系统误差处理

系统误差处理
系统误差处理

等精度测量系统误差编程处理

一、实验目的

(1)、通过C语言编程,实现系统误差的处理。

(2)、加深对C语言的理解,提高对C语言的使用能力。

(3)、掌握对系统误差的判断方法,加深对系统误差的理解。

二、实验内容

1、实验数据

算数平均值为24.775mm。残余误差和为-0.001mm。

残余误差平方和为0.000069mm2。

贝塞尔公式求得的标准差为0.0029mm。

别捷尔斯公式求得的标准差为0.0031mm。

2、实验思路

要想得到单次测量的标准差,必须先求的测量列的算术平均值,其次求的残余误差,再求残余误差平方和,然后由贝塞尔公式或别捷尔斯公式求得测量列单次的标准差,然后由不同公式计算标准差比较法,得出是否含有系统误差。

三、编程实现

1、求算术平均值

为了实现模块化,在此处用调用函数的方法,对数组求平均值。将测量列看成数组,且赋值给一个数组,然后将数组的首地址当做参数传递给函数,结果由return语句返回到主函数。

实现算术平均值程序为:

double averaqe_number(double *s,int N)

{

double sum=0.0;

double averaqe=0.0;

int i=0;

while(i

{

sum+=*s;

s++;

i++;

}

averaqe=sum/N;

return(averaqe);

}

2.残余误差和的实现

由残余误差计算公式可得:残余误差=测量值-平均值。所以可以将上一步求得的平均值作为函数的一个参数传递到残余误差函数,然后在编写残余误差程序,实现对残余误差和的求解。

残余误差和求解程序如下:

double offset(double b[],int N,double mean)

{

double z=0.0;

int i;

for(i=0;i

{

z+=(b[i]-mean);

}

return(z);

}

3、残余误差平方和的实现

由残余物差平方和的公式:残余物差平方和=(测量值-平均值)^2,则同理可由求残余误差的方法求得残差平方和。

程序如下:

double sum_squares(double b[],int N,double mean)

{

double cuwcpfh=0.0,arr[9];

int i;

for(i=0;i

{

arr[i] =(b[i]-mean)*(b[i]-mean);

}

for(i=0;i

{

cuwcpfh+=arr[i];

}

return(cuwcpfh);

}

4、贝塞尔公式求标准差

由贝塞尔公式可知:标准差等于残差平方和除以(n-1)再开根号。所以只需把残差平方和及数据个数传递到贝塞尔公式求标准差的函数里即可。

程序实现如下:

double standard_deviation(int N,double sse)

{

double z;

z= sqrt (sse/(N-1));

return(z);

}

5、别捷尔斯公式求标准差

由别捷尔斯公式可知,只需将测量值、数据个数、算术平均值传递到别捷尔斯公式求标准差函数即可。

程序如下:

double biejiersi(double b[],int N,double mean)

{

double z,sum_1=0.0;

int i;

for(i=0;i

{

sum_1 += fabs(b[i]-mean);

}

z = 1.253*(sum_1/sqrtf (N*(N-1)));

return(z);

}

6、用不同公式计算标准差比较法

此处只是简单的加减乘除运算,没涉及到求和之类的复杂运算,所以直接在主函数里进行四则运算。

7、主函数

主函数包括调用函数的申明以及需打印的函数值。还有对系统误差是否有无得判别。判别依据是,别捷尔斯公式求标准差/贝塞尔公式求标准差减一得到的差值与2除以根号下(n-1)作比较,如果前者小,则无根据怀疑测量列有系统误差;反之亦然。

四、实验结果及误差分析

运行后结果如下:

由对比可知:实验数据与理论数据有一些误差。实验误差一部分是由于四舍五入之后再对数据处理造成的。例如:在输出平均值时,平均值数值可以由数据转换命令由六位小数转换成与例题一样的三位数据,不过是显示结果为三位,但是存储平均值时依然是六位小数,在后面调用平均数的运算中,会导致数值差别。实验误差的另一部分是由数据存储时造成的。例如:输入数组的数值为24.780,但在内存里,可能是24.777779,虽然表面上这些差值很小,但数据处理的多了,这就对数据的处理造成了相应的误差。

五、实验程序

#include"stdafx.h"

#include"stdio.h"

#include"math.h"

double mean=0.0;

void main()

{

double averaqe_number(double *s,int N);

double offset(double b[],int N,double mean);

double sum_squares(double b[],int N,double mean);

double standard_deviation(int N,double sse);

double biejiersi(double[],int N,double mean);

int i,n=9;

double offset_sum,sse,std,std_1,ratio,u,t;

double

a[9]={24.774,24.778,24.771,24.780,24.772,24.777,24.773,24.775,24.774};

for(i=0;i<9;i++)

printf("%5.3f ",a[i]);

printf("\n");

mean = averaqe_number(a,n);

printf("平均数mean = %5.3f\n",mean);

offset_sum = offset(a,n,mean);

printf("残余误差和offset_sum = %g\n",offset_sum);

sse = sum_squares(a,n,mean);

printf("残差平方和sse = %g\n",sse);

std = standard_deviation(n,sse);

printf("贝塞尔公式求标准差std = %g\n",std);

std_1=biejiersi(a,n,mean);

printf("别捷尔斯公式求标准差std_1 = %g\n",std_1);

printf("用两种方法计算的标准差比值为:\n");

printf(" std_1/std = %g\n",std_1/std);

printf("令 std_1/std = u+1\n");

u = std_1/std-1;

printf("则 u = %g\n",u);

t=2.0/sqrtf(n-1);

if(fabs(u)

{

printf("因|u|= %f < 2/sqrt(n-1) = %g\n",fabs(u),t);

printf("故可判断该测量列无系统误差存在。\n");

}

else

{

printf("因|u|= %f > 2/sqrt(n-1) = %g\n",fabs(u),t);

printf("故可判断该测量列有系统误差存在。\n");

}

getchar(); getchar();

}

double averaqe_number(double *s,int N)

{

double sum=0.0;

double averaqe=0.0;

int i=0;

while(i

{

sum+=*s;

s++;

i++;

}

averaqe=sum/N;

return(averaqe);

}

double offset(double b[],int N,double mean)

{

double z=0.0;

int i;

for(i=0;i

{

z+=(b[i]-mean);

}

return(z);

}

double sum_squares(double b[],int N,double mean)

{

double cuwcpfh=0.0,arr[9];

int i;

for(i=0;i

{

arr[i] =(b[i]-mean)*(b[i]-mean);

}

for(i=0;i

{

cuwcpfh+=arr[i];

}

return(cuwcpfh);

}

double standard_deviation(int N,double sse) {

double z;

z= sqrt (sse/(N-1));

return(z);

}

double biejiersi(double b[],int N,double mean) {

double z,sum_1=0.0;

int i;

for(i=0;i

{

sum_1 += fabs(b[i]-mean);

}

z = 1.253*(sum_1/sqrtf (N*(N-1)));

return(z);

}

3误差与数据处理知识

误差与数据处理知识 一、误差 1、量:描述现象、物体或物质的特性、其大小可用一个数和一个参照对象表示。 由定义可知,量是由一个纯数据和一个计量单位组成。量可指一般概念的量或特定量。其符号用斜体表示, 一般概念的量如:长度l、质量m。 特定量如:长度为2m、质量为0.5g。 2、真值:与量的定义一致的量值。 如按照计量单位定义复现出来的量值为真值。 量的真值只能通过完善的测量才能获得,所以真值是无法测量到的,随着测量准确度的逐步提高,只能越来越接近真值。但在实际应用时还需要使用真值,为此,人们常常将高等级的计量标准复现的量值作为下一级测量的约定真值;将有证标准物质的量值作为检测结果的约定真值。 3、被测量:拟测量的量。 为保证特定条件下的被测量值是单一的,应根据所需要的准确度及特定条件予以完整定义,如:1m长的铁棒需要测至微米级准确度,就必须说明所给定的温度和压力等,但要测到毫米级准确度就不需给定温度、压力和其他影响的值。 4、影响量:在直接测量中不影响实际被测的量、但会影响示值与测量结果之间关系的量。原定义:不是被测量但对测量结果有影响的量。 如:a)测量某物体长度时测微计的温度(不包括物体本身的温度,因为物体的温度可以进入被测量的定义中); b)测量交流电压时的频率; 科学是从测量开始的,对自然界所发生的量变现象的研究,常常需要借助于各式各样的试验与测量来完成。由于认识能力的不足和科学水平的限制,试验中测得的值和它的客观真值并不一致,这种矛盾在数值上的表现即为误差。

误差公理:测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。由于我们的工作就是测量,所以就应该了解有关误差的知识。 5、测量误差:测得的量值减去参考量值。 根据定义误差表示两个量的差值,所以误差为带有正号或负号的量值,与测量结果一样的计量单位。表示测量结果对真值的偏离量,以真值为参照点。是一个确定的量值,所以误差值不能带有±号。常用“Δ”或“δ”表示。 误差计算公式: 测量误差Δ=测量结果—参考量值 测量结果可以是:给出值、测得值、实验值、仪器示值、标称值、预置值、计算近似值等。 参考量值可以是:①理论真值,如平面三角形三内角和为180°;②计量学约定真值,如国际计量大会决议的计量单位的定义值:光在真空中在1/299 792 458秒的时间间隔内行程的长度;国际千克原器的质量为1kg;……; ③标准器复现的量值,标准器的误差是被测仪器误差的(1/3~1/10),达到可忽略的程度,认为标准值为约定真值; ④做化学成分分析试验时,有证标准物质的量值认为是约定真值。 注:测量误差也称“绝对误差”,或直接称为“误差”注意不要与误差的绝对值相混淆。 例1:测得某平面三角形的三个内角和为180°00′03″,则该内角和的误差为+3″。 例2:用0.05级活塞压力计检定0.4级压力表,压力计调整的压力值为10MPa,压力表的示值为9.8 MPa。则压力表的示值误差为9.8 MPa-10MPa=-0.2 MPa 对于制造实物量具的企业来说,使用偏差更为方便。要加工的实物量具的值为标称值,而对于加工的实际值来说,偏离了要求的标称值,这个差值称为加工偏差。 偏差=(-误差)=(标准值-标称值)=实际值-标称值指:加工后的实际量值(标准值)偏离要求的标称值的大小。 以标称值为参照点,相对于标称值来说偏离了多少。 如果用皮尺测量100m的准确距离,测量值为101m,误差为1m;用钢尺测量准确距离为1000m的长度,测量值为1001m误差也是1m。从误差值来说,它们都一样,但不能说两者的准确度一样,若将误差用相对值表示为,皮尺:1%;钢尺:0.1%。很明显看出哪一个准确度更高。 对于测量相同值的两种器具,比较准确度时可用绝对误差;测量不同值时比较它们的准确度,用相对值更方便。

误差理论与数据处理简答题及答案

基本概念题 1.误差的定义是什么?它有什么性质?为什么测量误差不可避免? 答:误差=测得值-真值。 误差的性质有: (1)误差永远不等于零; (2)误差具有随机性; (3)误差具有不确定性; (4)误差是未知的。 由于实验方法和实验设备的不完善,周围环境的影响,受人们认识能力所限,测量或实 验所得数据和被测量真值之间不可避免地存在差异,因此误差是不可避免的。 2.什么叫真值?什么叫修正值?修正后能否得到真值?为什么? 答:真值:在观测一个量时,该量本身所具有的真实大小。 修正值:为消除系统误差用代数法加到测量结果上的值,它等于负的误差值。 修正后一般情况下难以得到真值。因为修正值本身也有误差,修正后只能得到较测得值更为准确的结果。 3.测量误差有几种常见的表示方法?它们各用于何种场合? 答:绝对误差、相对误差、引用误差 绝对误差——对于相同的被测量,用绝对误差评定其测量精度的高低。 相对误差——对于不同的被测俩量以及不同的物理量,采用相对误差来评定其测量精度的高低。 引用误差——简化和实用的仪器仪表示值的相对误差(常用在多档和连续分度的仪表中)。4.测量误差分哪几类?它们各有什么特点? 答:随机误差、系统误差、粗大误差 随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化着的误差。 系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差。 粗大误差:超出在规定条件下预期的误差。误差值较大,明显歪曲测量结果。 5.准确度、精密度、精确度的涵义分别是什么?它们分别反映了什么? 答:准确度:反映测量结果中系统误差的影响程度。 精密度:反映测量结果中随机误差的影响程度。 精确度:反映测量结果中系统误差和随机误差综合的影响程度。

计算机控制系统的稳态误差

计算机控制系统报告 --计算机控制系统的稳态误差 在计算机控制系统中存在稳态误差。怎样计算稳态误差呢? 在连续系统中,稳态误差的计算可以通过两种方法计算:一是建立在拉氏变换中值定理基础上的计算方法,可以求出系统的终值误差;另一种是从系统误差传递函数出发的动态误差系数法,可以求出系统动态误差的稳态分量。 在离散系统中,根据连续系统稳态误差的两种计算方法,在一定的条件下可以推广到离散系统。又由于离散系统没有唯一的典型结构形式,离散系统的稳态误差需要针对不同形式的离散系统来求取。 书上主要介绍了利用z 变换的终值定理方法,求取误差采样的离散系统在采样瞬时的终值误差。 设单位反馈误差采样系统如图4.12所示。 图4.12 单位反馈误差采样反馈系统 系统误差脉冲传递函数为 (4.1) 若离散系统是稳定的,则可用z 变换的终值定理求出采样瞬时的终值误差 (4.2) Φ==+e ()1()()1()E z z R z G z )](1[)()1(lim )()1(lim )(lim )(1111*z G z R z z E z t e e z z t +-=-==∞-→-→∞ →

(4.2)式表明,线性定常离散系统的稳态误差,不但与系统本身的结构和参数有关,而且与输入序列的形式及幅值有关。除此之外,离散系统的稳态误差与采样系统的周期的选取也有关。上式只是计算单位反馈误差采样离散系统的基本公式,当开环脉冲传递函数G(z)比较复杂时,计算e(∞)仍然有一定的计算量,因此希望把线性定常连续系统中系统型别及静态误差系数的概念推广到线性定常离散系统,以简化稳态误差的计算过程。 在离散系统中,把开环脉冲传递函数G(z)具有z=1的极点数v 作为划分离散系统型别的标准,与连续系统类似地把G(z)中 v=0,1,2,…的系统,称为0型,Ⅰ型和Ⅱ型离散系统等。下面讨论不同类别的离散系统在三种典型输入信号作用下的稳态误差,并建立离散系统静态误差系数的概念。 1.单位阶跃输入时的稳态误差 对于单位阶跃输入r(t)=1(t),其z 变换函数为 (4.3) 得单位阶跃输入响应的稳态误差 (4.4) 上式代表离散系统在采样瞬时的终值位置误差。式中 (4.5) 称为静态位置误差系数。若G(z)没有z=1的极点,则Kp ≠∞,从而e(∞)≠0;若G(z)有一个或一个以上z=1的极点,则Kp= ∞,从1 11)(--=z z R →∞==+1p 11()lim 1()z e G z K →=+p 1lim[1()]z K G z

实验四 线性定常系统的稳态误差

实验四 线性定常系统的稳态误差 一、实验目的 1.通过本实验,理解系统的跟踪误差与其结构、参数与输入信号的形式、幅值大小之间的关系; 2.研究系统的开环增益K 对稳态误差的影响。 二、实验原理 控制系统的方框图如图4-1所示。其中G(S)为系统前向通道的传递函数,H(S)为其反馈通道的传递函数。 图4-1 控制系统的方框图 由图4-1求得 )() ()(11 )(S R S H S G S E += (4-1) 由上式可知,系统的误差E(S)不仅与其结构和参数有关,而且也与输入信号R(S)的形式和大小有关。如果系统稳定,且误差的终值存在,则可用下列的终值定理求取系统的稳态误差: )(lim 0 S SE e s ss →= (4-2) 本实验就是研究系统的稳态误差与上述因素间的关系。下面叙述0型、I 型、II 型系统对三种不同输入信号所产生的稳态误差ss e 。 1.0型二阶系统 设0型二阶系统的方框图如图4-2所示。根据式(4-2),可以计算出该系统对阶跃和斜坡输入时的稳态误差: 图4-2 0型二阶系统的方框图 ● 单位阶跃输入(s S R 1 )(= ) 3 1 12)1.01)(2.01()1.01)(2.01(lim 0=?+++++? =→S S S S S S e S ss (4-3) 输入输出响应曲线如图4-1所示,仿真图如图4-2所示。

图4-3 0型系统阶跃响应稳态误差响应曲线 图4-4 Matlab 仿真曲线 由 Matlab 仿真结果来看,输入为单位阶跃信号时,输出稳态误差近似为,符合 4-3式计算的理论值。 ● 单位斜坡输入(2 1)(s S R = ) ∞=?+++++?=→201 2)1.01)(2.01()1.01)(2.01(lim S S S S S S e S ss (4-4) 输入输出响应曲线如图4-3所示,仿真图如图4-4所示。 图4-5 0型系统斜坡响应稳态误差响应曲线 图4-6 Matlab 仿真曲线 由 Matlab 仿真结果来看,输入为单位阶跃信号时,输出稳态误差趋于无穷大,符合4-5式理论计算值。 上述结果表明0型系统只能跟踪阶跃信号, 0型系统跟踪阶跃输入有稳态误差,计算公式为: P ss K R e += 10 (4-5) 其中)()(lim 0 S S H S G K p →?,R 0为阶跃信号的幅值。 2.I 型二阶系统 设图4-4为I 型二阶系统的方框图。

误差理论与数据处理简答题及答案

基本概念题 1.误差的定义是什么它有什么性质为什么测量误差不可避免 答:误差=测得值-真值。 误差的性质有: (1)误差永远不等于零; (2)误差具有随机性; (3)误差具有不确定性; (4)误差是未知的。 由于实验方法和实验设备的不完善,周围环境的影响,受人们认识能力所限,测量或实 验所得数据和被测量真值之间不可避免地存在差异,因此误差是不可避免的。 2.什么叫真值什么叫修正值修正后能否得到真值为什么 答:真值:在观测一个量时,该量本身所具有的真实大小。 修正值:为消除系统误差用代数法加到测量结果上的值,它等于负的误差值。 修正后一般情况下难以得到真值。因为修正值本身也有误差,修正后只能得到较测得值更为准确的结果。 3.测量误差有几种常见的表示方法它们各用于何种场合 答:绝对误差、相对误差、引用误差 绝对误差——对于相同的被测量,用绝对误差评定其测量精度的高低。 相对误差——对于不同的被测俩量以及不同的物理量,采用相对误差来评定其测量精度的高低。 引用误差——简化和实用的仪器仪表示值的相对误差(常用在多档和连续分度的仪表中)。4.测量误差分哪几类它们各有什么特点 答:随机误差、系统误差、粗大误差 随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化着的误差。 系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差。 粗大误差:超出在规定条件下预期的误差。误差值较大,明显歪曲测量结果。 5.准确度、精密度、精确度的涵义分别是什么它们分别反映了什么 答:准确度:反映测量结果中系统误差的影响程度。 精密度:反映测量结果中随机误差的影响程度。 精确度:反映测量结果中系统误差和随机误差综合的影响程度。 准确度反映测量结果中系统误差的影响程度。精密度反映测量结果中随机误差的影响程度。精确度反映测量结果中系统误差和随机误差综合的影响程度。

第二章误差及数据处理

第二章误差及数据处理 (第一部分) 一、选择题 1. 从精密度好就可断定分析结果可靠的前提是() A. 随机误差小; B. 系统误差小; C. 平均偏差小; D. 相对偏差小。2.以下哪些是系统误差的特点(A、C、E);哪些是偶然误差的特点()。 A.误差可以估计其大小; B.数值随机可变; C.误差是可以测定的; D.在同一条件下重复测定中,正负误差出现的机会相等,具有抵消性; E.通过多次测定,均出现正误差或负误差。 3.准确度、精密度、系统误差、偶然误差之间的关系正确的是()。 A.准确度高,精密度一定高; B.偶然误差小,准确度一定高; C.准确度高,系统误差、偶然误差一定小; D.精密度高,准确度一定高; E.偶然误差影响测定的精密度,但不影响准确度。 4、下列有关随机误差的论述中不正确的是() A.随机误差在分析中是不可避免的; B.随机误差出现正误差和负误差的机会均等; C.随机误差具有单向性; D.随机误差是由一些不正确的偶然因素造成的。 5.消除或减免系统误差的方法有();减小偶然误差的方法有()。 A.进行对照试验; B.进行空白试验; C.增加测定次数; D.遵守操作规程; E.校准仪器; F.校正分析方法。 6.下列情况对分析结果产生何种影响(A.正误差;B.负误差;C.无影响;D.降低精密度) (1)标定HCl溶液时,使用的基准物Na2CO3中含少量NaHCO3()。 (2)在差减法称量中第一次称量使用了磨损的硅码()。 (3)把热溶液转移到容量并立即稀释至标线()。 (4)配标准溶液时,容量瓶内溶液未摇匀()。 (5)平行测定中用移液管取溶液时,未用移取液洗移液管。() (6)将称好的基准物倒入湿烧杯。()

第一章--误差和数据处理习题解答

第一章 误差和数据处理习题解答 1、指出下列情况属于随机误差还是系统误差: (1)视差; (2)天平零点漂移; (3)千分尺零点不准; (4)照相底版收缩; (5)水银温度计毛细管不均匀; (6)电表的接入误差。 解:(1)忽左忽右,属随机误差; (2)往单方向漂移属系统误差;随机漂移属随机误差; (3)属系统误差,应作零点修正; (4)属系统误差; (5)按随机误差处理; (6)属系统误差,可作修正。 2、说明以下因素的系统误差将使测量结果偏大还是偏小: (1)米尺因低温而收缩; (2)千分尺零点为正值; (3)测密度铁块内有砂眼; (4)单摆公式测重力加速度,没考虑θ≠0; (5)安培表的分流电阻因温度升高而变大。 解:(1)使结果偏大; (2)使结果偏大,属系统误差,修正时应减去这正零点值; (3)使密度值偏小; (4)使结果偏小: 当θ≠0时,单摆公式为: )2 sin 411(220θπ +=g l T 或 2220 2)2sin 1(4θπ+=T l g 若用θ=0的2 0204T l g π=近似,结果偏小; (5)分流电阻变大,分流变小,使结果偏大。 3、用物理天平(仪?=0.020g )称一物体的质量m ,共称5次,结果分别为36.127g 、 36.122g 、36.121g 、36.120g 和36.125g 。试求这些数据的平均值、绝对不确定度和相对不确定度。 解:36.12736.12236.12136.12036.12536.12336.1230 m g +++++== m S =0.0026g , 已知:仪? =0.020g , 0.020u g ==?

分析化学中的误差处理

分析化学中的误差处理 要求:掌握误差的概念、分类及总体和样本的统计。树立任何科学测定过程均有“误差”的概念;掌握有效数字的概念及其运算规则;理解随机误差的正态分布、区间概率;掌握少量数据处理(t 分布)、置信区间的概念及计算;掌握t 检法和F 检验法;掌握异常值的取舍;理解系统误差的传递;掌握随机误差传递的计算;掌握三种校准方法及一元线性回归分析和线性相关性的评价;了解提高分析结果准确度的方法。 一、误差和偏差 1.Error (误差):difference between measured value to the true value E=x-xT (absolute), Er=E/xT (relative) 2. Deviation (偏差):difference between measured value to mean value 3. 平均偏差 相对平均偏差 4. standard deviation(标准偏差) 5. Systematic error (系统误差):arises from a flaw in a equipment or the design of an experiment. Key feature : It is consistent, can be detected, and corrected. 6. Random error (随机误差): arises from effects of uncontrolled variables in the measurements. Random error results from reading a scale and random electronic noise in an instrument. Key feature : positive and negative fluctuation occur with approximately equal frequency and can be completely eliminated 7. Precision (精密度): describes the reproducibility of a result. 8. accuracy (准确度): describes how close a measured value to a “true” value 准确度高,一定要求精密度高。 二、significant figures (有效数字) 1. Definition :the minimum number of digits needed to write a given value in scientific notation(符号,记号)without loss of accuracy 2. 运算规则:加减法运算中,有效数字的保留,应以小数点后位数最少的数据为准。乘除法运算中,以有效数字位数最少的那个数据为准。 3. 修约规则:四舍六入五成双 4. The real rule for significant figures: The first uncertainty figure of the answer is the last significant figure 三、随机误差的正态分布 1.正态分布:分析化学中测量结果的数据在消除系统误差的条件下,一般随机误差符合正态分布规律,其分布密度为: d x x =-x x d n -=∑100% r d d x =?s =

控制系统的稳态误差

3.5 控制系统的稳态误差 3.5 控制系统的稳态误差 描述控制系统的微分方程 (3.73 ) 式(3.73)是一个高阶微分方程,方程的解可以表示为 (3.74) 式中,前两项是方程的通解,而是方程的一个特解。随时间的增大,方程 的通解逐渐减小,方程的解y(t)越来越接近特解。当时,方程的通 解趋于零 这时系统进入了稳定状态。特解是由输入量确定的,反映了控制的目标和要 求。系统进入稳态后,能否达到预期的控制目的,能否满足必要的控制精度,要解决这个问题,就必须对系统的稳态特性进行分析。稳态特性的性能指标就是稳态误差。 3.5.1 稳态误差 控制系统的误差可以表示为 (3.75) 式中是被控制变量的期望值,y(t)是被控制变量的实际值,即控制系统的 输出。 稳定的控制系统,在输入变量的作用下,动态过程结束后,进入稳定状态的误差,称为稳态误差

图3.23 单位反馈和非单位反馈系统 (a)单位反馈系统;(b)非单位反馈系统 在控制工程中,常用控制系统的偏差信号来表示误差。对图 3.23(a)所示的单位反馈系统,误差与偏差的含义是相同的,即 (3.76) 式中r(t)为系统的给定值,也就是输出y(t)的期望值。单位反馈系统的稳态误差为: (3.77) 对图3.23(b)所示的非单位反馈系统,因为反馈变量f(t)并不与输出变量y(t)完全相同,所以给定值与反馈变量之差,即偏差并不是(3.75)式意义上的误差。但如果反馈环节H(s)不含有积分环节,在时,由于暂态项的消失,反馈 量与输出量之间就只差一个比例系数我们认为反馈量可以代表输出 量,于是,定义非单位反馈系统的误差为 (3.78) 式中r(t)是非单位反馈系统的给定值,f(t)是反馈信号。根据图3.23(b)非单位反馈系统各环节间信号的关系,可得 (3.79)

(推荐)系统误差的处理

系统误差有确定的客观规律,要在掌握其来源的基础上采取有关技术措施消除或削弱。对于系统误差的处理只能根据具体情况采取不同的措施,因而需要测量者充分发挥其学识、经验和技巧水平进行处理。 由实践经验,处理系统误差要从以下几方面着手: (1)尽可能预计产生系统误差的来源,并在实施测量前采取措施消除或削弱其影响。如采取恒温、稳压等措施,使有关因素的影响减小到可接受的程度。 (2)采用一些行之有效的测量方法,以消除或减小系统误差。 (3)进行数据处理时,检验系统误差是否仍存在。 (4)估计出残存的系统误差值或范围,确定其对测量结果的影响。 一、对产生系统误差来源的消除或削弱 在开始测量前尽量发现并消除系统误差来源或防止测量受这些来源的影响,是消除或减弱系统误差的最好方法。主要考虑以下一些方面。 测量原理与方法要尽力做到正确、严格,不产生方法误差或使所产生的方法误差小于允许范围。例如,用伏安法测量电阻Rx有两种连接方法,如图2.17(a)和(b)所示。 如电压表与电流表的内阻分别为RV与RA,可导出:图2.17(a)线路的系统误差为 ;图2.17(b)线路的系统误差为+RA。当Rx<RV时,用图2.17(a)接法;当Rx>RA时,用图2.17(b)接法,这是减小系统误差的正确选择。 测量中所使用的仪器应按规定期限进行定期检定和校准并注意仪器的正确使用条件和方法,对仪器的放置位置、工作状态、所用电源情况、接地、附件和导线的使用及连接都应符合规定并正确合理。 注意环境对测量的影响,如温度、振动、电磁干扰等,可采取一些辅助措施减少环境条件变化所产生的有害影响,如散热、减振、屏蔽等。必要时采用恒温、恒湿、恒压箱及屏蔽室等。 提高测量人员的素质与责任心,并注意改进设备与工作条件,以避免或减小人身误差。 二、消除或减弱系统误差的几种典型测量方法 1.零示法零示法是一种广泛应用的测量方法,主要用于消除因指示仪表不准而造成的误差。测量时被测物理量与标准已知量进行比较,使两者的效应互相抵消。当总效应刚好为零时,达到平衡。指示器的作用是判断平衡,只要求有足够的灵敏度,测量的准确度主要取决于标准已知量。 图2.18表示用零示法测量电压的电路,图中E为标准电池,R=R1+R2为标准分压器。当调节分压器的分压比使检流计指向零时,A和B两点为等位点,所以Ux=U=ER2/R。在测量过程中,只须判断检流计中有无电流而不须读数,只要标准电池与标准分压器准确,检流计灵敏度高,测量就会准确。一般电气测量中常用电桥测电阻也是零示法的一种典型运用。

(完整版)第四章误差与实验数据的处理-答案

第四章误差与实验数据的处理练习题参考答案 1. 下列各项定义中不正确的是( D) (A)绝对误差是测定值和真值之差 (B)相对误差是绝对误差在真值中所占的百分率 (C)偏差是指测定值与平均值之差 (D)总体平均值就是真值 2. 准确度是(分析结果)与(真值)的相符程度。准确度通常用(误差)来表示,(误差)越小,表明分析结果的准确度越高。精密度表示数次测定值(相互接近)的程度。精密度常用(偏差)来表示。(偏差)越小,说明分析结果的精密度越高。 3. 误差根据其产生的原因及其性质分为系统误差和(随机误差)两类。系统误差具有(重复性)、(单向性)和(可测性)等特点。 4. 对照试验用于检验和消除(方法)误差。如果经对照试验表明有系统误差存在,则应设法找出其产生的原因并加以消除,通常采用以下方法:(空白试验),(校准仪器和量器),( 校正方法)。 5. 对一个w(Cr)=1.30%的标样,测定结果为1.26%,1.30%,1.28%。则测定结果的绝对误 差为(-0.02%),相对误差为(-1.5%)。 6. 标准偏差可以使大偏差能更显著地反映出来。(√) 7. 比较两组测定结果的精密度(B) 甲组:0.19%,0.19%,0.20%,0.21%,0.21% 乙组:0.18%,0.20%,0.20%,0.21%,0.22% (A)甲、乙两组相同(B)甲组比乙组高(C)乙组比甲组高(D)无法判别 8. 对于高含量组分(>10%)的测定结果应保留(四)位有效数字;对于中含量组分(1%~10%) 的测定结果应保留(三)位有效数字;对于微量组分(<1%)的测定结果应保留(两)位有效数字。 9. 测定的精密度好,但准确度不一定好,消除了系统误差后,精密度好的,结果准确度就好。(√) 10. 定量分析中,精密度与准确度之间的关系是( C) (A)精密度高,准确度必然高(B)准确度高,精密度也就高 (C)精密度是保证准确度的前提(D)准确度是保证精密度的前提 11. 误差按性质可分为(系统)误差和(随机)误差。 12. 下列叙述中错误的是( C)

控制系统的稳定性

3.8 控制系统的稳定性 3.8 控制系统的稳定性 稳定性是控制系统最重要的特性之一。它表示了控制系统承受各种扰动,保持其预定工作状态的能力。不稳定的系统是无用的系统,只有稳定的系统才有可能获得实际应用。我们前几节讨论的控制系统动态特性,稳态特性分析计算方法,都是以系统稳定为前提的。 3.8.1 稳定性的定义 图3.26(a)是一个单摆的例子。在静止状态下,小球处于A位置。若用外力使小球偏离A而到达A’,就产生了位置偏差。考察外力去除后小球的运动,我们会发现,小球从初始偏差位置A',经过若干次摆动后,最终回到A点,恢复到静止状态。图3.26(b)是处于山顶的一个足球。足球在静止状态下处于B位置。如果我们用外力使足球偏离B位置,根据常识我们都知道,足球不可能再自动回到B位置。对于单摆,我们说A位置是小球的稳定位置,而对于足球来说,B则是不稳定的位置。 图 3.26 稳定位置和不稳定位置 (a)稳定位置;(b)不稳定位置 处于某平衡工作点的控制系统在扰动作用下会偏离其平衡状态,产生初始偏差。稳定性是指扰动消失后,控制系统由初始偏差回复到原平衡状态的性能。若能恢复到原平衡状态,我们说系统是稳定的。若偏离平衡状态的偏差越来越大,系统就是不稳定的。 在控制理论中,普遍采用了李雅普诺夫(Liapunov)提出的稳定性定义,内容如下: 设描述系统的状态方程为 (3.131)

式中x(t)为n维状态向量,f(x(t),t)是n维向量,它是各状态变量和时间t的函数。如果系统的某一状态,对所有时间t,都满足 (3.132) 则称为系统的平衡状态。是n维向量。当扰动使系统的平衡状态受到破坏时,系统就会偏离平衡状态,在时,产生初始状态=x。在时,如果对于任一实数,都存在另一实数,使得下列不等式成立 (3.133) (3.134) 则称系统的平衡状态为稳定的。 式中称为欧几里德范数,定义为: (3.135) 矢量的范数是n维空间长度概念的一般表示方法。 这个定义说明,在系统状态偏离平衡状态,产生初始状态以后,即以后,系统的状态将会随时间变化。对于给定的无论多么小的的球域S(),总存在另一个的球域,只要初始状态不超出球域,则系统的状态 的运动轨迹在后始终在球域S()内,系统称为稳定系统。 当t无限增长,如果满足: (3.136) 即系统状态最终回到了原来的平衡状态,我们称这样的系统是渐近稳定的。对于任意给定的正数,如果不存在另一个正数,即在球域内的初始状态,在后,的轨迹最终超越了球域S(),我们称这种系统是不稳定的。 图3.27是二阶系统关于李雅普诺夫稳定性定义的几何说明。

误差与数据处理

误差与数据处理 一、测量与误差 1、所谓测量:就是用计量仪器对被测物理量进行量度。 2、测量值:用测量仪器测定待测物理量所得的数值。 3、真值:任一物理量都有它的客观大小,这个客观量称为真值。 最理想的测量就是能够测得真值,但由于测量是利用仪器,在一定条件下通过人来完成的,受仪器的灵敏度和分辨能力的局限性,环境的不稳定性和人的精神状态等因素的影响,使得待测量的真值是不可测得的。 4、误差:测量值和真值之间总会存在或多或少的偏差,这种偏差就称为测量值的误差。设被测量的真值为 a,测量值为x,则测量误差为我们所测得的一切数据都毫无例外地包含一定的误差,因而误差存在于一切测量之中。 5、测量的任务是: (1)设法使测量值中的误差减到最小。 (2)求出在测量条件下被测量的最近真值。 (3)估计最近真值的可靠程度 二、误差的分类: 1、系统误差: ●系统误差:在同一条件下(观察方法、仪器、环境、观察者不变)多次测量同一物理量时,符号和绝对值保持不变的误差叫系统误差。当条件发生变化时,系统误差也按一定规律变化。系统误差反映了多次测量总体平均值偏离真值的程度。 例如:用天平测量物体质量,当天平不等臂时,测出物体质量总是偏大或偏小;再例如当我们的手表走的很慢时,测出每一天的时间总是小于24小时。 ●产生系统误差的原因: (1)仪器误差:由测量仪器、装置不完善而产生的误差。 (2)方法误差(理论误差):由实验方法本身或理论不完善而导致的误差。 (3)环境误差:由外界环境(如光照、温度、湿度、电磁场等)影响而产生的误差。 (4)读数误差:由观察者在测量过程中的不良习惯而产生的误差。

●系统误差的消除: 由于系统误差主要是由于仪器不完善,方法(或理论)不完善、环境影响而产生,在实验过程中要不断积累经验,认真分析系统误差产生的原因,采取适当的措施来消除。 例如:对不等臂天平,可以用交换被测物和砝码的位置,分别测出被测物质量和, 则待测物的质量 2、偶然误差 ●偶然误差(随机误差): 在同一条件下,多次测量同一物理量时,测量值总是有稍许差异而变化不定,这种绝对值和符号经常变化的误差称为偶然误差。 ●偶然误差的规律性: (1)绝对值相等的正的误差和负的误差出现的机会相同。 (2)绝对值小的误差比绝对值大的误差出现的机会多。 (3)超出一定范围的误差基本不出现。 ●偶然误差的消除: 在一定测量条件下,增加测量次数,可以减小测量结果的偶然误差,使算术平均值趋于真值。因此,可以取算术平均值为直接测量的最近真值(最佳值)。 3、绝对误差: ●绝对误差:测量值x与被测量真值a之差,同被测量有相同单位,它反映了测量值偏离真值的大小。这种有单位的误差称为绝对误差。 在同一测量条件下,绝对误差可以表示一个测量结果的可靠程度;但比较不同测量结果时,问题就出现了。例如:用米尺测量二个物体的长度时,测量值分别是0.1m和1000m,它们的绝对误差分别是0.01m和1m,虽然后者的绝对误差远大于前者,但是前者的绝对误差占测量值的10%,而后者的绝对误差仅占测量值的0.1%,说明后一个测量值的可靠程度远大于前者,故绝对误差不能正确比较不同测量值的可靠性。 4、相对误差: ●相对误差:测量值的绝对误差与测量值之比叫相对误差。相对误差是一个比值,没有单位,通常用百分比表示。

系统误差处理

等精度测量系统误差编程处理 一、实验目的 (1)、通过C语言编程,实现系统误差的处理。 (2)、加深对C语言的理解,提高对C语言的使用能力。 (3)、掌握对系统误差的判断方法,加深对系统误差的理解。 二、实验内容 1、实验数据 算数平均值为24.775mm。残余误差和为-0.001mm。 残余误差平方和为0.000069mm2。 贝塞尔公式求得的标准差为0.0029mm。 别捷尔斯公式求得的标准差为0.0031mm。 2、实验思路 要想得到单次测量的标准差,必须先求的测量列的算术平均值,其次求的残余误差,再求残余误差平方和,然后由贝塞尔公式或别捷尔斯公式求得测量列单次的标准差,然后由不同公式计算标准差比较法,得出是否含有系统误差。 三、编程实现 1、求算术平均值 为了实现模块化,在此处用调用函数的方法,对数组求平均值。将测量列看成数组,且赋值给一个数组,然后将数组的首地址当做参数传递给函数,结果由return语句返回到主函数。 实现算术平均值程序为: double averaqe_number(double *s,int N) { double sum=0.0; double averaqe=0.0; int i=0; while(i

return(averaqe); } 2.残余误差和的实现 由残余误差计算公式可得:残余误差=测量值-平均值。所以可以将上一步求得的平均值作为函数的一个参数传递到残余误差函数,然后在编写残余误差程序,实现对残余误差和的求解。 残余误差和求解程序如下: double offset(double b[],int N,double mean) { double z=0.0; int i; for(i=0;i

基于Simulink控制系统的稳态误差分析

基于Simulink 控制系统的稳态误差分析 一、实验目的 1.掌握使用Simulink 仿真环境进行控制系统稳态误差分析的方法。 2.了解稳态误差分析的前提条件是系统处于稳定状态。 3.研究系统在不同典型输入信号作用下,稳态误差的变化。 4.分析系统在扰动输入作用下的稳态误差。 5.分析系统型次及开环增益对稳态误差的影响。 二、实验设备和仪器 1.计算机 2. MATLAB 软件 三、实验原理 1.误差的意义: a) 给定信号作用下的稳 态误差表征系统输出跟随输入信号的能力。 b) 系统经常处于各种扰动作用下。如:负载力矩的变化,电源电压和频率的波动,环境温度的变化等。因此系统在扰动作用下的稳态误差数值,反映了系统的抗干扰能力。 注意:系统只有在稳定的前提下,才能对稳态误差进行分析。 定义式法求稳态误差: [] lim ()lim ()lim ()()lim ()lim () ss r d t s s r d s s ssr ssd e e t sE s s E s E s sE s sE s e e →∞→→→→===+=+=+ 2. 给定信号作用下的误差E )()1R s = +扰动信号作用下的误差()d E s )()1(G D s G -= +R(s)是给定输入信号(简称给定信号) ;D(s)是扰动输入信号(简称扰动信号);()()G s H s 是开环传递函数。 3. 静态误差系数法(只能用于求给定信号作用下误差) 这种简便的求解给定信号稳态误差 ssr e 的方法叫做静态误差系数法,首先给出系统在不同输入信号下的误差系数的定义: 当()0R R s s =时,定义静态位置误差 系数为:0 lim ()() p s K G s H s →= R

系统误差的产生原因及处理方法

试论系统误差特点、分类、产生原因及消除方法 摘要:本文从系统误差的概念出发,论述了系统误差的特点、分类、产生系统误差的原因及系统误差的减小和消除方法。 关键词:系统误差特点分类产生原因消除方法系统误差是指在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。它往往是由不可避免的因素造成的。 一、系统误差的特点 系统误差是可以通过实验或分析的方法,查明其变化规律和产生原因,通过对测量值的修正,或者采取别的预防措施,就能够消除或减少它对测量结果的影响。 系统误差的大小表明测量结果的正确度。它说明测量结果相对真值有一恒定误差,或者存在着按确定规律变化的误差。系统误差愈小,则测量结果的正确度愈高。 二、系统误差的分类 1、按照误差掌握的程度分为已定系统误差和未定系统误差。 已定系统误差是指误差绝对值和符号已经确定的系统误差。 未定系统误差是指误差绝对值和符号未能确定的系统误差,但通常可估计出系统误差。 2、按照误差出现的规律,分为不变系统误差和变化系统误差。 不变系统误差是指误差绝对值和符号为固定的系统误差。 变化系统误差是指误差绝对值和符号为变化的系统误差。按其变化规律又可分为线性系统误差、周期性系统误差和复杂规律系统误差。 三、系统误差产生的原因 系统误差是由固定不变或因素或按确定规律变化的因素所造成,主要包括以下几个方面的因素: 1、仪器和装置方面的因素 因使用的仪器本身不够精密所造成的测定结果与被测量真值之间的偏差,如使用未经检定或校准的仪器设备、计量器具等都会造成仪器误差。或因检测仪器

和装置结构设计原理上的缺点,如齿轮杠杆测微仪直线位移和转角不成比例而产生的误差;由仪器零件制造和安装不正确,如标尺的刻度偏差、刻度盘和指针的安装偏心、天平的臂长不等所产生的误差。 2、环境因素 待测量值在实际环境温度和标准环境温度下测量所产生的偏差、在测量过程中待测量随温度、湿度和大气压按一定规律变化的产生的偏差。 3、测定方法方面的因素 是由测定方法本身造成的误差,或由于测试方法本身不完善、使用近似的测定方法或经验公式引起的误差。例如,在重量分析中,由于沉淀的溶解,共沉淀现象,灼烧时沉淀分解或挥发等原因都会引起测定的系统误差。 4、人员因素 由于操作人员的生理缺陷、主观偏见、不良习惯等到个人特点或不规范操作,如在刻度上估计读数时,习惯上偏于某一方向、读滴定管数值时偏高或偏低,滴定终点颜色辨别偏深或偏浅而产生的误差。由于人员因素而产生的误差一般称为操作误差。 5、使用试剂方面的因素 由于检验中所用蒸馏水含有杂质或所使用的试剂不纯所引起的测定结果与实际结果之间的偏差。 四、系统误差的减小和消除方法 为了尽量减小或消除系统误差对测定结果的影响,可以用以下方法来减小和消除系统误差。 1、从产生误差的根源上消除系统误差 这是消除系统误差的根本方法。在测定之前,要求检测人员在检测过程中可能产生的系统误差进行认真的分析,必须尽可能预见一切可能产生系统误差的来源,并设法消除或尽量减弱其影响。例如,测量前对仪器本身性能进行检查,使仪器的环境条件和安装位置符合检验技术要求的规定;对仪器在使用前进行正确的调整;严格检查和分析测量方法是否正确等来消除仪器、检测方法、环境等因素而产生的系统误差;为防止因仪器长期使用而使其精度降低,及时送计量部门进行周期检定。

自动控制系统的稳定性和稳态误差分析

实验三 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5)()(0.5)(0.7)(3) s G s s s s s +=+++,用MATLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) 运行结果如下: Transfer function: 0.2 s + 0.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5

s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den) 运行结果如下: p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = -2.5000 p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

相关文档
最新文档