基于双目视觉的三维重建43页PPT
基于深度学习的双目视觉三维重建

中文摘要中文摘要随着工业自动化的高速发展,机器人等智能设备在工业生产中的应用日渐广泛。
对周边环境的感知是设备智能化的一项重要研究内容,目前,获取周边三维环境信息的主要技术途径以激光雷达和双目相机为主,与超声波传感器、激光雷达相比,双目相机具有获取信息丰富,价格低廉,精度高的特点,通常应用于实时测距、三维形貌恢复、缺陷诊断等领域。
智能设备在实际作业时,对周围的三维环境进行精确的三维重建有助于实际作业的安全有效进行,本文基于深度学习算法,对双目视觉系统的三维重建进行研究。
本文的主要研究内容有:(1)研究了当前摄像头标定的主流方法,对其具体算法实现进行了分析,通过对双目相机进行标定得到相机的内参数和外参数,基于相机的内外参数实现图像矫正、三维重建工作。
(2)对相机的成像和畸变原理进行分析和研究,对采集图像进行滤波、自适应伽马变换与去畸变处理,提高双目相机采集图像的质量。
(3)对双目视觉中最关键的算法——立体匹配算法进行研究,为了解决传统立体匹配算法匹配精度较低,误匹配区域较大的问题,本文基于深度学习算法,利用2D卷积神经网络对双目相机获取的左、右图进行匹配代价提取,并利用3D卷积神经网络对聚合后的匹配代价进行特征总结和匹配差异学习。
将立体匹配问题转化为一个有监督的机器学习问题,在KIIT2015数据集上训练一个端到端的神经网络模型,该卷积神经网络直接使用双目相机获取的左右两图作输入,直接输出预测的视差图。
(4)通过相机内外参数及立体匹配视差图得到周围环境的三维点云信息,并通过阈值分割算法提取特定工作范围内的稠密点云数据。
(5)搭建了综合实验平台,与其它算法的立体匹配效果进行对比,并对比标准雷达测距数据计算本文算法的精确度,验证了本文算法的有效性。
关键词:双目视觉;立体匹配;深度学习;三维重建I基于深度学习的双目视觉三维重建IIABSTRACTABSTRACTWith the rapid development of industrial automation,smart devices such as robots are increasingly used in industrial production.Perception of the surrounding environment is an important research content of device intelligence.At present,we mainly obtain three-dimensional information of the surrounding environment through lidar and binocular pared with ultrasonic sensors and lidar,binocular cameras obtain It is more abundant,the price is lower,and the accuracy is higher.It is usually used in real-time ranging, three-dimensional shape restoration,defect diagnosis and other fields.During the actual operation of the smart device,accurate3D reconstruction of the surrounding3D environment is helpful for the safe and effective operation of the actual operation.Based on the deep learning algorithm,this paper studies the3D reconstruction of the binocular vision system. The main research contents of this article are:(1)This paper studies the current mainstream camera calibration methods,analyzes its specific algorithm implementation,obtains the camera's internal and external parameters by calibrating the binocular camera,and implements image correction and3D reconstruction based on the camera's internal and external parameters.(2)This paper analyzes and studies the imaging and distortion principles of the camera, and filters,adaptive gamma transforms,and distorts the collected images to improve the quality of the images captured by the binocular camera.(3)This paper studies the most critical algorithm in binocular vision-stereo matching algorithm.In order to solve the problems of low matching accuracy and large mismatching area of traditional stereo matching algorithms,this paper uses a2D convolution neural network to extract the matching cost of the left and right images obtained by the binocular camera based on deep learning algorithms,and uses3D The product neural network performs feature summarization and matching difference learning on the aggregated matching costs. Turn the stereo matching problem into a supervised machine learning problem.Train an end-to-end neural network model on the KIIT2015dataset.The convolutional neural network directly uses the left and right images obtained by the binocular camera as input,and directly output the predicted Disparity map.(4)Obtain the three-dimensional point cloud information of the surrounding environmentIII基于深度学习的双目视觉三维重建through the internal and external parameters of the camera and the stereo matching disparity map,and extract the dense point cloud data within a specific working range through the threshold segmentation algorithm.(5)A comprehensive experimental platform was built to compare the stereo matching effect with other algorithms,and to compare the accuracy of the algorithm in this paper with standard radar ranging data to verify the effectiveness of the algorithm in this paper.Key words:Binocular vision;stereo matching;deep learning;3D reconstructionIV目录目录第一章绪论 (1)1.1课题的研究背景及意义 (1)1.2国内外研究现状 (1)1.3论文主要内容及工作 (5)第二章相机标定及图像预处理 (7)2.1单目相机数学模型 (7)2.2双目相机数学模型 (9)2.3双目相机的标定 (11)2.3.1张正友标定法 (11)2.3.2立体标定 (13)2.3.2畸变参数估计 (14)2.4双目极线矫正 (15)2.5图像预处理 (17)2.5.1图像去噪 (18)2.5.1伽马变换 (18)2.6本章小结 (20)第三章基于深度学习的立体匹配 (21)3.1传统立体匹配算法的基本理论 (21)3.2基于深度学习的立体匹配发展 (23)3.2.1深度学习的基本原理 (23)3.2.2mc-cnn与GC-net (27)3.3基于W-net的立体匹配 (29)3.3.1残差结构与通道注意模块介绍 (29)3.3.2W-ne2D模块(2D卷积网络部分) (31)3.3.3Cost Value模块(代价聚合部分) (33)3.3.4W-net3D模块(3D卷积网络部分) (34)3.3.5Prob模块(视差预测部分) (36)3.3.6数据集的选择 (37)3.3.7损失函数的选择 (37)V基于深度学习的双目视觉三维重建3.3.8权值初始化及优化算法 (38)3.3.9网络结构说明 (39)3.4本章小结 (40)第四章基于视差图的三维重建 (41)4.1整体视差图的三维点云 (41)4.2视差图处理 (44)4.3点云滤波处理 (47)4.4本章小结 (48)第五章基于双目相机的三维点云重建算法与平台的实现 (49)5.1Pytorch、Opencv、Qt简介 (49)5.2平台开发环境 (49)5.3算法流程与实验结果分析 (50)5.4本章小结 (58)第六章总结与展望 (59)参考文献 (61)致谢 (65)附录 (67)VI第一章绪论第一章绪论1.1课题的研究背景及意义计算机视觉的任务是赋予计算机“自然视觉”的能力,使计算机对输入的图像(视频)进行处理,实现对图像中内容的表达和理解。
09 数字图像处理_双目立体视觉 ppt课件

2D 和 3D 的关系
现实存ห้องสมุดไป่ตู้的问题
一般的物体(Objects)都是三维的; 图像(Images)却是有关灰度,颜色等信息的阵列; 3D的深度(Depth)信息在一幅图像上不能明显的显示出
来。
2D的分析需要3D的信息
物体表面是连续,平滑(Smooth)的; 物体都有特定的形状和边界。
极线几何 (Epipolar Geometry)
动机:在哪寻找匹配点?
P
极平面 极线 极点
Pl
Pr
极平面
极线约束
极线
匹配点必须在极线上
pl
pr
2020/12/27
Ol
el
er
Or
极点
Image & Vision Lab
14
极线几何 (Epipolar Geometry)
基线:左右两像机 光心的连线;
Reference: 《计算机视觉——一种现代方法》第10章
2020/12/27
Image & Vision Lab
18
弱标定 (Weak Calibration)
使用一个玩具房子的两幅图像上的37个点作为输入的弱 标定实验。
数据点在图中用圆点表示,所经过的外极线用短的直线 段表示。
左图显示使用最小二乘法的普通8点算法得到的输出结 果;右图为使用Hartley变换后的该方法的输出结果。
2020/12/27
2
Image & Vision Lab
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
基于双目立体视觉的三维重构研究

基于双目立体视觉的三维重构研究一、本文概述随着科技的不断发展,三维重构技术在许多领域,如机器人导航、自动驾驶、虚拟现实、增强现实、医疗诊断以及工业检测等,都发挥着越来越重要的作用。
在众多三维重构技术中,基于双目立体视觉的三维重构方法因其设备简单、成本低廉、实时性强等特点而备受关注。
本文旨在探讨基于双目立体视觉的三维重构技术的研究现状、基本原理、关键技术和应用前景,以期对这一领域的研究者和实践者提供有益的参考和启示。
本文将首先介绍双目立体视觉三维重构的基本原理,包括双目视觉的成像模型、立体匹配算法以及三维坐标计算等。
接着,将详细分析当前双目立体视觉三维重构技术中的关键问题,如视差计算、图像预处理、遮挡和纹理映射等,并探讨相应的解决方法和技术。
本文还将对双目立体视觉三维重构技术在不同领域的应用案例进行介绍,分析其优势和局限性,并展望未来的发展趋势和应用前景。
通过本文的研究,我们希望能够为基于双目立体视觉的三维重构技术的发展提供新的思路和方法,推动这一领域的技术进步和应用发展。
我们也希望本文能够为相关领域的学者和工程师提供有益的参考和借鉴,共同推动三维重构技术的发展和应用。
二、双目立体视觉原理双目立体视觉是人类和许多动物天生具备的一种空间感知能力,通过两只眼睛从稍微不同的角度观察物体,然后大脑综合这两个不同的视觉信号,形成立体视觉。
这种视觉原理为三维重构提供了重要的理论基础。
在双目立体视觉系统中,两个相机(模拟双眼)从不同的位置观察同一物体,得到两幅具有视差的图像。
视差是指同一物体在左右两幅图像中的像素坐标之差。
视差的大小取决于相机的基线距离(两个相机光心之间的距离)和物体到相机的距离。
物体距离相机越近,视差越大;物体距离相机越远,视差越小。
为了从这两幅图像中恢复物体的三维形状,我们需要利用三角测量的方法。
在三角测量中,我们知道相机的内外参数(包括相机的内参矩阵、畸变系数、旋转矩阵和平移向量等),通过匹配两幅图像中的同名点(即同一物体在两个图像中的像素坐标),可以计算出这些点在世界坐标系中的三维坐标。
《双目系统报告》课件

目录
CONTENTS
• 双目系统的概述 • 双目系统的原理 • 双目系统的硬件结构 • 双目系统的软件算法 • 双目系统的应用案例 • 双目系统的未来展望
01 双目系统的概述
双目系统的定义
01
定义
双目系统是一种基于双目立体视觉原理,通过模拟人眼视觉系统,获取
三维空间信息并实现三维重建的技术系统。
其他参数
如动态范围、信噪比等,也是传感器选择的 重要因素。
双目系统的摄像头
摄像头类型
可以选择不同类型的摄像头,如定焦 或变焦摄像头,以满足不同的应用需 求。
焦距
摄像头的焦距决定了拍摄距离和拍摄 范围,应根据应用需求选择合适的焦 距。
光圈
摄像头光圈的大小决定了图像的亮度 和景深,应根据应用需求选择合适的 光圈。
双目系统通过识别物体的形状、大小、位置等信 息,帮助机器人实现精准抓取和操作物体。
双目系统在安防监控领域的应用
01
02
03
目标检测与跟踪
双目系统能够实时检测和 跟踪监控区域内的目标, 对异常行为进行预警和报 警,提高安全防范能力。
场景三维重建ቤተ መጻሕፍቲ ባይዱ
双目系统可以获取场景的 三维信息,实现场景的三 维重建,为后续的智能分 析提供基础数据。
实时处理能力
双目系统的实时处理能力将得到显著提升,满足 更多实时应用场景的需求。
双目系统的应用前景展望
增强现实
机器人视觉
双目系统在增强现实领域具有广阔的应用 前景,如虚拟试衣、导航辅助等。
双目系统可以为机器人提供深度信息和空 间定位能力,促进机器人在智能制造、服 务等领域的应用。
医疗影像分析
娱乐产业
基于双目立体视觉的三维重建

基于双目立体视觉的三维重建陈强【摘要】三维重建是图像处理、计算机视觉、计算机图形学的一个重要研究领域。
基于双目立体视觉的三维重建通过相机标定搭建一个对准的标准立体实验平台采集图像,进而对图像进行特征点检测与匹配找到待重建点,然后通过双目视觉原理计算三维坐标,最后进行纹理映射。
根据真实图像的实验结果表明,具有较好的重建效果。
%3D reconstruction is one of the important research fields in image processing, computer vision and computer graphics. 3D reconstruction based on binocular stereovision sets up a standard stereo experiment platform to collect images by camera calibration, finds reconstruction of point by feature point detection and matching, and does texture mapping. Experiment results of real images prove that it can achieve better reconstruction effect.【期刊名称】《现代计算机(普及版)》【年(卷),期】2015(000)001【总页数】4页(P66-69)【关键词】三维重建;双目立体视觉;相机标定;特征点检测与匹配;纹理映射【作者】陈强【作者单位】四川大学计算机学院,成都 610065【正文语种】中文双目立体视觉是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算两幅图像对应点间的位置偏差,来获得物体三维几何信息的方法。
《双目立体视觉》课件

05
双目立体视觉的应用案例
机器人视觉导航
机器人视觉导航是双目立体视觉的重要应用之一。通过双目立体视觉技术,机器 人可以获取周围环境的深度信息,实现自主导航、避障和路径规划等功能。
双目立体视觉技术可以帮助机器人识别障碍物、行人和车辆等,提高机器人的安 全性和可靠性。
医学影像分析
在医学领域,双目立体视觉技术被广泛应用于医学影像分析 。通过双目立体视觉技术,医生可以获取患者的三维立体图 像,提高诊断的准确性和可靠性。
深度学习技术Байду номын сангаас
随着深度学习算法的不断发展, 双目立体视觉技术将更加智能化 ,能够自动识别和提取更多的三
维信息。
实时处理能力
随着计算能力的提升,双目立体 视觉技术将实现更快速、实时的 三维重建,满足实时应用的需求
。
多传感器融合
未来双目立体视觉技术将与其他 传感器技术(如激光雷达、毫米 波雷达等)融合,实现更全面的
运动模糊问题
总结词
运动模糊是由于摄像机或物体快速移动导致图像模糊的现象,对双目立体视觉的深度感知造成干扰。
详细描述
在动态环境中,摄像机或物体的快速移动可能导致图像模糊,从而影响双目立体视觉系统的深度感知 能力。为了解决这一问题,研究者们提出了基于运动补偿的算法,通过分析图像中的运动轨迹,对模 糊图像进行还原和补偿,以提高深度感知的准确性。
详细描述
在复杂的光照条件下,如明暗交替、阴影或高光,双目视觉 系统可能难以准确判断物体的深度和距离。这主要是因为阴 影或高光区域中的物体可能会与背景融为一体,导致立体匹 配算法失效。
遮挡和透明物体问题
总结词
遮挡和透明物体是双目立体视觉中的常见挑战,需要特殊算法来处理。
基于双目视觉的三维场景重建技术研究

基于双目视觉的三维场景重建技术研究近年来,随着计算机视觉技术的不断进步以及各种传感器和设备的推陈出新,三维场景重建技术一直是研究的热点之一。
其中,基于双目视觉的三维场景重建技术被广泛关注和研究,因为它可以利用双目摄像机同时获取两个不同角度的视角信息,从而能够更加准确和立体地还原真实场景。
一、双目视觉技术概述双目视觉技术是一种利用双目摄像机获取两个不同角度视角信息,通过对两个视角信息进行融合或计算,以获取相应深度信息或三维场景信息的技术。
与单目视觉技术相比,双目视觉技术不仅可以提高场景的立体感和真实感,同时也可以更加准确地估计深度信息和物体表面的几何形状,因此在三维场景重建、视觉测距、机器人导航等领域有着广泛应用。
二、基于双目视觉的三维场景重建方法基于双目视觉的三维场景重建方法主要分为两种:基于动态视差的方法和基于结构光的方法。
1.基于动态视差的方法基于动态视差的方法是利用双目摄像机采集的两个不同视角的图像,通过计算图像之间的像素强度差异(即视差)来估计场景中物体的深度信息,从而构建三维场景模型。
常见的基于动态视差的方法有半全局匹配(Semi-Global Matching,SGM)、立体匹配(Stereo Matching)等。
其中,SGM是目前应用最为广泛的方法之一。
它通过优化能量函数的形式来计算视差场,具有较高的计算速度和精度。
另外,立体匹配方法也是常见的一种基于动态视差的方法,它适用于双目摄像机采集的图像存在大幅度亮度变化或噪声的情况下。
2.基于结构光的方法基于结构光的方法则是利用一种特殊的三维传感器(如激光雷达、投影仪等)在场景中投射一个具有特定空间结构的光源,从而获取场景中物体的三维形状信息。
这种方法不依赖于像素强度差异,因此可以获得更加准确的三维形状信息。
目前,基于结构光的方法已得到广泛应用,如微软的Kinect、谷歌的Project Tango等都是基于这种技术实现的。
此外,随着3D打印技术的普及和应用,基于结构光的三维扫描仪也成为了目前最为受欢迎的一种扫描方式。
《基于双目立体视觉的机械零部件三维重建》

《基于双目立体视觉的机械零部件三维重建》一、引言随着计算机视觉技术的不断发展,双目立体视觉技术在机械零部件的三维重建中得到了广泛应用。
双目立体视觉技术通过模拟人类双眼的视觉系统,获取物体在不同视角下的图像信息,进而实现三维空间的重建。
本文旨在探讨基于双目立体视觉的机械零部件三维重建的方法,以提高重建的精度和效率。
二、双目立体视觉原理双目立体视觉技术是通过模拟人类双眼的视觉系统,利用两个相机从不同角度拍摄同一物体,获取物体的图像信息。
通过对两幅图像进行匹配、计算视差等信息,从而获得物体的三维空间信息。
在机械零部件的三维重建中,双目立体视觉技术可以快速、准确地获取零部件的几何形状、尺寸等信息。
三、机械零部件三维重建方法1. 图像预处理:首先对两幅相机拍摄的图像进行预处理,包括去噪、校正等操作,以保证图像质量。
2. 特征提取:利用特征提取算法(如SIFT、SURF等)从两幅图像中提取出相应的特征点。
3. 特征匹配:通过计算特征点之间的相似度,将两幅图像中的特征点进行匹配。
4. 三维点云生成:根据匹配的特征点,利用双目立体视觉的原理,计算视差信息,生成物体的三维点云数据。
5. 三维模型重建:将三维点云数据通过表面重建算法(如Delaunay三角剖分法)生成物体的三维模型。
四、高质量重建的关键因素1. 相机标定:相机标定是双目立体视觉技术的关键步骤,通过标定可以获得相机的内外参数,保证图像的准确匹配和三维重建的精度。
2. 特征提取与匹配:准确的特征提取和匹配是保证三维重建精度的关键因素。
应选择合适的特征提取算法和匹配方法,提高匹配的准确性和鲁棒性。
3. 三维点云处理:在生成三维点云数据后,需要进行点云滤波、补洞等操作,以消除噪声和缺失数据,提高三维模型的精度和完整性。
4. 表面重建算法:选择合适的表面重建算法可以生成更加平滑、精确的三维模型。
应综合考虑算法的复杂度、运行时间和重建效果等因素。
五、结论基于双目立体视觉的机械零部件三维重建技术具有高精度、高效率的特点,在机械制造、质量检测等领域具有广泛的应用前景。