s 2 B .14s 内运动员下落高度约为300m C .运动员落地前飞行时间为24s D .运动员在下降过程中空气阻力一直在增大 2 图2 图3

电磁场与电磁(第三版)课后答案第3章

第三章习题解答 3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。 解 由点电荷q 和q -共同产生的电通密度为 33[]4q R R π+- +- = -=R R D 22322232 () (){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量 d d z z S S S Φ====??D S D e 22322232 ()[]2d 4()()a q a a r r r a r a ππ--=++? 2212 01)0.293()a qa q q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通 过实验得到球体内的电通量密度表达式为02314r a Ze r r r π?? =- ??? D e ,试证明之。 解 位于球心的正电荷Ze 球体内产生的电通量密度为 12 4r Ze r π=D e 原子内电子云的电荷体密度为 33 3434a a Ze Ze r r ρππ=- =- 电子云在原子内产生的电通量密度则为 3223 4344r r a r Ze r r r ρπππ==-D e e 故原子内总的电通量密度为 122314r a Ze r r r π??=+=- ???D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两 圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。求空间各部分 的电场。 解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。但可把半径为 a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为 b 的整个圆 柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为 0ρ-的均匀电荷分布,如题3.3图()b 所示。空间任一点的电场是这两种电荷所产生的电场 的叠加。 在b r >区域中,由高斯定律 d S q ε= ? E S ,可求得大、小圆柱中的正、负电荷在点P 产生的电场分别为 2200120022r b b r r πρρπεε==r E e 220012 0022r a a r r πρρπεε' -''==-''r E e 题3.1 图 题3. 3图( )a

电场磁场典型例题

电场磁场典型问题 1.绝缘光滑斜面与水平面成角,质量为m、带电荷量为-q(q>0)的小 球从斜面上的h高度处释放,初速度为(>0),方向与斜面底边MN 平行,如图所示,整个装置处在匀强磁场B中,磁场方向平行斜面向上。 如果斜面足够大,且小球能够沿斜面到达底边MN。则下列判断正确的是 A.小球运动过程对斜面压力越来越小 B.小球在斜面做变加速曲线运动 C.匀强磁场磁感应强度的取值范围为 D.小球达到底边MN的时间 【答案】CD 2.质量为m、带电量为+q的小金属块A以初速度从光滑水平高台(足够高)上飞出。已知在高台边缘的右面空间中存在水平向左的匀强电场,场强大小E=2mg/q,则 A.金属块在做平抛运动 B.经过足够长的时间金属块一定会与高台右侧边缘相碰 C.金属块运动过程中距高台边缘的最大水平距离为 D.金属块运动过程的最小速度为 【答案】BCD 3.如图倒“V”导轨,两侧导轨倾角为,间距为。分别平行底边放置一根导体棒,其中棒质量为,电阻为,cd棒质量为,电阻为 ,两棒与导轨的动摩擦因数均为,导轨顶端MN间连接内阻为的电源,两棒通过一根绕过顶端光滑定滑轮的绝缘轻线连接,细线平行于左右导轨平面,左右空

间磁场均垂直于斜面向上,左右两斜面磁感应强度均为,为了使两棒保持静止,电源电动势的取值满足什么条件。 【答案】4.5V E13.5V 【解析】本题考查了电磁感应与电路的综合问题,意在考查考生的综合分析和解决能力。设流过ab,cd的电流分别为, 由电路结构得:=① E=()r+② 通过比较得知,当电动势最小时 g sinθ=B L++B L++g sinθ③ =μg sinθ=μg sinθ④ 得:=4.5V 当电动势最大时 g sinθ++=B L+ B L+g sinθ⑤ 得:=13.5V 故:4.5V E13.5V 4.如图,A、C两点分别位于x轴和y轴上,∠OCA=30°,OA的长度为L。在区域内有垂直于xOy平面向里的匀强磁场。质量为m、电荷量为q的带正电粒子,以平行于y轴的方向从OA边射入磁场。已知粒子从某点射入时,恰好垂直于OC边射出磁场,且粒子在磁场中运动的时间为t0。不计重力。 (1)求磁场的磁感应强度的大小;

电场与磁场的对比

电场与磁场的对比 电场力、磁场力跟重力、弹力、摩擦力一样,都是中学物理常见的性质力,但在直观感受性上却不同,多数学生感到前者比较“疏远”,后者比较“亲近”。究其原因一则电场、磁场部分概念较多且比较抽象而多数学生还停留在形象、直观思维的阶段;二则多数学生缺乏良好的学习习惯和方法,不善于观察和积累,已有经验匮乏;不善于运用科学思维,严密推理,学习自主性、自觉性不高;不重视实验操作,缺乏探究意识;不注意学科思想方法和知识总结等。 为了使学生对电场和磁场的认识更确切、更明晰,更亲合学生实际,在高考复习备考的第一阶段,当结束了电场、磁场两部分的系统复习后,很有必要组织、引导学生:⑴、从万有引力定律与库仑定律的比较开始,将电场与重力场(万有引力场)相关概念、规律一一进行类比;⑵、将电场和磁场两部分内容的研究对象、研究思路和方法及重要概念如电场与磁场、电场强度与磁感强度、电场线与磁场线、匀强电场与匀强磁场、电场力与磁场力等的对比。现选择性对比如下: 一、研究对象、思路和方法对比:表1 内容项目研究对象研究思路研究方法、途径研究问题 电场静止电荷力-(功)-能 直观化、模拟实验; 间接(引入检验电 荷、电流元等)静电现象及本质规律(力与能的性质) 磁场运动电荷力静磁场、稳恒磁场现象及本质(力的 性质) 二、概念对比:表2 项目 量 定义公式单位方向意义矢标性决定因素 电场强度 引 入检验电 荷 F E q =1/1/ N C V m =与正电荷 受力同向 表征电场 强弱和方 向 矢量 (叠加 遵从平 行四边 形定 则) 场源电荷 及场点位 置 磁感应强 度 电流元m F B IL = 11/ T N A m =? 1、小磁针 静止时N 极指向 2、垂直于 磁力与电 流元所决 定的平面 表征磁场 强弱和方 向 磁体或载 流导体及 场点位置运动电 荷 m f B qυ =11/ T N S C m =?? 面积元B S ⊥ Φ =2 11/ B Web m = 注意⒈用“比值”定义的物理量的共同特点是被定义的量与用来定义的量均无关; ⒉磁感应强度三种定义的条件。 表3 项目 概念 定义性质意义 电场线1、不闭合(有 源场) 2、不相交 3、不中断 4、不存在 (直观手 段) 5、疏密表示 场的(相对) 强弱,切向表 示场的方向 表征电场的强 弱和方向 磁感线1、闭合曲线 (无源场) 表征磁场的强 弱和方向 注:电场线、磁感线是描写场这一抽象物质的直观手段,且均可用实验模拟。沿电场线方向电势逐渐(点)

高中物理电场和磁场

高中物理电场和磁场 【方法归纳】 一、场强、电势的概念 1、电场强度E ①定义:放入电场中某点的电荷受的电场力F 与它的电量q 的比值叫做该点的电场强度。 ②数学表达式:q F E /=,单位:m V / ③电场强度E 是矢量,规定正电荷在电场中某点所受电场力的方向即为该点的电场强度的方向 ④场强的三个表达式 ⑤比较电场中两点的电场强度的大小的方法: 2、电势、电势差和电势能 二、电加速和电偏转 1、带电粒子在电场中的加速 在匀强电场中的加速问题 一般属于物体受恒力(重力一般不计)作用运动问题。处理的方法有两种: ①根据牛顿第二定律和运动学公式结合求解 ②根据动能定理与电场力做功,运动学公式结合求解 2、带电粒子在电场中的偏转 设极板间的电压为U ,两极板间的距离为d ,极板长度为L 。 运动状态分析:带电粒子垂直于匀强电场的场强方向进入电场后,受到恒定的电场力作用,且与初速度方向垂直,因而做匀变速曲线运动——类似平抛运动如图1。 运动特点分析: 在垂直电场方向做匀速直线运动 0v v x = t v x 0= 在平行电场方向,做初速度为零的匀加速直线运动 dm Uq m Eq a = = at v y = 2 2 1at y = 通过电场区的时间:0v L t =粒子通过电场区的侧移距离:2 2 2mdv UqL y = 粒子通过电场区偏转角:2 mdv UqL tg =θ 三、电容器的动态分析 解此类问题的关键是:先由电容定义式U Q C = 、平行板电容器电容的大小C 与板距d 、正面积S 、介质的介电常数ε的关系式d S C ε∝和匀强电场的场强计算式d U E =导出d SU CU Q ε∝=,S dQ C Q U ε∝ =, 图1

磁场及电磁场综合知识点

选修3—1知识点回顾 第一章:静电场 1、电荷及守恒定律,元电荷e= 。 2、库仑定律F= ,条件: 3、电场强度的定义E= ,是量。其方向与相同。 4、电场力做正功,电势能,电场力做负功,电势能。W AB= 。 5、电势的定义:Φ= ,判断电势高低的方法:①顺着电场线的方向电势, ②正电荷在电势能越高的地方电势越③利用电势差 6、电势差的定义:电势差是标量,但有之分。 7、等势面的特点:①等势面与电场线②沿同一等势面移动电荷电场力, ③等势面密的地方电场强度,④等势面不相交⑤电场线从电势指向电势的等势面。 8、匀强电场中电势差与电场强度的关系:E= ,沿电场强度的方向电势降落最快。 9、两个相互又彼此的导体就组成了一个电容器。电容反映了电容器的本领。 10、电容的定义:C= ,决定平行板电容器电容的公式是C= 。 第二章:恒定电流 1、电荷的定向移动形成电流,定义式:I= ,计算式:I= 或I= (含有电源)。 2、电阻的定义式R= ,计算式R= 。对金属导体,温度升高,电阻变。 3、电流做功W= = 。电功率P= ,电热Q= ,发热功率P= ,只有在中,电功才和电势相等。 4、电动势反映了电源通过做功,把其它形式的能转化为电能本能的物理量。外电阻越大,电路的电流越,内电压越,路端电压越。 5、电源的效率η= ,当外阻和相等时,电源的输出功率最大。此时η= 。 6、三个基本门电路:与门,和。只有所有的条件都发生时,事件才发生,是门。 7、用电流计与一个大电阻联,可改装成电压表,与一个小电阻时,改装为电流表。 8、实验:①描绘灯泡的伏安特性曲线(会画电路图)②伏安法测电阻(内接和外接的误差分析)③测电源的电动势和内阻(电路图、图像法求电动势和内阻)④利用多用表测电阻的

电磁场近远区区分方法电磁辐射频率范围

三、电磁辐射物理原理 1、电磁场的产生及性质 ⑴产生 根据电磁学基本理论,带电粒子周围会有相应的电场分布,随时间变化的带电粒子产生变化的电场。由于带电粒子周围电位不同的两点之间存在电位差,因此在两点间形成了电压。 当大量的带电粒子定向移动时形成了电流,电流周围产生磁场,随时间变化的电流产生变化的磁场。 电磁场是一种特殊的物质形态,可以单独在空间中传播。变化的电场能产生磁场,反之,变化的磁场也能产生电场, 对电磁场的测量通常有:电场强度v/m,磁场强度A/m,功率密度W/m2。 对于工频磁场,常用磁感应强度B表示磁场强弱,磁感应强度B与磁场强度的关系为,B=μ0H,μ0为真空磁导率,μ0=4π×10-7,当磁场强度H以(A/m)为单位,磁感应强度B以μT(微特斯拉)为单位时,B=1.2566H。 ⑵性质 矢量 电场与磁场是矢量,不但有量值大小,还有方向,所以对于非各向同性的测量天线,测量时必须调整天线方向,直到读数为最大值为止。从目前情况来看,一般情况下,综合场强仪都是各向同性天线(探头)。 电磁场的迭加 电磁场有可迭加的性质,空间任一点的电场(或磁场)为不同电荷(或电流)在该点产生的电场(或磁场)的矢量和。理想导体内及所严密包围的空间内的电场强度为零,理想导体上各个位置的电位相等,理想导体表面的电场方向垂直理想导体表面。(如果不垂直,则电场有沿导体表面的分量,导体表面成了非等位面)。 电磁波的干涉、绕射、反射、透射 由惠更斯-菲涅耳原理,包括电磁波在内的一切波有干涉、绕射、镜面反射、漫反射(散射)、透射等特性。 当辐射源与测量点之间有障碍物时,电磁波可通过绕射方式达监测点,但强度能量有很大的损失。

变化的电场和磁场教案

河北职业技术师范学院教案 编号理论 2003——2004学年度第一学期 系(部)数理系教研室物理教研室任课教师高忠明课程名称大学物理学 授课章节:第七章

楞次定律是能量守恒定律在电磁感应中的具体表现 二 法拉第电磁感应定律: 1.约定:有一个闭合回路l ,任选一个方向作为回路绕行的正方向。回路所围曲面S 的法向n 取回路正方向的右手螺旋方向,通过回路所围的任何一个曲面上的磁通量Φ都相等,与曲面的选取无关,简称为回路中的磁通量。 2.定律表述:当回路l 中的磁通量Φ变化时,在回路上产生的感应电动势为 dt d Φ ε- = 法拉第电磁感应定律中的负号,代表着对感应电动势方向的判定,是楞次定律的数学表示。 对于线圈,全磁通i ΦΦ∑= 例1图 例1 如图12-7所示,一长直电流I 旁距离r 处有一与电流共面的圆线圈,线圈的半径为R 且R<< r 。就下列两种情况求线圈中的感应电动势。 (1) 若电流以速率 dt dI 增加; (2) 若线圈以速率v 向右平移。 解 穿过线圈的磁通量为 r IR R r I BS 22202 0μππμΦ= ?== (1) 按法拉第电磁感应定律,线圈中的感应电动势大小为 dt dI r R r IR dt d dt d ?=??? ? ??= =222020μμΦε 由楞次定律可知,感应电动势为逆时针方向。 (2) 按法拉第电磁感应定律 dt dr r IR r dt d IR r IR dt d dt d 2202020121121 2?=?=??? ? ??= =μμμΦε 由于v dt dr =,故 2 202r v IR με= 由楞次定律可知,感应电动势为顺时针方向。

电磁场综合计算题

电磁场综合计算题 1、(磁场与运动学综合)如图18所示,质量m=0.1g的小物块,带有 5×10-4C的电荷,放在倾角为30°的光滑绝缘斜面上,整个斜面置于 B=0.5T的匀强磁场中,磁场方向垂直纸面指向纸里,物块由静止开始下滑,滑到某一位置时,开始离开斜面,求:(中等) 图18 (1)物块带什么电? (2)物块离开斜面时速度多大? (3)斜面至少有多长? 2.(电磁场与运动学综合)一个质量为m,电量为+q的金属球套在绝缘长杆上,球与杆间的动摩擦因数为μ,整个装置放在匀强电场与匀强磁场互相垂直的复合场中,如图19所示。若已知电场强度为E,磁感应强度为B,由静止开始释放小球,求:(中等) (1)小球最大加速度是多少? (2)小球最大速度是多少? 图19 3、(电磁场与运动学综合)电磁炮是一种理想的兵 器,它的主要原理如图所示。1982年澳大利亚国立大 学制成了能把m=2.2g的弹体(包括金属杆EF的质 量)加速到v=10km/s的电磁炮(常规炮弹的速度约为 2km/s),若轨道宽L=2m,长为x=100m,通过的电流为I=10A,试问轨道间所加匀强磁场的磁感应强度和磁场的最大功率P m有多大(轨道摩擦不计)?(中等) 4、(电磁场与运动学综合)如图所示,某区域有正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直纸面向里.场强E=10N/C.磁

感应强度B=1T.现有一个质量m=2×10-6kg,带电量q=+2×10-6C的液滴以某一速度进入该区域恰能作匀速直线运动,求这个速度的大小和方向.(g取10m/s2) (简单) 5.(回旋加速器)有一回旋加速器,加在D形盒内两极的 交变电压的频率为1.5×107Hz,D形盒的半径为0.56m,求:(中等)(1)加速α粒子所需的磁感应强度B。 (2)α粒子所达到的最大速率。(α粒子质量为质子质量的4倍,质子质量为1.67×10-27Kg) 6.(磁场与运动学综合)有一匀强磁场,磁感应强度为1.0T,放一根与磁场方向垂直、长度为0.6m的通电直导线,导线中的电流为1.2A。这根导线在与磁场方向垂直的平面内沿安培力的方向移动了0.3m,求安培力对导线所做的功。(简单) 7.(磁场与运动学综合)在竖直向下的匀强磁场中,两根相距L的平行金属导轨与水平方向的夹角为θ,如图所示,电池、滑线可变电阻、电流表按图示方法与两导轨相连,当质量为m的直导线ab横跨于两根导轨之上时,电路闭合,有电流由a到b通过直导线,在导轨光滑的情况下,调节可变电阻,当电流表示数为I0时,ab恰好沿水平方向静止在导轨上,求匀强磁场的磁感强度B多大?(中等) )θ A )θ B a b

电磁场的远场和近场划分

电磁辐射的测量方法通常与测量点位和辐射源的距离有关,即,所进行的测量是远场测量还是近场测量。由于远场和近场的情况下,电磁场的性质有所不同,因此,要对远场和近场测量有明确的了解。 1、电磁场的远场和近场划分 电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。 一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为远区场(感应场)和近区场(辐射场)。由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。近区场通常具有如下特点: 近区场内,电场强度与磁场强度的大小没有确定的比例关系。即:E 377H。一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。 近区场的电磁场强度比远区场大得多。从这个角度上说,电磁防护的重点应该在近区场。 近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。 远区场的主要特点如下: 在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。 远区场为弱场,其电磁场强度均较小 近区场与远区场划分的意义: 通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。而对于远区场,由于电磁场强较小,通常对人的危害较小。 对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到1米。 2、远区场的测量 在远区场(辐射场区),可引入功率密度矢量(波印廷矢量),电场矢量、磁场矢量、波印廷矢量三者方向互相垂直,波印廷矢量的方向为电磁波传播方向。 在数值上,E=377H,S=EH=E2/377。其中电场强度E的单位是(V/m),磁场强度H的单位是(A/m),功率密度的单位是(W/m2),全部是国际单位制(SI)。 由公式可看出,在远场区,电场与磁场不是独立的,可以只测电场强度,磁场强度及功率密度中的一个项目,其他两个项目均可由此换算出来。 一般情况,关于远场和近场的测量问题可以简化为: 国标规定,当电磁辐射体的工作频率低于300MHz时,应对工作场所的电场强度和磁场强度分别测量。当电磁辐射体的工作频率大于300MHz时,可以只测电场强度。 300MHz频率相应的波长为1米,λ/6为16cm,16cm之外辐射场占优势。如按3λ的划分界限,距辐射源3米之外可认为是远场区。

带电粒子在电场和磁场中偏转的区别解读

解题思路:带电粒子垂直射入电场作类平抛运动,须用运动的分解处理 带电粒子垂直射入磁场作匀速圆周运动,须利用几何关系求解。 例1.如图所示,在宽L 的范围内有方向如图的匀强电场,场强为E ,一带电粒子以速度V 垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感应强度B ? 练习1.如图所示,abcd 是一个正方形的盒子,在ab 边的中点有一小孔e ,盒子中存在着沿ad 方向的匀强电场,场强大小为E .一粒子源不断地从a 处的小孔沿ab 方向向盒内发射相同的带电粒子,粒子的初速度为V0,经电场作用后恰好从e 处的小孔射出.现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出.(带电粒子的重力和粒子之间的相互作用力均可忽略) (1)判断所加的磁场方向. (2)求分别加电场和磁场时,粒子从e 孔射出时的速率。 (3)求电场强度E 与磁感应强度B 的比值.

例题2、某空间存在着一个变化的电场和另一个变化的磁场, 电场方向向右(即图(a)中由B 到C 的方向), 电场大小变化如图(b)中 E — t 图象, 磁感应强度变化如B —t 图象。在A 点,从t=1s (即1s 末)开始每隔2s 有一相同的带电粒子(不计重力)沿AB 方向(垂直于BC )以速度v 射出,恰能击中C 点,若AC=2BC 且粒子在AC 间的运动的时间小于1s 。求: (1)图线中E 0、B 0的比值。 (2)磁场方向 (3)若第一个粒子击中C 点的时刻已知为(1+△t )s ,那 么第二个粒子击中C 点的时刻是多少? 励志格言:不要等待机会,而要创造机会。

高中物理磁场综合练习及答案.doc

高中物理磁场综合练习及答案 磁场相关的物理知识一直以来是学生在高中学习阶段较难掌握的部分,同学们需要加强相关练习,下面是我给大家带来的,希望对你有帮助。 一、选择题(本题10小题,每小题5分,共50分) 1.一个质子穿过某一空间而未发生偏转,则() A.可能存在电场和磁场,它们的方向与质子运动方向相同 B.此空间可能有磁场,方向与质子运动速度的方向平行 C.此空间可能只有磁场,方向与质子运动速度的方向垂直 D.此空间可能有正交的电场和磁场,它们的方向均与质子速度的方向垂直 答案ABD 解析带正电的质子穿过一空间未偏转,可能不受力,可能受力平衡,也可能受合外力方向与速度方向在同一直线上. 2. 两个绝缘导体环AA、BB大小相同,环面垂直,环中通有相同大小的恒定电流,如图1所示,则圆心O处磁感应强度的方向为(AA面水平,BB 面垂直纸面) A.指向左上方 B.指向右下方 C.竖直向上 D.水平向右

答案A 3.关于磁感应强度B,下列说法中正确的是() A.磁场中某点B的大小,跟放在该点的试探电流元的情况有关 B.磁场中某点B的方向,跟该点处试探电流元所受磁场力的方向一致 C.在磁场中某点试探电流元不受磁场力作用时,该点B值大小为零 D.在磁场中磁感线越密集的地方,B值越大 答案D 解析磁场中某点的磁感应强度由磁场本身决定,与试探电流元无关.而磁感线可以描述磁感应强度,疏密程度表示大小. 4.关于带电粒子在匀强磁场中运动,不考虑其他场力(重力)作用,下列说法正确的是() A.可能做匀速直线运动 B.可能做匀变速直线运动 C.可能做匀变速曲线运动 D.只能做匀速圆周运动 答案A 解析带电粒子在匀强磁场中运动时所受的洛伦兹力跟速度方向与磁 场方向的夹角有关,当速度方向与磁场方向平行时,它不受洛伦兹力作用,又不受其他力作用,这时它将做匀速直线运动,故A项正确.因洛伦兹力的方向始终与速度方向垂直,改变速度方向,因而同时也改变洛伦兹力的方向,故洛伦兹力是变力,粒子不可能做匀变速运动,故B、C两项错误.只有当速度方向与磁场方向垂直时,带电粒子才做匀速圆周运动,故D项

第7讲电场和磁场的基本性质

第7讲 电场和磁场的基本性质 1.电场强度的三个公式 2.电场能的性质 (1)电势与电势能:φ=E p q ,E p =qφ。 (2)电势差与电场力做功:U AB =W AB q =φA -φB 。 (3)电场力做功与电势能的变化:W =-ΔE p 。 3.等势面与电场线的关系 (1)电场线总是与等势面垂直,且由电势高的等势面指向电势低的等势面。 (2)电场线越密的地方,等差等势面也越密。 (3)沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力一定做功。 4.控制变量法分析电容器动态变化问题 (1)电容器始终和电源连接,U 不变:C =εr S 4k πd ∝εr S d ,Q =CU =εr SU 4k πd ∝εr S d ,E =U d ∝1 d 。 (2)电容器充电后与电源断开,Q 不变:C =εr S 4k πd ∝εr S d ,U =Q C =4k πdQ εr S ∝d εr S ,E =U d =Q Cd =4k πQ εr S ∝1εr S 。 5.磁场对电流的作用力—安培力大小:F =IlB 方向:左手定则 6.磁场对运动电荷的作用 (1)磁场只对运动电荷有力的作用,对静止的电荷无力的作用。磁场对运动电荷的作用力叫洛伦兹力。 (2)洛伦兹力的大小和方向:其大小为F =q v B ,F 的方向由左手定则判断。 备考策略 1.掌握电场的“3个要点” (1)掌握几种常见电场的电场线、等势面的分布特点。 (2)掌握判断电势能的大小和电势的高低的方法。 (3)掌握等势面特点和电场强度与电势关系:等势面与电场线垂直;等势面越密,电场强度越大;电场强度方向就是电势降低最快的方向。 2.必须领会的“2种物理思想和5种方法” (1)等效思想、分解思想; (2)比值定义法、控制变量法、对称法、合成法、分解法。 3.必须辨明的“6个易错易混点” (1)在电场强度定义式E =F q 中,错误地认为E 与F 、q 有关; (2)判断电场力时注意带电粒子的电性,要区分轨迹与电场线; (3)不能随意忽略带电体的重力; (4)电场强度和电势、电势能的大小没有直接联系; (5)公式B =F IL 中的B 与F 及IL 无关; (6)判断洛伦兹力方向时要注意粒子的电性。 考点1 电场的基本性质 1. (多选)(2017·全国卷Ⅰ,20)在一静止点电荷的电场中,任一点的电势φ与该点到点电荷的距离r 的关系如图所示。电场中四个点a 、b 、c 和d 的电场强度大小分别为E a 、E b 、E c 和E d 。点a 到点电荷的距离r a 与点a 的电势φa 已在图中用坐标(r a ,φa )标出,其余类推。现将一带正电的试探电荷由a 点依次经b 、c 点移动到d 点,在相邻两点间移动的过程中,电场力所做的功分别为W ab 、W bc 和W cd 。下列选项正确的是( ) A.E a ∶E b =4∶1 B.E c ∶E d =2∶1 C.W ab ∶W bc =3∶1 D.W bc ∶W cd =1∶3 2. (多选)(2017·天津理综,7)如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹。设电子在A 、B 两点的加速度大小分别为a A 、a B ,电势能分别为E p A 、E p B 。下列说法正确的是( ) A.电子一定从A 向B 运动 B.若a A >a B ,则Q 靠近M 端且为正电荷 C.无论Q 为正电荷还是负电荷一定有E p A mg q C.油滴在M 点的电势能比它在N 点的大 D.M 点的电势比N 点的低

工程电磁场基本知识点

第一章矢量分析与场论 1 源点是指。 2 场点是指。 3 距离矢量是,表示其方向的单位矢量用表示。 4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。 5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。 6 方向导数与梯度的关系为。 7 梯度在直角坐标系中的表示为u ?=。 8 矢量A在曲面S上的通量表示为Φ=。 9 散度的物理含义是。 10 散度在直角坐标系中的表示为??= A。 11 高斯散度定理。

12 矢量A 沿一闭合路径l 的环量表示为 。 13 旋度的物理含义是 。 14 旋度在直角坐标系中的表示为??=A 。 15 矢量场A 在一点沿l e 方向的环量面密度与该点处的旋度之间 的关系为 。 16 斯托克斯定理 。 17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别 为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别 为 , , 。 19 221111''R R R R R R ?=-?=-=e e 20 0(0)11''4()(0)R R R R R πδ≠???????=??=? ? ?-=?????

第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E= 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ???处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体内部电场强度等于 。 8处于静电平衡状态的导体,其内部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其内部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。 11 无限长直导线,电荷线密度为τ,则空间电场E=

电磁场思考题

第一章 第二章1.什么是矢量场的通量通量的值为正、负或0分别表示什么意义 解答:矢量场F 穿出闭合曲面S 的通量为: dS e F dS F s n s ??==··ψ 当? >s dS F 0·时,表示穿出闭合曲面S 的通量多于进入的通量,此时闭合曲面内必有发出矢量线的源,成为正通量源。 当? ?c dl F 0或?

电场磁场综合专题

电场磁场综合专题 章末网络构建 物理思想万注 如图所示,半径为/?的绝缘细圆环均匀带电,带电量为+ 0,圆环上 有一小缺口,缺口宽度为/, l?R,在圆环中心放一带电量为+ q的点 电荷,求点电荷q所受的库仑力的大小和方向. (由圆环中心指向缺口) (多选)如图所示,在水平向右的匀强电场中, 某带电粒子从A点运动到〃点,在A点时速度竖直向上,在〃点时速度 水平向右,在这一运动过程中粒子只受 V

电场力和重力,所受电场 力是重力的羽倍,并且克 服重力做的功为1 J,电场力做的正功为3 J, 则下列说法中正确的是 () A.粒子带正电 B.粒子在A点的动能比在〃点多 2 J C.粒子在A点的机械能比在3点少3 J D.粒子由A点到3点过程中速度最小时,速度的方向与水平方向的夹角为60。 .【即学即用】 1 (多选)如图6—4, M、7V是在真空中竖直放置的两块平行金属板,板间有匀强电场,质量为加、电荷量为一q的带电粒子,以初速度co由小孔进入电场,当N间电压为" 时,粒子刚好能到达N板,如果要使这个带电粒子能到达M、N两板间距的1/2处返回,则下述措施能满足要求的是() A.使初速度减为原来的1/2 B.使M、N间电压提高到原来的2倍 C.使M、N间电压提高到原来的4倍 D.使初速度和M、N间电压都减为原来的1/2 (2014-海淀一模)如图7所示,质量"7 = 2.0X10 ° kg、电荷量q = 1.0X 10'6C的带正电微粒静止在空间围足够大的电场 强度为E的匀强电场中.取g=10m/s2. (1)求匀强电场的电场强度E的大小和方向;⑵在f=0时刻,电场强度大小突然变为E0=4.0X103 N/C,方向不变.求在r=0.20 s时间电场力做的功; ⑶在f=0.20 s时刻突然撤掉电场,求带电微粒回到出发点时的动能

磁场、电场与生命之间的关系

龙源期刊网 https://www.360docs.net/doc/864065146.html, 磁场、电场与生命之间的关系 作者:郭德才 来源:《发明与创新(综合版)》2007年第05期 我们知道,地球本身就是一个巨大的磁铁。而地球上的一切生物,都是在地磁场的影响下繁衍生存。然而地磁场是极不稳定的,它除了受四季变化的影响之外,还要受太阳黑子爆发时的巨大影响。很多年前,科学家就已知道太阳的活动会影响地球,每当磁爆发生时,太阳风就会携带着大量的带电质子和高能粒子,并以每秒400至800公里的速度闯入太空、袭击地球。此时,地球磁场就会发生变化并影响人类身体健康。科学家发现:每当太阳活动造成地磁异常时,心血管疾病的危象值都会最高,交通事故也会明显增多,甚至自杀率也有上升的趋势。科学研究表明,磁场强度的波动,会在不同程度上影响到人体的血压、神经、经络以及细胞和各个器官。 磁场对人体和其它生物的影响 近期,俄罗斯联邦卫生部的一个X光放射研究所发现:人体受孕时刻地磁波动的变化, 还会对未来孩子的性别选择造成极大的影响。 科学家发现,当地磁强度下降并趋于稳定的情况下,男孩的出生率要远远高于女孩,其比例是16:10。而当太阳活动造成地磁波动曲线达到最高限时,女孩同男孩出生率的比例则是15:10。我们知道,地球的磁场是个非常复杂的物理结构,而正是因为地球上有了这个磁场,才使得这颗星球有了生命。实验表明,细菌在低磁场下生活72个小时,其再生繁殖的能力就会下降15倍。老鼠被置于对地磁完全屏蔽的环境中生活,会使体内酶的活力发生强烈的变化。如长期生活在低磁场中,老鼠的寿命就会明显缩短并无生育能力。而远离地球的宇航员在太空中所患的“太空综合症”,其很大部分原因是因没有磁场造成。科学家将纤毛虫从低于地磁的屏蔽室移到100mT的磁场中生活,经过3个星期后发现其生长和繁殖加快。科学家又将果蝇置于300mT至400mT磁场中生活,发现它的生长受到严重的抑制。如将老鼠放存极强的磁场中生活,某些癌症的发展竟会加快。这说明,太弱的磁场或太强的磁场对生命都很不利。 早在上个世纪的60年代,科学家就发现古地磁场的变化与古生物的绝迹有着密切的关系。1964年,科学家在研究太平洋海底岩芯中的放射虫时发现;某些种类的灭绝,竟与古地 磁极发生翻转的时间相同。不仅如此,科学家还发现,当地磁迅速频繁的转向,还会给许多生物带来“灭九族”的灾难。如在晚古代时期的地磁就曾出现过多次转向,而每次转向地球都会出

电场、磁场和能量转化

考点4 电场、磁场和能量转化 命题趋势 电场、磁场和能量的转化是中学物理重点内容之一,分析近十年来高考物理试卷可知,这部分知识在高考试题中的比例约占13%,几乎年年都考,从考试题型上看,既有选择题和填空题,也有实验题和计算题;从试题的难度上看,多属于中等难度和较难的题,特别是只要有计算题出现就一定是难度较大的综合题;由于高考的命题指导思想已把对能力的考查放在首位,因而在试题的选材、条件设置等方面都会有新的变化,将本学科知识与社会生活、生产实际和科学技术相联系的试题将会越来越多,而这块内容不仅可以考查多学科知识的综合运用,更是对学生实际应用知识能力的考查,因此在复习中应引起足够重视。 知识概要 能量及其相互转化是贯穿整个高中物理的一条主线,在电场、磁场中,也是分析解决问题的重要物理原理。在电场、磁场的问题中,既会涉及其他领域中的功和能,又会涉及电场、磁场本身的功和能,相关知识如下表: 如果带电粒子仅受电场力和磁场力作用,则运动过程中,带电粒子的动能和电势能之间相互转化,总量守恒;如果带电粒子受电场力、磁场力之外,还受重力、弹簧弹力等,但没有摩擦力做功,带电粒子的电势能和机械能的总量守恒;更为一般的情况,除了电场力做功外,还有重力、摩擦力等做功,如选用动能定理,则要分清有哪些力做功?做的是正功还是负功?是恒力功还是变力功?还要确定初态动能和末态动能;如选用能量守恒定律,则要分清有哪种形式的能在增加,那种形式的能在减少?发生了怎样的能量转化?能量守恒的表达式可以是:①初态和末态的总能量相等,即E 初=E 末;②某些形势的能量的减少量等于其他形式的能量的增加量,即ΔE 减=ΔE 增;③各种形式的能量的电、磁场中的功和能 电场中的 功和能 电势能 由电荷间的相对位置决定,数值具有相对性,常取无限远处或大地为电势能的零点。重要的不是电势能的值,是其变化量 电场力的功 与路径无关,仅与电荷移动的始末位置有关:W =qU 电场力的功和电势能的变化 电场力做正功 电势能 → 其他能 电场力做负功 其他能 → 电势能 转化 转化 磁场中的 功和能 洛伦兹力不做功 安培力的功 做正功:电能 → 机械能,如电动机 做负功:机械能 → 电能,如发电机 转化 转化