第二章_光固化快速成型工艺
2.第2章 快速成型技术及其在铸造中的应用解析

第2章快速成型技术及其在铸造中的应用2.1 引言快速成型(Rapid Prototyping-RP)技术是国际上新开发的一项高科技成果,简称快速成型技术。
它的核心技术是计算机技术和材料技术。
快速成型技术摒弃了传统的机械加工方法,根据CAD生成的零件几何信息,控制三维数控成型系统,通过激光束或其它方法将材料堆积而形成零件的。
用这种方法成型,无需进行费时、耗资的模具或专用工具的设计和机械加工,极大地提高了生产效率和制造柔性。
从制造原理上讲,快速成型(RP)技术一改“去除”为“堆积”的加工原理,给制造技术带来了革命性的飞跃式发展。
基于RP原理的快速制造技术经十几年的发展,在创新设计、反求工程、快速制模各方面都有了长足的进步。
RP技术的应用可大大加快产品开发速度,缩短制造周期,降低开发成本。
现代市场竞争的特点是多品种、小批量、短周期,要求企业对市场能快速响应并不断推出新产品占领市场,如新型电话机的市场寿命仅6个月,又如台湾和日本摩托车行业,每三个月就推出一种新型摩托车投入市场,摩托车几万辆就需改型。
二十世纪九十年代以来,在信息互联网支持下,由快速设计、反求工程、快速成形、快速制模等构成的快速制造技术取得很大进展。
快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的Alan J. Hebert(1978)、日本的小玉秀男(1980)、美国UVP公司的Charles W. Hull(1982)和日本的丸谷洋二(1983),在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。
Charles W. Hull 在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。
同年,Charles W. Hull和UVP的股东们一起建立了3D System公司。
@2光固化快速成型工艺

逐层堆积时的层间应力,使工件变形、翘曲。 整个制件尺寸的变化,导致制件精度误差。
第2章 光固化快速成型工艺
2.4
精 度 及 效 率
2、成型过程产生的误差
加工参数设置误差
激光扫描方式产生的误差
(连续扫描、分片区域扫描、环形扫描和三角角剖分扫描)
光斑补偿设置误差 激光功率、扫描速度、扫描间距 固化深度∝P/V ∝1/H P19
第2章 光固化快速成型工艺
2.4
精 度 及 效 率
3、后处理误差
去除支撑引起的变形误差 后固化引起的误差 表面处理产生的误差
第2章 光固化快速成型工艺
2.4
SLA的制作效率
扫描固化时间 + 辅助时间
影 响 因 素
精 度 及 效 率
第2章 光固化快速成型工艺
2.3
支撑结构
工 艺 过 程
第2章 光固化快速成型工艺
2.3
(3)模型的切片及数据准备
工 艺 过 程
利用分层软件选择参数,将模型分层,得到每一薄片 层的平面图形及其有关的网格矢量数据; 根据层片信息,生成其数控代码,用于控制激光束的 扫描轨迹。
第2章 光固化快速成型工艺
机器误差
树脂收缩变形
加工参数设置误差
第2章 光固化快速成型工艺
2.4
精 度 及 效 率
2、成型过程产生的误差
机器误差
●制样平台Z方向升降运动误差 Z方向的尺寸误差 ●激光束扫描的定位误差、扫描路径误差
匹配
堆积过程中的 层厚精度
第2章 光固化快速成型工艺
2.4
精 度 及 效 率
2、成型过程产生的误差
光固化成型工艺的基本原理

光固化快速成型作为增材制造技术中的一种,主旨也是基于离散堆积的思想,以液态光敏树脂作为成型原料,其成型原理如图2-1所示。
首先,在主液槽中填充适量的液态光敏树脂。
然后,特定波长的激光在计算机的控制下沿分层切片所得的截面信息逐点进行扫描,当聚焦光斑扫描处的液态光敏树脂吸收的能量满足式2-1之后,便会发生聚合反应。
一层截面完成固化之后,便形成制件的一个截面薄层。
此时,工作台再下降一个层高的高度,使得先前固化的薄层表面被新的一层光敏树脂覆盖。
之后,由于树脂黏度较大和先前已固化薄层表面张力的影响,新涂敷的光敏树脂实际上是不平整的,需要专用刮板将之刮平,以便进行下一层的扫描固化,使得新固化的层片牢固的粘结在前一层之上。
反复上述步骤,层片即在计算机的控制下依次堆积,最终形成完整的成型制件,再去除支撑,进行相应的后处理,即可获得所需的产品。
从光固化快速成型的原理和它所使用的材料来看,光固化快速成型主要有如下一些特点:(1)光固化快速成型技术是最早出现的快速成型制造工艺,成熟度最高,经过时间的检验;(2)成型速度较快,系统工作相对稳定;(3)可以打印的尺寸也比较大,有可以做到2m的大件,关于后期处理特别是上色都比较容易;(4)尺寸精度高,可以做到微米级别;(5)表面质量较好,比较适合做小件及较精细件。
光固化快速成型的不足之处在于:(1)设备造价高昂,使用和维护成本高。
系统是要对液体进行操作的精密设备,对工作环境要求苛刻;(2)成型件多为树脂类,材料价格贵,强度、刚度、耐热性有限,不利于长时间保存;(3)这种成型产品对贮藏环境有很高的要求,温度过高会熔化,工作温度不能超过HXTC。
光敏树脂固化后较脆,易断裂,可加工性不好。
成型件易吸湿膨胀,抗腐蚀能力弱;(4)需要设计工件的支撑结构,以便确保在成型过程中制作的每一个结构部位都能可靠定位,支撑结构需在未完全固化时手工去除,容易破坏成型件。
典型RP第章光固化快速成型SLA工艺

典型RP第章光固化快速成型SLA工艺快速成型技术(Rapid Prototyping Technology, RP)是指通过计算机辅助设计(CAD)系统对实体物体进行实时建模,并将模型信息传输至快速成型机,通过多种加工工艺制造出具有相应物理属性的实体模型,通常用于产品设计原型开发。
光固化快速成型技术(Stereolithography Apparatus, SLA)是快速成型技术中的一种,它首先通过计算机模型生成薄切片图像,然后将这些图像逐层投影到液化光敏树脂上,并利用紫外线光束再次照射树脂,使树脂分子之间发生化学反应,固化成具有形状和特定性质的固态物体。
SLA工艺是快速成型技术中的一种高精度加工工艺,能够制造出繁琐的空间精细构形,具有许多优越的特性,例如精度高、速度快、制造出的模型表面光滑、具有复杂的内部空腔结构等。
SLA工艺的基本流程SLA工艺的基本流程可以分为以下几个步骤:1.制作CAD模型:首先,需要利用计算机辅助设计(CAD)软件,制作出需要制造的实体模型。
2.制作STL文件:需要将CAD模型转化成为STL文件,STL文件实质上是将CAD模型切割成为不同的图层,在SLA加工时可以依次加工每个图层从而形成最终模型。
3.对STL文件进行切片处理:依据预设的SLA加工参数,将STL文件进行切片处理。
4.进行SLA加工:将切片后的图像逐层投影到液化光敏树脂上,并利用紫外线光束固化树脂,得到最终的实体模型。
需要注意的问题SLA工艺在加工时需要注意以下几个问题:1.液化光敏树脂的选择:树脂的选择对于模型的性能具有很大的影响,需要选择与实际需求相符合的树脂。
2.切片厚度的选择:切片厚度对于模型表面质量和制造时间都具有一定的影响,需要根据实际需求进行选择。
3.加工参数的设置:加工参数包括光敏树脂的固化时间、灯管功率、投影方式等,需要根据所使用的材料进行参数调整,以获取最佳的加工效果。
SLA工艺的应用SLA工艺在产品开发和生产领域有着广泛的应用,主要包括以下几个方面:1.原型制作:SLA工艺可以制造出高精度、具有内部空腔结构的实体模型,用于验证设计的可行性和准确性,可以大大缩短开发周期。
叙述光固化快速成型的原理

叙述光固化快速成型的原理光固化快速成型(Stereolithography,简称SLA)是一种基于光固化原理的三维打印技术。
它通过逐层固化液态光敏聚合物材料,实现了高精度、高速度的三维物体制造。
光固化快速成型的原理是基于光敏聚合物材料的特性。
在SLA中,首先需要将设计好的三维模型输入到计算机中,并通过软件将模型分割成薄片状的层次,每一层都有自己的二维轮廓。
然后,通过激光或者LED光源照射到涂覆在建造平台上的光敏聚合物材料上,使其固化成固体。
在光敏聚合物材料中,含有光敏剂,其作用是吸收光能并引发聚合反应。
当激光或者LED光源照射到光敏聚合物材料上时,光敏剂会吸收光能,从而引发材料的聚合反应。
聚合反应使得光敏聚合物材料从液态变为固态,固化成一层薄片。
完成一层的固化后,建造平台会向下移动一定的距离,以便为下一层的固化提供空间。
然后,再次通过激光或者LED光源照射到新涂覆的光敏聚合物材料上,使其固化成固体。
如此循环,逐层堆叠固化,直到整个三维模型被构建完成。
在光固化快速成型过程中,需要注意的是光敏聚合物材料的选择和光源的选择。
光敏聚合物材料的选择应根据所需物体的特性和要求来确定,包括强度、韧性、透明度等。
而光源的选择则应根据光敏聚合物材料的特性和反应速度来确定,以确保固化过程的高效和准确。
光固化快速成型技术具有许多优点。
首先,由于采用了逐层固化的方式,可以制造出非常复杂的结构和细节,实现高精度的制造。
其次,光固化快速成型速度快,可以大大缩短制造周期,提高生产效率。
此外,由于光固化快速成型是一种无需模具的制造技术,因此能够节省制造成本,并且可以根据需要灵活调整和修改设计。
光固化快速成型技术在众多领域都有广泛的应用。
例如,在产品设计和开发过程中,可以通过光固化快速成型技术制造出产品样品,用于验证设计并进行市场测试。
在医疗领域,可以利用光固化快速成型技术制造出个性化的医疗器械和假体。
在航空航天领域,可以利用光固化快速成型技术制造出复杂的零部件和模型。
3D打印成形技术

感谢聆听
学习单元一
四、光固化快速成型技术的最新进展
当前SLA 技术的进展主要体现在以下几个方面: 1. 软件技术 随着越来越多的原型要在快速成型机上加工,RP 软件的性能在提高工作效 率、保证加工精度等方面变得越来越重要。因为虽然快速成型机的加工过程 是自动进行的,不需要人工干预,但RP 的数据处理却要由人来完成,特别 是由于目前通行的STL 文件总存在这样那样的问题。当操作员手中有大量的 原型要在短时间内加工出来时,数据处理就成了瓶颈,并且稍有疏漏,可能 导致一批零件的加工失败。
学习单元一
二、光固化快速成型的工作原理
将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处 理即得到满足要求的产品。 具体的工作步骤如下: (1)将液态的光敏树脂材料注满打印池。 (2)打印平台升起,直到距离液体表面一个层厚的位置时停下。 (3)水平刮板沿固定方向移动,将液体表面刮成水平面。 (4)激光器生成激光束,通过透镜进行聚焦后照射在偏振镜上,此时偏振 镜根据切片截面路径自动产生偏移,这样光束就会持续地依照模型数据有选 择性地扫描在液面,由于树脂的光敏特性,被照射到的液态树脂逐渐固化。 (5)在固化完成后,打印平板自动降低一个固定的高度,水平刮板再次将 液面刮平,激光再次照射固化,如此反复,直至整个模型打印完成。
学习单元一
三ቤተ መጻሕፍቲ ባይዱ光固化快速成型的特点
光固化快速成型的优势在于成型速度快、原型精度高,非常适合制作 精度要求高、结构复杂的小尺寸工件。在使用光固化快速成型的工业 级3D 打印机领域,比较著名的是Object 公司。该公司为SLA 3D 打印 机提供100 种以上的感光材料,是目前支持材料最多的3D 打印设备。 同时,Object 系列打印机支持的最小层厚已达16 μm在所有3D 打印 技术中,SLA 打印成品具备最高的精度、最好的表面光洁度等优势。
光固化快速成型工艺过程分析及应用

291 40
4
0.1 2.5 1件格式进行检查和修复,并选择或优化成型
的方向,以便能方便准确地制造实物。这一过程还包括切片层厚
度的选择、建造模式、扫描速度、扫描方式、半径补偿等,分层参数
的选择对造型时间和模型质量影响很大[6]。
5.3 原型建造
域带来革命性的创新,使制造过程可脱离车间而在办公室内进
行。传统的模型制造技术主要有材料去除和材料添加两种方式。
材料去除法从整块的原材料开始,用工具去除不需要的部分,直
至得到所需的形状。而材料添加法则将材料由每个体积元堆积、
装配、粘结而得到模型[2-3]。作为一种全新的模型制作技术,光固化 原则上属于材料添加法,无需制模工艺就可快速制造立体模型。
6.2 SLA 在精密铸造中的应用
光固化快速成型的工艺步骤包括数据准备、模型分层、实体
SLA 工艺制成的立体树脂模可以代替蜡模进行结壳,型壳焙
建造和后续处理等环节。
烧时去除树脂膜,获得中空型壳,即可浇铸出高精度模型。表面光洁
机械设计与制造
第 10 期
238
Machinery Design & Manufacture
较高,可使用的材料较少。目前可用的材料主要为光敏液态树脂,
强度较低不能进行力学测试。(3)液态树脂具有刺激气味和轻微
毒性,应避光保护并防止发生聚光反应。(4)液态树脂固化后的性
能不如常用的工程塑料,一般较脆、易断裂、不适宜机械加工。
4 SLA 快速成型系统
光固化成型系统由光学装置、容器系统、光敏树脂、涂敷机 构和控制系统等重要部分组成,如图 2 所示。
5 SLA 工艺过程
图 3 在 SCPS350B 成型机上加工获得的非标准圆柱齿轮
SLA

数据转换
数据转换是对产品CAD模型的近似处理,主要是生成STL格式的数据文件。
STL数据处理实际上就是采用若干小三角形片来逼近模型的外表面,如图2-2b所示。 这一阶段需要注意的是STL文件生成的精度控制。目前,通用的CAD三维设计软件 系统都有STL数据的输出。
ξ2 快速成型制造工艺
模具工程技术研究中心 METRC
方法成型的原型,还需要进行后固化处理等,下面以某一SLA 原型为例给出其后续处理的步骤和过程。
ξ2 快速成型制造工艺
模具工程技术研究中心 METRC
1
原型叠层制作结束后,工作
台升出液面,停留5~10min,以 晾干多余的树脂。
将原型和工作台一起斜放晾干后 2 浸入丙酮、酒精等清洗液体中,搅动 并刷掉残留的气泡。持续45min左右 后放入水池中清洗工作台约5min。
读入前处理生成的层片数据文件。一般来说,叠层制作控制软件对成型工艺参数都
有缺省的设置,不需要每次在原型制作时都进行调整,只是在固化特殊的结构以及 激光能量有较大变化时需要进行相应的调整。此外,在模型制作之前,要注意调整 工作台网板的零位与树脂液面的位置关系,以确保支撑与工作台网板的稳固连接。 当一切准备就绪后,就可以启动叠层制作了。整个叠层的光固化过程都是在软件系 统的控制下自动完成的,所有叠层制作完毕后,系统自动停止。下图给出的是 SPS600光固化成型设备在进行光固化叠层制作时的界面。界面显示了激光能源的某
图2-4 STARWEAVETM光固化方式 特点:扫描时间较短 ,尺寸稳定性好。适用于聚合时收缩率 较高的丙烯酸树脂,也适用于环氧树脂材料。
ξ2 快速成型制造工艺
模具工程技术研究中心 METRC
(三)QuickCastTM 方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)节省能量。 各种光源的效率都高于烘箱。
(5)可使用单组分,无配置问题,使用周期长。 (6)可以实现自动化操作及固化,提高生产的自动化程度,从而提高生产效率和经济效益。
第二节 光固化快速成型材料及设备
第二节 光固化快速成型材料及设备
❖ 2.2.1 光固化快速成型材料
1. 光固化材料优点及分类
光固化材料是一种既古老又崭新的材料,与一般固化材料比较,光固化材料 具有下列优点:
(1)固化快 可在几秒钟内固化,可应用于要求立刻固化的场合。
(2)不需要加热 这一点对于某些不能耐热的塑料、光学、电子零件来说十分有用。
图2-4 树脂对激光的吸收特性
第二节 光固化快速成型材料及设备
3.光固化成型材料介绍
下面分别介绍Vantico公司、3D Systems公司以及DSM公司的光固 化快速成型材料的性能、适用场合以及选择方案等。
(1)Vantico公司的SL系列
下表给出了Vantico公司提供的光固化树脂在各种3D Systems公司光 固化快速成型系统和原型不同的使用性能和要求情况下的光固化成型材 料的选择方案。
第二节 光固化快速成型材料及设备
2. 光敏树脂的组成及其光固化特性分析 (1)光敏树脂 用于光固化快速成型的材料为液态光敏树脂,主要由齐聚物、光引 发剂、稀释剂组成。 齐聚物是光敏树脂的主体,是一种含有不饱和官能团的基料,它的 末端有可以聚合的活性基团,一旦有了活性种,就可以继续聚合长大, 一经聚合,分子量上升极快,很快就可成为固体。 光引发剂是激发光敏树脂交联反应的特殊基团,当受到特定波长的 光子作用时,会变成具有高度活性的自由基团,作用于基料的高分子聚 合物,使其产生交联反应,由原来的线状聚合物变为网状聚合物,从而 呈现为固态。光引发剂的性能决定了光敏树脂的固化程度和固化速度。
液态树脂材料和激光器的价格较高 使用的材料较少
目前可用的材料主要为感光性的液态树脂材料 液态树脂有气味和毒性,并且需要避光保护,以防止提前发生聚
合反应,选择时有局限性 需要二次固化
经快速成型系统光固化后的原型树脂并未完全被激光固化。
第二章 光固化快速成型工艺
1 光固化快速成型工艺的基本原理和特点 2 光固化快速成型材料及设备 3 光固化成型的工艺过程 4 光固化成型的精度及效率 5 微光固化快速成型制造技术
用于光固化快速成型的材料为液态光固化树脂,或称液态光敏树脂。 光固化树脂材料中主要包括齐聚物、反应性稀释剂及光引发剂。根据光 引发剂的引发机理,光固化树脂可以分为三类: (1)自由基光固化树脂
主要有三类:第一类为环氧树脂丙烯酸酯,该类材料聚合快、原型 强度高但脆性大且易泛黄;第二类为聚酯丙烯酸酯,该类材料流平和固 化好,性能可调节;第三类材料为聚氨酯丙烯酸酯,该类材料生成的原 型柔顺性和耐磨性好,但聚合速度慢。稀释剂包括多官能度单体与单官 能度单体两类。此外,常规的添加剂还有阻聚剂、UV稳定剂、消泡剂、 流平剂、光敏剂、天然色素等。其中的阻聚剂特别重要,因为它可以保 证液态树脂在容器中保持较长的存放时间。
PI
光引发剂
紫外光 或激光
P
活性种
齐聚物+单体P 交联高分子固体
第二节 光固化快速成型材料及设备
(2)光敏树脂的光固化特性分析 在激光照射下,光敏树脂从液态向固态转变,达到一种凝胶态。凝
胶态是一种液态和固态之间的临界状态,此时,粘度无限大,模量(Y) 为零。激光的曝光量(E)必须超过一定的阈值(EC),当曝光量低于值EC时, 由于氧的阻聚作用,光引发剂与空气中的氧发生作用,而不与单体作用, 液态树脂就无法固化。当曝光量超过阈值后,树脂的模量按负指数规律 向该树脂的极限模量逼近,模量与曝光量的关系为:
图2-1 光固化快速成型工艺原理
第一节 光固化快速成型工艺的基本原理和特点
因为树脂材料的高粘性,在每层固化之后,液面很难在短时 间内迅速流平,这将会影响实体的精度。采用刮板刮切后,所需 数量的树脂便会被十分均匀地凃敷在上一叠层上,这样经过激光 固化后可以得到较好的精度,使产品表面更加光滑和平整。
图2-2 光固图化2-成3 型吸制附造式过涂程层中结残构留的多余树脂
上述3D Systems 公司的RenShape系列材料的性能如下表所示。
第二节 光固化快速成型材料及设备
第二节 光固化快速成型材料及设备
(4)DSM公司的SOMOS系列
DSM公司的SOMOS系列环氧树脂主要是面向光固化快速成型开发的系列材 料,部分型号的性能及主要指标如下表所示。
第二节 光固化快速成型材料及设备
第二节 光固化快速成型材料及设备
(2)阳离子光固化树脂 主要成分为环氧化合物。用于光固化工艺的阳离子型齐聚物和活性稀释 剂通常为环氧树脂和乙烯基醚。环氧树脂是最常用的阳离子型齐聚物,其 优点如下: 1)固化收缩小,预聚物环氧树脂的固化收缩率为2%~3%,而自由基 光固化树脂的预聚物丙烯酸酯的固化收缩率为5%~7%。 2)产品精度高。 3)阳离子聚合物是活性聚合,在光熄灭后可继续引发聚合。 4)氧气对自由基聚合有阻聚作用,而对阳离子树脂则无影响。 5)粘度低。 6)生坯件强度高。 7)产品可以直接用于注塑模具。
第二节 光固化快速成型材料及设备
快速成型材料及设备一直是快速成型技术研究与开发的核心,也是 快速成型技术重要组成部分。快速成型材料直接决定着快速成型技术制 作的模型的性能及适用性,而快速成型制造设备可以说是相应的快速成 型技术方法以及相关材料等研究成果的集中体现,快速成型设备系统的 先进程度标志着快速成型技术发展的水平。
第二节 光固化快速成型材料及设备
(3)混杂型光固化树脂 目前的趋势是使用混杂型光固化树脂。其优点主要有: 1)环状聚合物进行阳离子开环聚合时,体积收缩很小甚至产生膨 胀,而自由基体系总有明显的收缩。混杂型体系可以设计成无收缩的 聚合物。 2)当系统中有碱性杂质时,阳离子聚合的诱导期较长,而自由基 聚合的诱导期较短,混杂型体系可以提供诱导期短而聚合速度稳定的 聚合系统。 3)在光照消失后阳离子仍可引发聚合,故混杂体系能克服光照消 失后自由基迅速失活而使聚合终结的缺点。
K P E C Ymax
式中,β为树脂的模量—曝光量常数;Ymax为树脂的极限模量;EC为树 脂的临界曝光量;KP为比例常数。
第二节 光固化快速成型材料及设备
激光快速成型系统中所用的光源为激光。激光是一种单色光,具有 单一的波长,因此,式中的EC和β均为常数。液态光敏树脂对激光的吸 收一般符合Beer-Lambert规则,即激光的能量沿照射深度成负指数衰减, 如图2-4所示。
ห้องสมุดไป่ตู้
❖ 2.2.2 光固化快速成型设备
20世纪70年代末到80年代初期,美国3M 公司的Alan J. Hebert(1978)、日本的小玉秀男 (1980)、美国UVP公司的Charles W. Hull(1982) 和日本的丸谷洋二(1983),在不同的地点各自 独立地提出了RP的概念,即利用连续层的选区 固化产生三维实体的新思想。Charles Hull在 UVP的继续支持下,完成了一个能自动建造零 件的称之为SLA-1的完整系统。同年,Charles Hull和UVP的股东们一起建立了3D Systems公 司,并于1988年首次推出SLA-250机型,如图 所示。
快速成型与快速模具制造技术及其应用
机械工业出版社(第三版)
第二章 光固化快速成型工艺
第二章 光固化成型工艺
光固化快速成型工艺,也常被称为立体光刻成型,英文的名称为 StereoLithography,简称SL,也有时被简称为SLA(StereoLithography Apparatus),该工艺是由Charles Hull于1984年获得美国专利,是最早发 展起来的快速成型技术。自从1988年3D Systems公司最早推出SLA商品化 快速成型机SLA -250以来,SLA已成为目前世界上研究最深入、技术最 成熟、应用最广泛的一种快速成型工艺方法。它以光敏树脂为原料,通 过计算机控制紫外激光使其凝固成型。这种方法能简捷、全自动地制造 出表面质量和尺寸精度较高、几何形状较复杂的原型。
第二节 光固化快速成型材料及设备
稀释剂是一种功能性单体,结构中含有不饱和双键,如乙烯基、烯 丙基等,可以调节齐聚物的粘度,但不容易挥发,且可以参加聚合。稀释 剂一般分为单官能度、双官能度和多官能度。
当光敏树脂中的光引发剂被光源(特定波长的紫外光或激光)照射吸 收能量时,会产生自由基或阳离子,自由基或阳离子使单体和活性齐聚物 活化,从而发生交联反应而生成高分子固化物。由于齐聚物和稀释剂的分 子上一般都含有两个以上可以聚合的双键或环氧基团,因此聚合得到的不 是线性聚合物,而是一种交联的体形结构,其过程可以表示为:
第二章 光固化快速成型工艺
1 光固化快速成型工艺的基本原理和特点 2 光固化快速成型材料及设备 3 光固化成型的工艺过程 4 光固化成型的精度及效率 5 微光固化快速成型制造技术
第一节 光固化快速成型工艺的基本原理和特点
❖ 2.1 光固化成型的基本原理
光固化成型工艺的成型过程如图2-1示。液 槽中盛满液态光敏树脂,氦-镉激光器或 氩离子激光器发出的紫外激光束在控制系 统的控制下按零件的各分层截面信息在光 敏树脂表面进行逐点扫描,使被扫描区域 的树脂薄层产生光聚合反应而固化,形成 零件的一个薄层。一层固化完毕后,工作 台下移一个层厚的距离,以使在原先固化 好的树脂表面再敷上一层新的液态树脂, 刮板将粘度较大的树脂液面刮平,然后进 行下一层的扫描加工,新固化的一层牢固 地粘结在前一层上,如此重复直至整个零 件制造完毕,得到一个三维实体原型。
部分3D Systems 公司的ACCURA系列材料的性能如下表所示。
第二节 光固化快速成型材料及设备