持久性有机污染物分析和处理技术研究
环境化学中的持久性有机污染物的检测与控制

环境化学中的持久性有机污染物的检测与控制在环境化学领域中,持久性有机污染物(Persistent Organic Pollutants,简称POPs)是一类对环境和生物体具有潜在风险的物质。
这些物质通常具有高度稳定性和低降解性,能够长期存在于环境中,并且可在长距离范围内迁移。
由于其对人类健康和环境的潜在危害,检测和控制POPs已成为环境研究和保护的重要课题之一。
一、POPs的检测方法POPs的检测方法主要包括物理化学分析方法和生物监测方法两类。
1. 物理化学分析方法物理化学分析方法通过对样品中POPs的物理化学性质进行分析,以确定其存在和浓度。
常用的物理化学分析方法包括质谱法、气相色谱法、液相色谱法等。
这些方法可以对POPs进行灵敏、准确的定量和定性分析。
2. 生物监测方法生物监测方法主要通过检测生物体中的POPs,评估环境中的污染程度。
生物监测方法可以通过检测鱼类、鸟类、哺乳动物等生物体中的POPs含量,来推断环境中POPs的水平。
生物监测方法具有操作简单、成本低等优点,因此在实际应用中得到了广泛使用。
二、POPs的控制方法为了减少POPs对环境和生物体的潜在风险,需要采取一系列的控制方法,主要包括以下几个方面。
1. 国际合作与政策制定POPs具有跨国传输的特性,因此国际合作对于POPs的控制至关重要。
各国应加强信息交流、科技合作,共同制定和实施相关政策和法规,共同应对POPs的挑战。
2. 精细化管理和监管为了有效控制POPs的释放和传输,需要建立健全的管理和监管体系。
包括加强监测网络建设、制定严格的排放标准、加强水体和土壤的保护等措施,以减少POPs的排放和迁移。
3. 替代和减少POPs的使用控制POPs的一种重要方式是寻找替代品或减少其使用量。
在工业生产和消费领域中,应推广使用无害替代物,降低POPs的使用量。
此外,还可以通过研发新型清洁生产技术,减少POPs的排放。
4. 环境修复与治理对于已经受到POPs污染的环境,需要进行环境修复与治理。
持久性有机污染物的毒性及其机制研究进展

一、持久性有机污染物的概念及 危害
持久性有机污染物是一类具有高毒性、持久性和生物累积性的有机化合物。 常见的POPs包括有机氯农药、多氯联苯、二噁英等。这些化合物由于其特殊的分 子结构,可在环境中长期存在,并对人体和生态环境造成严重危害。其主要危害 表现在以下几个方面:
1、对人体的危害:POPs可以通过食物、饮水等途径进入人体,干扰人体的 内分泌系统,对生殖、免疫、神经系统产生负面影响,甚至引发癌症。
谢谢观看
三、总结与展望
通过对持久性有机污染物的毒性及其机制的深入研究,我们对其危害有了更 深入的了解,同时也为减排和治理提供了更多思路和方法。然而,当前的研究仍 存在一定的不足,如对POPs的长距离迁移机制尚不明确,POPs解毒过程中的关键 因子和作用机制还有待进一步探究等。未来,我们需要进一步加强POPs毒性及其 机制的基础研究,同时结合新兴科技手段,提高POPs减排和治理的技术水平,以 更好地保护生态环境和人类健康。
4、研究方法
随着科技的不断进步,研究者们采用的方法也越来越丰富多样,包括实验设 计、数据采集、统计分析等。实验设计方面,多采用有对照组的实验模式,以更 好地说明POPs对环境和生物的影响;数据采集方面,除了传统的化学分析方法, 还引入了如光谱、色谱、质谱等现代分析技术;统计分析方面,借助计算机技术, 采用如主成分分析、聚类分析等统计方法,以更好地解析POPs的毒性及其机制。
持久性有机污染物的毒性及其机制 研究进展
目录
01 一、持久性有机污染 物的概念及危害
03 三、总结与展望
二、持久性有机污染
02 物毒性及其机制的研 究进展
随着工业化和农业现代化的快速发展,持久性有机污染物(Persistent Organic Pollutants,简称POPs)的污染问题日益严重。POPs是指可以在环境 中持久存在,并可通过食物链累积的高毒性有机物质。本次演示将围绕持久性有 机污染物的毒性及其机制研究进展进行深入探讨。
浅谈中国持久性有机污染物(POPs)污染现状及其防治

中国持久性有机污染物(POPs)污染现状及其防治研究进展摘要:介绍了持久性有机污染物的定义、特性、种类和危害,分析了典型持久性有机污染物在中国水体、大气、土壤等介质中的污染状况,阐述了对被持久性有机污染物污染的介质进行生物修复、焚烧、物理和化学处理技术及进展,并对中国在此领域发展方向进行了展望。
关键词:持久性有机污染物;污染现状;防治1 引言早在1962年,美国的Rachel Carson[1]在《寂静的春天》(silent spring)一书中描述了由于农药的使用使得鸟类和其他动物种群数量大量减少的事实后,人们逐渐意识到并承认持久性有机污染物(POPs)对环境可能造成的严重污染及对生物体造成的极大危害。
1966年,斯德哥尔摩大学确认PCB(多氯联苯Poly chlorinated Biphenyls,简称PCBs)在白尾海雕体内的富集现象。
随后,1968年日本发生米糠油事件而导致上千人中毒;荷兰在1963~1989年期间多次发生二噁英污染事故;1972年,美国密苏里小镇发生二噁英扩散事件,造成大量鸟和动物死亡,致使十几年后该镇2万多居民被迫迁移;1976年7月,意大利伊克摩萨化工公司发生爆炸而泄露出2kg二噁英,导致附近城镇家禽大量死亡,许多孩子面颊上出现水泡,700多人被迫搬迁;1979年,中国台湾发生因食用受多氯联苯污染的米糠油而导致上千人中毒的事件;1999年,德国、法国、比利时、荷兰相继发生因动物饲料被二噁英污染,导致畜禽类产品及乳制品含高浓度二噁英,致使欧洲食品行业的大崩溃[2]。
1996年,西奥科尔伯恩在《失去的未来》(Our Stolen Future)再次提到农药污染对生物激素和人类健康的影响[3-4]。
鉴于POPs对环境和人类的严重危害,从1998年以来,世界各国政府举办了一系列的谈判和协商,并于2001年5月23日达成共识,包括中国在内的90个国家的环境部长或高级官员在瑞典斯德哥尔摩代表各自政府签署了《关于持久性有机污染物(POPs)的斯德哥尔摩公约》(简称《斯德哥尔摩公约》)。
持久性有机污染物在土壤水体中的迁移和转化研究

持久性有机污染物在土壤水体中的迁移和转化研究论述持久性有机污染物在土壤水体中的迁移和转化随着社会的不断发展,化学品的大量使用造成了污染问题,其中持久性有机污染物(POPs)在环境中的迁移和转化问题已经引起了广泛关注。
一、POPs的定义和特点POPs是指那些在环境中难以降解、长期存在且容易在生物体内积累的有机化合物。
它们常见于农业、制造业和废弃物处理等过程中,由于其长期存在且高毒性的特点,对人类和生态环境都造成了重大的威胁。
POPs的化学结构复杂多样,但都具有极强的亲脂性和稳定性。
二、POPs的来源和运输大部分POPs来自于人类活动,主要包括工业生产、废弃物焚烧、农业用药和燃料燃烧等。
这些POPs在生产过程中被释放到大气中,然后经由降水沉降到地表,或由风吹被输送到其他地方。
同时,这些POPs还可以通过污染的土壤和地下水再向更远的地方传播。
三、POPs在土壤和水中的迁移和转化过程POPs在土壤中的迁移和转化受到了多种因素的影响,包括土壤质地、有机质含量、pH值、温度等等。
POPs通常通过黏土颗粒的外表并进入土壤中,并不断向下浸泡直至到达地下水层。
这些POPs可以经由水流流动到其他地方,也可以沉积在土壤中,不断固定在沉积物中。
POPs在水中的迁移和转化,一般受到pH值、温度、水体流动性等因素的影响。
一些POPs会随着物理和化学过程从水体中析出并沉积在沉积物中,一些则会继续溶解在水中并流向下游水体。
此外,氧化、还原以及生物降解等生物地球化学过程也会影响POPs的迁移和转化。
四、POPs的生态风险及其防控措施POPs的存在对环境和人类健康都有潜在的威胁,包括造成癌症、生殖和孕产问题等。
其对某些动植物物种也有影响,甚至会引起生态系统的崩溃。
为了减少POPs对环境和人类健康的影响,需要制定一系列防控措施。
其中包括立法对POPs的合理管理、加强环境监测,推广使用低毒性和可降解的替代材料,以及建立POPs的超长期监测机制等等。
持久化有机污染物在环境中的迁移和归趋模型分析

持久化有机污染物在环境中的迁移和归趋模型分析随着工业化和城市化的推进,大量有机污染物被释放到环境中,对生态系统和人类健康带来了严重威胁。
了解有机污染物在环境中的迁移和归趋模型对于环境管理和健康风险评估具有重要意义。
本文将针对持久化有机污染物(POPs)在环境中的迁移和归趋模型进行分析。
首先,什么是持久化有机污染物?持久化有机污染物是指在环境中难以降解和分解的有机化合物,具有长期存在性,并可以迁移到远离源头的地点。
它们包括多环芳烃类化合物、农药、工业化学品等。
由于其稳定性和毒性,POPs对生态系统和人类健康造成危害。
POPs在环境中的迁移受到多种因素的影响,包括物理、化学和生物过程。
物理过程如扩散、降解和吸附等可以改变有机污染物的浓度和分布。
化学过程如氧化还原反应、光解等可以影响有机污染物的降解速率和转化产物。
生物过程如植物吸收、生物降解等可以改变有机污染物的有效性和毒性。
因此,构建模型来分析POPs的迁移和归趋过程对于预测其环境行为至关重要。
针对POPs在环境中迁移和归趋模型的研究,主要有两种方法:实验室研究和数学模型。
实验室研究可通过模拟POPs在不同环境条件下的迁移和归趋过程,包括模拟土壤、水体和大气中的物理、化学和生物过程。
这些实验可以提供数据用于建模和验证模型的可靠性。
数学模型是研究POPs迁移和归趋模型的重要工具。
数学模型基于物质传递方程和参数化关系,通过数值计算来模拟POPs在环境中的迁移和归趋。
这些模型可以提供对不同环境条件下POPs迁移和归趋的量化预测。
常用的数学模型包括扩散模型、吸附模型、氧化还原模型、生物降解模型等。
这些模型可以用来模拟POPs在土壤、水体和大气中的迁移和归趋过程。
在实际应用中,使用数学模型来分析POPs在环境中的迁移和归趋具有一定的局限性。
首先,POPs的物理、化学和生物特性非常复杂,不同环境条件下可能出现差异。
因此,模型的参数估计和验证需要大量实验数据和现场观测。
持久性有机污染物性质及去除技术

持久性有机污染物性质及去除技术由于持久性有机物具有较强的环境适应性、生物蓄积性、高毒性等特点,随着环境问题越来越加剧,该污染物也持续受到人们的关注。
本文通过分析持久性有机物的特性和分类,探讨该污染物的去除技术,以期更好地对其进行处理,减少污染危害,促进生态环境和人类生存环境的可持续发展。
标签:持久性有机污染物;性质;产生问题;去除技术引言持久性有机污染物,即POPs(持久性有机污染物),是指一类物理和化学性质,例如半挥发性,难降解性和高脂溶性,它们可以在远距离甚至全球范围内迁移和扩散,并通过食物链集中在生物中。
累积的有机污染物会对人体和生态环境产生毒性影响。
目前,污染已经蔓延到地球的几乎每个角落,越来越严重地威胁着人类的生命,健康和安全以及全球生态环境,并逐渐成为全球主要的环境问题之一。
1.持久性有机污染物概述1.1持久性有机污染物(POPs)的分类持久性有机污染物主要有三种类型:农药,工业化学品和制成品。
其中,农药污染物主要来自农业。
农药是持久性有机污染物的重要来源。
尽管在许多发达国家,相关农药产品和化学含量较高的产品的使用正在减少,但在许多发展中国家,特别是在热带地区,它们仍大量使用。
农药。
此外,城市垃圾焚烧,医院垃圾,废木材和家具,汽车尾气,有色金属生产,铸造和炼焦,发电,水泥,石灰,砖,陶瓷,玻璃等也是持久性有机物的重要来源。
污染物。
1.2持久性有机污染物(POPs)的性质持久性有机污染物具有持久性、长期性和生物蓄积性。
在环境中,它们对正常的生物降解,光解和化学分解具有很强的抵抗力。
因此,一旦它们进入环境,它们就可以长期存在于大气,水,土壤和沉积物中。
同时,由于它们易于进入脂肪组织生物学,其积累浓度将随着食物链的延长而增加。
此外,持久性有机污染物会损害中枢和外周神经系统,内分泌失调,动物和人类的生殖和免疫系统,在特别严重的情况下,可能导致动物和人类的死亡。
它们不仅危害暴露于持久性有机污染物的个人,而且影响其后代的健康。
持久有机污染物处理技术研究

持久有机污染物处理技术研究持久有机污染物是指在环境中难以降解的有机化合物,包括多氯联苯、有机卤素阻燃剂、六氟磷酸盐等,这些化合物对环境和人类健康都有很大威胁,需要进行有效的处理和管理。
持久有机污染物处理技术研究已经成为环保领域的热门话题。
先进的化学和生物技术是治理持久有机污染物的主要手段。
其中,化学氧化、氧化还原和生物降解是较为常用的技术。
化学氧化技术包括臭氧氧化、高级氧化和飞灰反应等。
臭氧氧化是一种高效的氧化方法,可以将污染物转化为易于降解的物质。
高级氧化技术包括光氧化、电化学氧化和超声波氧化等,可以通过产生自由基来强化物质的氧化作用。
飞灰反应是一种将过渡金属盐和氧化剂产生的自由基催化的化学反应,利用其催化作用来降解有机污染物。
氧化还原技术是将污染物进行还原或氧化,将其转变为无毒化学物质或减少污染物的毒性,包括还原法、氧化法和还原-氧化技术。
还原法是将污染物还原为无毒的有机化合物或碳酸盐等无害物质。
氧化法是将有机污染物氧化为可降解的物质,通过氧化还原反应将其降解。
还原-氧化技术将还原和氧化两种方法结合起来,使污染物的含量不断下降,减小污染物的危害。
生物降解技术是运用微生物和酶类等生物体对污染物进行生物降解,包括生物降解、生物转化和生物吸附。
生物降解通过微生物将有机污染物分解为无毒有机物和无害无机物,是一种天然、低成本、可持续的治理方法。
生物转化是指通过微生物和其他生物体的代谢,将有机污染物转化为其他有机物的方法。
生物吸附是将有机污染物通过微生物或其他具有亲和力的生物体吸附到表面,从而减少有机污染物的释放。
综合来看,对于不同类型的持久有机污染物,需要针对性地采取不同的处理技术。
同时,环境保护部门和企业应当加强监测和管理,减少有机污染物的排放。
只有我们人类意识到环境保护的重要性,才能共同创造一个更好的生存环境。
环境中主要持久性有机污染物检测技术研究进展

赵 丽 娟
( 辽宁省环境监测实验 中心 , 辽宁沈 阳 1 1 0 0 3 1 )
摘 要: 论述了持久性有机污染物的检测技术现状 , 包括环境标准、 检测方法等 , 提 出了我 国在此领域存在的问题和发展方向。 关键词 : 持久性有机 污染物 ; 检 测技术 ; 研 究进展
步淘汰某些含 P O P s 产品的生产 。除公约提出的 1 2
种 物质 外 , 还有 六 溴联 苯 、 林丹 / 六六六 、 多环 芳 烃 、 五氯 酚 川。随着 人们对 P O P s 认 识 的加 深 , 将 有更 多 的有 机污染 物被 列人 P O P s 的名单 中 , 而加 以控 制和
有些 痕量 有机 物如 P O P s的危害是 很 大 的。 因此 , 距
氯杀 虫 剂 , 包 括 艾 氏剂 、 狄 氏剂 、 异狄氏剂 、 滴滴涕 、 氯丹 、 七氯 、 灭蚁灵 、 毒杀芬 、 六氯 苯 , 共 9种 ; 第 二
离 我 国环境 资源 保 护 的要 求 和建 立我 国分 析测 试体
项为有毒有机物 , 为有机污染控制起到了重要作用。 另外 , 我国有机污染物标准分析方法还不够完善 , 有
机 污 染 物还 未 纳人 常 规 监测 体 系 , 适时 、 全面 、 系 统 地 开展 环境 中有 毒有 害有 机 物 , 特 别是 P O P s 的监 测 已经刻 不容缓 。
中 图分 类号 : X 5 0 5 文 献 标识 码 : A 文章编号 : 1 6 7 4 — 1 0 2 1 ( 2 0 1 3) 0 6 — 0 0 6 0 — 0 2
1 引 言
持 久. 1 生有机 污染 物 ( P O P s ) 是对众 多具 有 持久 性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
持久性有机污染物分析和处理技术的研究【摘要】研究pops的存在、转化和处理都离不开分析化学。
常用的pops分析方法主要有气相色谱法、气相色谱/质谱联用法、高效液相色谱法、超临界流体色谱法以及毛细管电泳。
由于pops 污染的严重性和广泛性,世界各国相继投入大量人力物力,研究、寻求pops的控制和消除方法。
pops的处理技术大致可分为物理方法、化学方法和生物方法。
【关键词】持久性有机污染物;光催化氧化法;色谱法;微生物降解法环境持久性有机污染物,简称pops,它是指具有毒性、生物蓄积性和半挥发性,并能在环境中持久存在的有机污染物质。
pops 由于在环境中存留时间长,难降解,给人体健康与生态环境带来了巨大危害,已成为世界各国关注的环境焦点。
联合国环境规划署(unep)、国际化学品安全计划处(ipcs)、政府间化学品安全论坛(ifcs)、组织间化学品妥善管理规划处(iomc)、联合国欧洲经济委员会(unece)、化学品协会国际理事会(icca)等国际组织都积极采取行动参与了pops 物质的判断基准、筛选程序、性质、危害、归趋等的研究和有关控制政策的制定,旨在减少或消除pops 的生产和使用,并逐步在全球范围内淘汰pops1.pops分析方法的研究研究pops的存在、分布、迁移、转化、归宿、代谢和处理都离不开分析化学。
环境中pops的分析对象广,污染含量低,多氯联苯、二噁英又有多种异构体,因此分析手段必须灵敏而准确、速度快、自动化程度高。
常用的pops分析方法主要有气相色谱法、气相色谱/质谱联用法、高效液相色谱法、超临界流体色谱法以及毛细管电泳。
1.1 气相色谱法(gc)和色质联用法(gc/ms)gc法是环境监测中对有机污染物进行定性和定量分析最常用的手段。
该法适于分析易挥发、热稳定性好的有机物,并以其快速高效、操作简便、价格相对低廉而备受人们重视。
美国环保局(epa)推荐gc法作为分析农药、多环芳烃、二噁英等的标准分析方法,我国目前在测定二噁英、多氯联苯及有机氯农药等pops时也主要采用gc法。
himberg等使用两根毛细管柱和专用的固定相,采用gc—ecd法能达到多氯二苯并—p—二噁英(pcdds)和多氯二苯并呋喃(pcdfs)各种异构体的分离。
余建新等以cg—ecd法测定了水果、蔬菜中16种有机氯农药的残留量,方法的检出限为0.1×10-9-2.0×10-9g,回收率范围为87.5%-106.3%,相对标准偏差为3.0%-9.5%。
gc/ms联用技术把色谱法的高灵敏度与质谱法的高分辨率结合起来,大大扩展了gc方法的应用。
王志鳞采用5种键合相石英毛细管柱gc/ms联用系统对上海市大气颗粒有机污染物进行测定,共检出94种多环芳烃。
蒋可等采用高分辨气相色谱/高分辨质谱测定了多氯联苯焚烧处置时烟灰中pcdds和pcdfs的含量,计算出其2,3,7,8-tcdd毒性当量为47.2ng/g,远远超过了美国epa的排放标准。
1.2 高效液相色谱法(hplc)hplc法适于检测分子量大、挥发性低、热稳定性差的有机污染物,这恰恰弥补了gc法的不足。
我国《水和废水监测分析方法》、《空气和废气监测分析方法》,分别将hplc法定为测定水中的多环芳烃以及空气中苯并(a)芘的推荐方法,在发达国家更是将hplc法作为常用的环境监测方法。
kiss等用带有荧光检测器的hplc测定了气溶胶中的多环芳烃,并用一个紫外检测器进行了分离效率和灵敏度的比较。
沈学优等采用梯度淋洗结合可变波长荧光检测器,用hplc法测定了空气中9种具有代表性的多环芳烃。
1.3 超临界流体色谱法(sfc)sfc是以超临界流体(sf)作流动相的色谱过程。
sfc法可以弥补gc法和hplc法在分析有机污染物方面的某些不足之处,适用于一些极性强、热不稳定、化学性质活泼、分子量高等复杂化合物的分离和测定,而且sfc能和一系列检测系统联用。
近年来,sfc法被证明非常适合于多环芳烃(pahs)的分析,结合fid检测器能使定量工作变得极为方便。
孙云鹏等选用细径极性填充柱,以c02为流动相,线性升压,fid检测,可在26min内将三到十环pahs分离,定量重复性良好。
tarver等对环境中残留的林丹、ddt、六六六、异狄氏剂、七氯、狄氏剂进行了sfc分析,都收到了良好的效果。
1.4 毛细管电泳(ce)ce作为一种高效分离技术近年来在环境分析应用上已经表现出强劲的发展势头。
由于ce具有样品需要量小、分离效率高、柱价格低、易清洗、方法简单、分析时间短等特点,使其在有机污染分析中拥有独特优势。
brueggemann等用硼酸-sdsce系统在10min内分离了7种pahs标准物,使用二极管阵列检测器可以达到10-12g 的检测限,并运用该系统分离出了受污染土壤中的两种pahs。
nxuyen等采用环糊精ce系统,对16种美国epa优先控制的pahs 进行了分离,检测限能够达到8×10-9-75×10-9g/l。
ciego等采用开管毛细管电色谱,在4min内成功分离了7种pahs。
目前ce环境污染分析的研究在不断深入和扩大,但很多工作集中在分离标准样品上,应用于实际环境样品分析的还相对较少,其主要原因是检测器灵敏度不够和要求新的样品预处理方法等。
2.pops处理技术的研究由于pops污染的严重性和广泛性,许多国家相继投入大量人力物力,研究、寻求pops的控制和消除方法。
按照处理原理来分,pops的处理技术大致可以概括为物理方法、化学方法和生物方法。
2.1 物理方法通常有吸附法、萃取法、蒸馏法和汽提法等。
陈金龙等用大孔吸附树脂cha-111处理五氯酚钠(pcp—na)生产废水,pcp去除率大于99%,codcr去除率不低于80%,树脂脱附液经酸化处理可回收pcp。
金重阳等对活性炭纤维吸附处理含多氯联苯的废水进行了研究,确定了相关条件下的吸附容量,并实际应用于含多氯联苯废水的处理中,处理之后的废水可完全达标排放。
物理法可对污染物起到浓缩富集并部分处理的作用,常作为一种预处理手段与其他处理方法联合使用。
2.2 化学方法化学方法在pops污染治理中的应用十分广泛,主要有湿式氧化法、超临界水氧化法、光催化氧化法以及声化学氧化法等。
2.2.1 湿式氧化法湿式氧化法(w0)是利用氧气与有机污染物在高温高压条件下的液相接触达到将该污染物氧化去除的目的,适用于高浓度或高毒性废水的处理。
考虑到反应所需的高能耗,近年来又发展了一种类似的湿式催化氧化法,其改进之处在于使用可溶性的过渡金属盐类如ag+、fe2+、cu2+等作为催化剂和以h202代替02分子作为氧化剂,这样反应可在低温常压下进行,与前一种方法相比,大大提高了反应速率和改善了反应条件。
张秋波等以cu(n03)2为催化剂湿式氧化处理煤气化废水(cod为22928mg/l),在适当的处理时间内,cod去除率可达65%-90%,且对多环芳烃具有明显的去除作用。
2.2.2 超临界水氧化法超临界水氧化法(sw0)是近些年来广泛研究的一种新型氧化技术。
它是以超临界水为反应介质,在氧化剂如氧气、过氧化氢等的存在下经由高温高压下的自由基反应将有机物氧化为c02等产物。
swallow等发现,在600-630℃、25.6mpa条件下,四氯代二苯并-p-二噁英和八氯代二苯并-p-二噁英可在极短时间内被迅速破坏。
国际上一些工业发达国家,如美国、日本等对二噁英类化合物、ddt、联苯等污染物进行了超临界水氧化分解实验,结果表明,这些物质的转化率均大于99.9%,而且停留时间很短。
2.2.3 光催化氧化法光催化氧化法是在可见光或紫外光(uv)作用下进行的反应过程,可分为均相光催化氧化和多相光催化氧化。
前者是指03/uv或03/h202/uv系统,后者是以n型半导体(通常是ti02)为催化剂。
多相光催化氧化具有不需要另加化学试剂、可在低压下进行、对温度要求不高、不产生光环化合物、催化剂ti02价廉无毒等优点。
张志军等研究表明,在中压汞灯照射、ti02催化条件下,二噁英可发生显著光解,如1,2,3,7,8-五氯代二噁英、八氯代二噁英在4h内分别降解了84.6%和91.2%,在水相中几乎不进行光解的2-氯代二噁英也以较快的速度发生了降解。
2.3 生物方法微生物的降解作用主要是通过酶的代谢。
其中包括:(1)广谱性酶的偶然性代谢。
如水解们、氧化酶等;(2)由基质结构与pops 相似的酶进行的共代谢;(3)由利用pops作为能源适应酶进行的降解代谢。
另外,还有通过ph改变、辅酶或化学产物的降解。
目前对几种pops的微生物降解途径也已经比较清楚,ddt主要是还原脱氯成ddd或脱氯代氢作用成为dde。
666也是脱氯代氢成五氯环已烯。
对硫磷等有机磷农药则主要是水解酶作用。
环戊二烯类主要是通过异构化和环氧化作用来完成降解过程。
而氨基甲酸类杀虫剂也主要是通过水解作用来降解的。
由于该方法对环境中营养等条件要求不高,对低浓度农药的处理更有效,可降解一些特定的难降解的污染物。
利用酶进行农药污染土壤的生物修复被认为是有机污染物生物修复技术中最有效、最可行和最可靠的方法。
但目前酶修复技术仍存在酶分离提取时间长、费用高、酶不稳定易失活等缺点。
pops的微生物降解研究已经取得很大进展,但由于其污染的特殊性(如结构稳定、有毒性、分散),实际应用中仍有许多困难。
基金项目:湖南省2011年科技计划项目(2011wk3008)。