开关电源的反馈设计与传递函数推导
开关电源学习笔记(含推导公式)

《开关电源》笔记三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dtdILV ==T I L ∆∆,推出ΔI =V ×ΔT/L2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间t OFF3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。
那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD→t OFF =(1-D )/f电流纹波率r P51 52r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面:A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。
buck传递函数推导

buck传递函数推导
Buck是一种DC-DC变换器,它可以将直流电压转换为不同电平的直流电压。
在Buck电路中,一个开关周期被分成两个时间段,一个是
开关开启的时间,一个是开关关闭的时间。
在开关开启的时间段,电
感器存储能量,而在开关关闭的时间段,电容器释放能量,从而使输
出电压稳定。
在实际应用中,我们通常需要控制Buck电路的输出电压为我们
想要的值。
这就需要一个反馈环路,将输出电压与参考电压进行比较,来控制Buck电路的开关管的导通时间,以达到所需的输出电压。
Buck传递函数是经过数学推导得到的,它描述了Buck电路输入
电源和输出电压之间的关系。
可通过对Buck电路的分析,对于其与参
考电压之间的关系可以获得其传递函数的式子。
通常,Buck传递函数
的具体形式为Vout/Vin = D(1-D)/LsC,其中Vout表示Buck电路的输出电压,Vin表示输入电源电压,D表示开关管的导通时间的占空比,Ls和C分别表示电感值和电容值。
通过Buck传递函数的分析,可以更加深入地理解Buck电路的工
作原理和特性,为实际应用中的电压控制提供指导和帮助。
因此,学
习和掌握Buck传递函数是非常重要的,对于电子工程从业人员而言,
是必不可少的技能。
开关电源的反馈设计与传递函数推导

單極點
• 從左到右依次為頻率從低到高 • 极点发生在增益以20DB/10倍频程递减 的点
單零點
• 從左到右依次為頻率從低到高 • 零点发生在增益以20DB/10倍频程递增 的点
雙機點
• 從左到右依次為頻率 從低到高 • 双极点发生在增益以 40DB/10倍频程递 减的点
右半平零點(RHPZ)
• 增 益 递 增 相 位 , 從從 低左 到到 高右 依 次 為 頻 率 •
主機點補償
• 此种补偿一般对电路要求不高(动态负载性 能)适合与反激DCM拓扑方式 • 利用上分压电阻与补偿电容构成极点补偿
單機點補償
雙機點補償
• 对电路要求较高的电路,特别是动态负载 方面
实际应用图例
實例分析
• 应用电路传递函数的推倒
開關電源設計
-反饋環路分析 -傳遞函數推導言• 本文靠自学自编图例来自网上,作者水平有限文中 难免错误之处恳请指正 • 开关电源设计是一个复杂的工程计算,每一个元件 的取值全部有计算公式可推导,在借助仪器和实践 经验达到最近取值. • 大多数工程师在设计电源时对反馈环路的补偿设 计都不清楚全靠经验取值没有理论可依据,出了问 题都只有盲目的找问题,本文力求用最简单的图例 和推导公式向大家讲明白.
应用三端开关器件模型法推导开关变换器的传递函数

VI = I c × R L + Vcp + Vout VI 1 ( ) Vout = RL 1 D 1+ R(1 D) 2
Boost变换器的推导
交流小信号分析:稳态直流分量为零(输入电压为零) 原边电压环路方程: 副边电压环路方程:
∧ ∧ ∧ i c × ( Ls + R L ) + v cp v ap = 0 ∧ ∧ ∧ v cp = D v ap + d V ap V ap = Vout ∧ ∧ v = v out cp ∧ ∧ ∧ 1 (i c i a )( + Rc ) // R = v out cs
d× I c
VI
+
ia
D
1: D
ic
Buck变换器的推导
稳态直流分析:令 d (t ) = 0 ,电路中电感短路,电容开路
∧
D × VI = I c × ( R L + R )
Vout = I c × R
∧ ∧
Vout × ( R L + R ) VI = R× D
交流小信号分析:稳态直流分量为零(输入电压为零)
应用三端开关器件模型法推导开 关变换器的传递函数
Buck变换器的推导
c
Gate drive C R
ia
VI
a
L
RL
ic
RC
Vout
p
Buck变换器的推导
在一个开关周期内:
i c (t ) i a (t ) = 0
v ap (t ) v cp (t ) = 0
0 ≤ t ≤ dT dT ≤ t ≤ T
Vcp + vcp = ( D × d (t )) × (Vap + vap ) = D × Vap + D × vap + d (t )× Vap + vap × d (t ) = D × Vap + D × vap + d (t )× Vap
最详细的开关电源反馈回路设计

最详细的开关电源反馈回路设计开关电源反馈回路设计是个挺有意思的话题。
听起来高深,其实很多细节值得我们好好琢磨。
今天我们就从几个方面聊聊,深入浅出,轻松搞定这些概念。
一、反馈回路的基本概念1.1 什么是反馈回路首先,反馈回路就是把输出信号的一部分送回输入。
这么做的目的是调节输出,使其稳定。
想象一下,开关电源就像一个小孩,时不时需要父母的指导。
没有这些反馈,小孩可能就会偏离轨道,输出的电压也可能出现大起大落。
1.2 反馈类型反馈可以分为两种:正反馈和负反馈。
正反馈就像是推波助澜,鼓励小孩继续做某件事情。
而负反馈则是提醒小孩停下来,纠正错误。
大部分情况下,我们更喜欢负反馈,因为它能帮助系统保持稳定。
通过负反馈,输出电压的波动会被抑制,电源的性能也会更可靠。
二、开关电源的基本结构2.1 开关管的作用开关电源的核心是开关管。
它负责控制电流的开关,调节输出电压。
可以把它想象成一个开关,时而打开,时而关闭。
这个过程中,它的工作频率决定了电源的效率。
频率高了,能量损失就小,输出稳定;频率低了,损失就增加,系统也会变得不稳定。
2.2 变压器的功能变压器在这里也占据重要位置。
它的作用是将输入的高压电压转换为适合的低压电压。
变压器就像是一个聪明的调酒师,能将各种成分混合,调配出最合适的“鸡尾酒”。
这里的鸡尾酒就是我们所需的电压。
2.3 整流与滤波整流和滤波是最后一步,确保我们得到的是平滑的直流电。
整流就像是把粗糙的石头打磨成光滑的宝石。
滤波则是去除电流中的杂音,确保输出的电流干净。
这个过程至关重要,稍有不慎,电源的稳定性就会受到影响。
三、反馈回路设计的要点3.1 控制环路设计设计反馈回路时,控制环路的选择非常关键。
控制环路决定了系统的响应速度和稳定性。
要确保环路的增益合适。
增益太高,系统可能会出现震荡;增益太低,系统反应迟缓。
这里的平衡就像走钢丝,得小心翼翼。
3.2 选择合适的传感器在设计反馈回路时,传感器的选择也不能忽视。
第六章 开关电源反馈设计

第六章 开关电源反馈设计除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。
它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。
开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。
当负载或输入电压突变时,快速响应和较小的过冲。
同时能够抑制低频脉动分量和开关纹波等等。
为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。
并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。
最后对仿真作相应介绍。
6.1 频率响应在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。
经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。
我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。
6.1.1 频率响应基本概念电路的输出与输入比称为传递函数或增益。
传递函数与频率的关系-即频率响应可以用下式表示)()(f f G Gϕ∠= 其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠ϕ(f )表示输出信号与输入信号的相位差与频率的关系,称为相频响应。
典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。
图 6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角ϕ。
两者一起称为波特图。
在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。
当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高频截止频率与低频截止频率之间称为中频区。
最详细的开关电源反馈回路设计

最详细的开关电源反馈回路设计嘿,朋友们!今天咱们聊聊那个让电子世界起舞的秘密武器——开关电源。
想象一下,你正坐在电脑前,眼睛盯着屏幕,手指在键盘上飞快地跳动,而这一切的背后,是那个默默工作的开关电源在为你提供能量。
你得知道,开关电源就像是个超级英雄,它有着强大的“电”力,能够瞬间点亮你的电脑、手机甚至家里的灯泡。
但这个超级英雄可不是随随便便就能出现的哦,它需要经过精心设计和调试,才能成为你最可靠的伙伴。
接下来,咱们来聊一聊开关电源的“电”话。
你得了解它的工作原理。
简单来说,开关电源就是通过控制电流的通断来调节电压的装置。
想象一下,如果你的手机电池电量不足,你会怎么做?当然是去充电啦!开关电源也是一样,它会在你不需要高电压时,自动降低输出电压,让你的设备更省电;在你急需高电压时,又会迅速提升输出电压,让你的设备瞬间充满电。
然后,咱们再来说说开关电源的“电”话。
在这个“电”话中,最重要的一环就是反馈回路的设计。
反馈回路就像是开关电源的“耳朵”,它能够感知到电路中的电流变化,并及时调整输出电压,确保电路的稳定性和可靠性。
那么,如何设计一个既简单又有效的反馈回路呢?你得选择合适的电阻和电容。
这些元器件就像电路中的“音符”,它们能够和谐地演奏出美妙的音乐。
例如,你可以使用一个小电阻作为分压器,将输入电压分成两部分,一部分用于驱动负载,另一部分则用于反馈。
这样,你就可以通过调整反馈电阻的大小来调节输出电压了。
接下来,你得学会读懂电路图。
电路图就像是一张张详细的地图,它能够帮助你快速定位到各个元件的位置和连接方式。
当你遇到问题时,只需仔细阅读电路图,就能找到解决问题的关键所在。
别忘了实践出真知。
理论虽然重要,但实际操作才能真正检验你的设计是否成功。
你可以试着搭建一个简单的开关电源实验台,亲自动手进行调试和优化。
在这个过程中,你可能会遇到各种问题,但只要你保持耐心和信心,就一定能够找到解决问题的方法。
开关电源的“电”话是一门深奥而又有趣的学问。
开关电源反馈

4
L 1 10
90 75 60 45 30 15 0 15 Gain( f ) 30 45 P hase( f ) 60 75 90 105 120 135 150 165 180 3 1 10
R 0 .02
二階極點
n
1 LC
1 10
4
1 10 f
5
1 10
1 10
3
1 10 f
4
1 10
5
开环传递函数稳定性判据:
1.
2. 3.
相位在低频段趋向于180度(即保证系统是负反馈系统)。
Open Loop Gain Phase Curve:
G ain f ) 2 0 l og G 2 i f (
在增益大于0的区间,相位必须大于0度。 在相位等于或接近0度时, 增益必须小于0。
P h ase f ) arg G 2 i f ( 1 80
180 160 140 120 100 80 60 40 Gain( f ) 20 0 P hase( f ) 20 40 60 80 100 120 140 160 180 100
相角裕量(degree) 40o 增益裕度(db) 10db 反馈带宽(kHz) 9kHz
3
C1 1 1 0
8
C2 1 1 0
9
R2
+
C2
Vref
R3
Uo
G( s) Uo / Ui
R1C1s 1 R2C1s( R1C2 s 1)
100 f
1 10
3
1 10
4
1 10
5
1. 2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-反饋環路分析 -傳遞函數推導
前言
• 本文靠自学自编图例来自网上,作者水平有限文中 难免错误之处恳请指正 • 开关电源设计是一个复杂的工程计算,每一个元件 的取值全部有计算公式可推导,在借助仪器和实践 经验达到最近取值. • 大多数工程师在设计电源时对反馈环路的补偿设 计都不清楚全靠经验取值没有理论可依据,出了问 题都只有盲目的找问题,本文力求用最简单的图例 和推导公式向大家讲明白.
單極點
• 從左到右依次為頻率從低到高 • 极点发生在增益以20DB/10倍频程递减 的点
單零點
• 從左到右依次為頻率從低到高 • 零点发生在增益以20DB/10倍频程递增 的点
雙機點
• 從左到右依次為頻率 從低到高 • 双极点发生在增益以 40DB/10倍频程递 减的点
右半平零點(RHPZ)
• 增 益 递 增 相 位 , 從從 低左 到到 高右 依 次 為 頻 率
•
主機點補償
• 此种补偿一般对电路要求不高(动态负载性 能)适合与反激DCM拓扑方式 • 利用上分压电阻与补偿电容构成极点补偿
ห้องสมุดไป่ตู้
單機點補償
雙機點補償
• 对电路要求较高的电路,特别是动态负载 方面
实际应用图例
實例分析
• 应用电路传递函数的推倒