钢的主要技术性能

合集下载

常用建筑钢材主要技术性能指标

常用建筑钢材主要技术性能指标

常用建筑钢材主要技术性能指标一、碳素结构钢碳素结构钢主要轧制成型材(圆、方、扁、工、槽、角等钢材)、异型型钢(轻轨、窗框钢、汽车轮轮辋钢等)和钢板,用于厂房、桥梁、船舶、建筑及工程结构。

这类钢材一般不需热处理即可直接使用。

碳素结构钢的力学、工艺性能及化学成分指标应符合表10-2、表10-3和表l0-4的规定。

表10-2 碳素结构钢的力学性能表10-3 碳素结构钢的冷弯性能注:B为试样宽度,a为钢材厚度(直径)。

表l0-4 碳素结构钢化学成分Q235A 0.14~0.30~0.30.050 0.045 F.b,ZB 0.12~0.30~0.045C ≤0.18 0.34~0.040 0.040 ZD ≤0.17 0.035 0.035 TZQ255 A 0.18~0.47~0.3 0.050 0.045 F.b.ZB 0.045Q75 0.28~0.50~O.35 0.050 0.045 Z二、常用建筑钢筋按生产工艺、性能和用途的不同,常用建筑钢筋可分为热轧光面圆钢筋、热轧带肋钢筋、低碳热轧网缸条钢筋、冷拉钢筋、热处理钢筋等。

1.热轧光向圆钢筋经热轧成型并自然冷却的成品为表面光圆的钢筋(见图10-1),称为热轧光面圆钢筋。

按其供应方式又可分为热轧直条光圆钢筋(直径为8~20mm)和热轧圆盘条钢筋(直径为5.5~14mm)。

图10-1 光圆钢筋截面形态I级钢筋足用Q235号钢轧制而成,是低强度钢筋,蝮性好,伸长率大,便于弯折成型,焊接性好,广泛用于普通钢筋t昆凝土构件中。

圆钢盘条可用作中小型构件的受力筋或构造筋,还可加工成冷拔低碳钢丝及冷轧钢筋等。

(I)钢筋混凝土用热轧光面圆钢筋钢筋混凝土用热轧光面圆钢筋的力学、工艺性能见表10-5,牌号及化学成分见表10-6。

表10-5 钢筋混凝土用热轧光面圆钢筋力学工艺性能表10-6 钢筋混凝土用热轧光面圆钢筋牌号及化学成分(2)低碳热轧圆盘条(GH701-97)盘条钢筋是成卷盘状供应的热轧钢筋。

建筑钢材的主要技术性能

建筑钢材的主要技术性能

钢材的技术性质主要包括力学性能力学性能力学性能和工艺性能工艺性能工艺性能两个方面。

一、力学性能力学性能::力学性能又称机械性能,是钢材最重要的使用性能。

在建筑结构中,对承受静荷载作用的钢材,要求具有一定的力学强度,并要求所产生的变形不致影响到结构的正常工作和安全使用。

对承受动荷载作用的钢材,还要求具有较高的韧性而不致发生断裂。

(一)、)、强度强度强度::在外力作用下在外力作用下,,材料抵抗变形和断裂的能力称为强度材料抵抗变形和断裂的能力称为强度。

测定钢材强度的方法是拉伸试验,钢材受拉时,在产生应力的同时,相应的产生应变。

应力-应变的关系反映出钢材的主要力学特征。

因此,抗拉性能是钢材最重要的技术性质。

根据低碳钢受拉时的应力低碳钢受拉时的应力低碳钢受拉时的应力--应变曲线应变曲线(如图6-1),可了解到抗拉性能的下列特征指标。

1、弹性模量和比例极限弹性模量和比例极限::钢材受力初期,应力与应变成正比例增长,应力与应变之比是常数,称为弹性模量弹性模量弹性模量即E =σ/ε。

这个阶段的最大应力(P 点的对应值)称为比例极限比例极限σp 。

E 值越大,抵抗弹性变形的能力越大;在一定荷载作用下,E 值越大,材料发生的弹性变形量越小。

一些对变形要求严格的构件,为了把弹性变形控制在一定限度内,应选用刚度大的钢材。

2、弹性极限弹性极限::应力超过比例极限后,应力-应变曲线略有弯曲,应力与应变不再成正比例关系,但卸去外力时,试件变形仍能立即消失,此阶段产生的变形是弹性变形。

不产生残留塑性变不产生残留塑性变形的最大应力形的最大应力(e 点对应值)称为弹性极限弹性极限σe 。

事实上,σp 和σe 相当接近。

3、屈服强度屈服强度::屈服强度屈服强度::钢材开始丧失对变形的抵抗能力钢材开始丧失对变形的抵抗能力,,并开始产生大量塑性变形时所对应的应力并开始产生大量塑性变形时所对应的应力。

在屈服阶段,锯齿形的最高点所对应的应力称为屈服上限屈服上限屈服上限;锯齿形的最低点所对应的应力称为屈服下限屈服下限屈服下限。

钢材基本性能及指标

钢材基本性能及指标
用下,抵抗过大(塑性)变形和断裂的能力。应力所能达到的某些最大值,也是材料本构关系曲线上的某些应力特征点。指标:屈服点fy(σs)极限强度fu(σb)弹性:钢材在外力作用下产生变形,在外力取消后恢复原状的性能。指标:比例极限fp,弹性极限fe,弹性模量Eσ<fy理想的弹性体:变形小且可恢复,且有强度储备σ≥fy理想的塑性体:变形大且不可恢复,也没有强度储备所以一般可将钢材视为理想的弹塑性材料。通常取屈服点作为强度标准值,而且取受拉和受压的屈服点相同。一则极限强度与屈服点之间的强度差作为储备,留有强度余地;二则屈服点对应的应变(宏观为变形)很小,可以满足正常使用的要求,而极限强度对应的应变(变形)很要大近20倍左右,无法满足正常使用的要求。2.塑性:钢材受力断裂过程中发生不能恢复的残余变形的能力。指标:伸长率说明:因标距不同,有δ5(l0=5d)和δ10(l0=10d),但后一种已基本上不再采用,一则两者共存容易产生混淆,二则可节省试件钢材。断面收缩率后者与标距无关,表征塑性较前者更好,但测量误差较大。塑性越好,越不容易发生脆性断裂,受力过程中,应力和内力重分布就越充分,设计就越安全,破坏前的预兆越明显。Z向(厚度方向性能)钢板就是采用厚度方向拉伸的断面收缩率作为性能级别的划分依据。3.冷弯性能:常温下钢材承受弯曲加工变形的能力。将试件冷弯180o而不出现裂纹或分层。定性指标:合格或不合格。冷弯性能合格的钢材才具有良好的常温加工工艺性能。4.韧性:钢材在冲击荷载作用下,变形和断裂过程中吸收机械能的能力。综合反映钢材的内在质量及力学性能,是强度和塑性的综合指标(σ~ε曲线和坐标轴围成的面积)。是衡量钢材抵抗因低温、应力集中、冲击荷载等作用而脆性断裂的能力。指标:冲击功Akv原为梅氏(Mesnager)U形缺口试件,现采用夏比(Charpy)V形缺口试件。5.可焊性:反映钢材焊接的可行性及焊缝的受力性能。包含施工工艺和受力性能两个方面的可焊性。指标:碳当量。《建筑钢结构焊接技术规程》JGJ81-2002、J218-2002的§2.0.1:建筑钢结构工程焊接难度可分为一般、较难和难三种情况。施工单位在承担钢结构焊接工程时应具备与焊接难度相适应的技术条件。建筑钢结构工程的焊接难度可按下表区分。6.耐久性:钢材在长期使用后的力学性能。耐腐蚀性耐老化(时效硬化)耐长期高温耐疲劳普通钢材供应提供的材性保证:三项保证:屈服点fy(σs)、极限强度fu(σb)、伸长率四项保证:屈服点fy(σs)、极限强度fu(σb)、伸长率、180°冷弯五项保证:屈服点fy(σs)、极限强度fu(σb)、伸长率、180°冷弯、冲击功提供保证的材性越多,钢材的价格也越贵。

建筑钢材2

建筑钢材2

3.预应力钢筋混凝土用热处理钢筋
大型预应力混凝土构件,由于受力很大,常 采用高强度钢丝或钢绞线作为主要受力钢筋。 预应力高强度钢丝是用优质碳素结构钢盘条, 经酸洗、冷拉或再经回火处理等工艺制成, 钢铰线是由7根直径为2.5~5.0㎜的高强度 钢丝,铰捻后经一定热处理清除内应力而制 成。铰捻方向一般为左捻。
伸长率反映的是钢材在均匀变形
下的塑性,而冷弯性能是钢材处于 不利条件下的塑性,可以揭示钢材 内部组织是否均匀,是否存在内应 力和夹杂物等缺陷。
(2)焊接性能
可焊性是指在一定焊接工艺条件下,在焊缝及 其附近过热区是否产生裂缝及脆硬影响,焊接后接 头强度是否与母体相近的性能。 可焊性受化学成分及含量的影响。含碳量高、 含硫量高、合金元素含量高等,均会降低可焊性。 含碳量小于0.25%的非合金钢具有良好的可焊性。 焊接结构应选择含碳量较低的氧气转炉或平炉 的镇静钢。当采用高碳钢及合金钢时,为了改善焊 接后的硬脆性,焊接时一般要采用焊前预热及焊后 热处理等措施。
直径范围为4~12mm,推荐的公称直径为5、6、7、8、9、10mm
④力学性能和工艺性能
应符合GB13788的相关规定 。
⑤应用
冷轧带肋钢筋用于非预应力构件,与热轧圆盘条 相比,强度提高17%左右,可节约钢材30%左右; 用于预应力构件,与低碳冷拔丝比,伸长率高, 钢筋与混凝土之间的粘结力较大,适用于中、小 预应力混凝土结构构件,也适用于焊接钢筋网。
建筑钢材
二、 钢材的主要技术性能
1.力学性能
钢材的力学性能主要有抗拉性能、耐疲劳性能、 冲击韧性、硬度和应力松弛等。 (1)抗拉性能 抗拉性能是建筑钢材最重要的技术性质。建筑钢 材的抗拉性能,可用低碳钢受拉时的应力一应变图来 阐明,图中明显分为以下四个阶段:

建筑钢材的力学性能及其技术指标

建筑钢材的力学性能及其技术指标

建筑钢材的力学性能及其技术指标建筑钢材是指用于建筑结构中的钢材,它具有良好的力学性能和技术指标。

下面将介绍建筑钢材的力学性能及其技术指标。

一、建筑钢材的力学性能1.强度和刚度:建筑钢材具有较高的抗拉强度和抗压强度,能够承受较大的外部载荷。

同时,由于其刚度大,具有较小的变形,能够满足建筑结构的稳定性要求。

2.塑性和韧性:建筑钢材具有良好的塑性和韧性,能够在受力时发生较大的塑性变形,吸收和耗散外部能量,减少结构的破坏和破裂。

3.耐久性:建筑钢材具有较好的耐久性,能够长期承受外界气候和环境的影响而不失去其力学性能。

4.焊接性能:建筑钢材具有良好的焊接性能,能够通过焊接工艺进行连接,形成结构稳定的整体。

5.疲劳性能:建筑钢材具有较好的疲劳性能,能够在反复加载下保持其强度和刚度,延长结构的使用寿命。

6.抗震性能:建筑钢材具有良好的抗震性能,能够在地震等自然灾害中发挥重要作用,减少人员伤亡和财产损失。

二、建筑钢材的技术指标1.材料标志和牌号:建筑钢材按照国家标准进行分类和命名,各种型号的钢材具有不同的技术指标和力学性能。

2.化学成分:建筑钢材的化学成分对其力学性能有重要影响,需要满足国家标准规定的要求。

3.技术要求:建筑钢材需要符合国家标准中对其材质、外观、尺寸、允许偏差等技术要求的规定。

4.制造工艺:建筑钢材需要通过特定的制造工艺来满足其设计要求,如轧制、锻造、热处理等。

5.力学性能指标:建筑钢材需要满足国家标准中规定的抗拉强度、屈服强度、伸长率、冲击功等力学性能指标。

6.表面质量:建筑钢材的表面应光洁,无裂纹、缺陷和鳞片,能够满足建筑外观和防腐要求。

7.表面处理:建筑钢材可以进行防腐处理,如喷涂防锈剂、热镀锌等,以提高其抗腐蚀性能。

总结:建筑钢材具有良好的力学性能和技术指标,能够满足建筑结构的要求。

在实际应用中,需要根据具体的工程需求选择合适的建筑钢材,并进行相关的技术检验和验收,以确保其质量和安全性能。

常用建筑钢材主要技术性能指标

常用建筑钢材主要技术性能指标

常用建筑钢材主要技术性能指标一、碳素结构钢碳素结构钢主要轧制成型材(圆、方、扁、工、槽、角等钢材)、异型型钢(轻轨、窗框钢、汽车轮轮辋钢等)和钢板,用于厂房、桥梁、船舶、建筑及工程结构。

这类钢材一般不需热处理即可直接使用。

碳素结构钢的力学、工艺性能及化学成分指标应符合表10-2、表10-3和表l0-4的规定。

表10-2 碳素结构钢的力学性能表10-3 碳素结构钢的冷弯性能注:B为试样宽度,a为钢材厚度(直径)。

表l0-4 碳素结构钢化学成分Q235A 0.14~0.30~0.30.050 0.045 F.b,ZB 0.12~0.30~0.045C ≤0.18 0.34~0.040 0.040 ZD ≤0.17 0.035 0.035 TZQ255 A 0.18~0.47~0.3 0.050 0.045 F.b.ZB 0.045Q75 0.28~0.50~O.35 0.050 0.045 Z二、常用建筑钢筋按生产工艺、性能和用途的不同,常用建筑钢筋可分为热轧光面圆钢筋、热轧带肋钢筋、低碳热轧网缸条钢筋、冷拉钢筋、热处理钢筋等。

1.热轧光向圆钢筋经热轧成型并自然冷却的成品为表面光圆的钢筋(见图10-1),称为热轧光面圆钢筋。

按其供应方式又可分为热轧直条光圆钢筋(直径为8~20mm)和热轧圆盘条钢筋(直径为5.5~14mm)。

图10-1 光圆钢筋截面形态I级钢筋足用Q235号钢轧制而成,是低强度钢筋,蝮性好,伸长率大,便于弯折成型,焊接性好,广泛用于普通钢筋t昆凝土构件中。

圆钢盘条可用作中小型构件的受力筋或构造筋,还可加工成冷拔低碳钢丝及冷轧钢筋等。

(I)钢筋混凝土用热轧光面圆钢筋钢筋混凝土用热轧光面圆钢筋的力学、工艺性能见表10-5,牌号及化学成分见表10-6。

表10-5 钢筋混凝土用热轧光面圆钢筋力学工艺性能表10-6 钢筋混凝土用热轧光面圆钢筋牌号及化学成分(2)低碳热轧圆盘条(GH701-97)盘条钢筋是成卷盘状供应的热轧钢筋。

常见工业用钢的性能及用途

常见工业用钢的性能及用途

常见工业用钢的性能及用途工业用钢是广泛应用于各个行业的一种重要材料,其性能和用途主要由其合金成分、热处理和机械加工方式决定。

以下是几种常见的工业用钢及其性能和用途的介绍。

1.碳钢:碳钢是一种含有较少合金元素的钢,主要成分为碳和铁。

碳钢具有良好的焊接性、机械性能和耐磨性。

根据碳含量的不同,碳钢可以分为低碳钢、中碳钢和高碳钢。

低碳钢常用于制造汽车零部件、建筑结构、家具等产品;中碳钢多用于汽车制造、机械制造和工具制造;高碳钢适合用于切削工具、弹簧等领域。

2.不锈钢:不锈钢是一种合金钢,其中主要合金元素为铬和镍,能够有效地防止锈蚀和腐蚀。

不锈钢具有良好的耐腐蚀性、强度和耐热性。

不锈钢广泛应用于食品加工、化工、海洋工程、医疗设备等行业。

根据不锈钢的组成和性能,不锈钢可以进一步分为奥氏体不锈钢、铁素体不锈钢和马氏体不锈钢等。

3.合金钢:合金钢是指添加了合金元素的钢,如铬、钼、钴、镍等。

合金钢的性能因其合金元素的组成而异。

合金钢具有高强度、耐热性和耐腐蚀性,广泛用于汽车、航空航天、石油化工和建筑等领域。

根据不同的合金元素,合金钢可以分为低合金钢、中合金钢和高合金钢等。

4.工具钢:工具钢是一种专用钢种,具有优异的切削性能、热处理稳定性和磨损抗性。

根据使用要求,工具钢可以分为冷作工具钢、热作工具钢和高速度钢等类型。

工具钢广泛应用于切削工具、模具、冷冲压件等领域。

5.耐磨钢:耐磨钢是具有高硬度和耐磨性的特殊钢种,主要用于抵抗磨损和冲击。

耐磨钢常用于铸造矿石破碎、煤矿开采和钢铁生产等场合。

根据使用环境和要求的不同,耐磨钢可以分为高碳钢、低合金耐磨钢和多合金耐磨钢等。

6.高温合金钢:高温合金钢是一种能在高温环境下保持稳定性能的钢。

这种钢具有高温强度、高温蠕变和高温氧化抗性。

高温合金钢主要用于电力行业的锅炉、汽轮机、核反应堆和航空航天等领域。

总之,工业用钢具有丰富的品种和广泛的应用领域。

根据不同的要求,可选择不同性能的工业用钢,以满足各个行业的需求。

钢筋的主要技术指标及功能描述

钢筋的主要技术指标及功能描述

钢筋是建筑工程中重要的建筑材料,其质量对建筑物的安全和寿命有着至关重要的影响。

以下是对钢筋的主要技术指标及功能的详细描述。

一、钢筋的强度和变形性能钢筋的强度是衡量钢筋质量最重要的指标,它直接影响到钢筋的抗压、抗拉和抗弯等力学性能。

通常,我们用屈服强度、抗拉强度和伸长率来衡量钢筋的强度和变形性能。

屈服强度代表钢筋在承受压力时发生塑性变形的能力,抗拉强度则代表钢筋承受拉力时抵抗断裂的能力,而伸长率则代表钢筋在承受压力或拉力时变形而不致断裂的能力。

二、钢筋的种类和特点钢筋根据化学成分、生产工艺、形状等特征可以分为多种类型,如碳钢钢筋、合金钢钢筋、有色金属钢筋等。

其中,碳钢钢筋应用最为广泛,包括光面钢筋、带肋钢筋、扭转钢筋等。

每种钢筋类型都有其特定的力学性能和用途。

三、钢筋在建筑中的应用在建筑工程中,钢筋主要用于承受荷载、维持结构的稳定性等方面。

例如,在混凝土结构中,钢筋可以与混凝土共同工作,利用混凝土的抗压性能和钢筋的抗拉性能,形成一种强大的复合材料,有效地提高了结构的承载能力和稳定性。

此外,钢筋还可以用于连接各种建筑材料,如预埋件、锚杆等,进一步增强了建筑物的稳定性和安全性。

四、钢筋的其他技术指标除了强度和变形性能外,钢筋还有许多其他重要的技术指标,如伸长率、冷弯性能、持久性能等。

这些指标直接关系到钢筋在各种环境下的使用性能和安全性。

例如,伸长率是衡量钢筋在承受压力或拉力时变形后仍能保持有效工作能力的重要指标;冷弯性能则代表钢筋在特定温度和压力下的塑性变形能力;持久性能则代表钢筋在长期使用或承受反复荷载作用下的可靠性和稳定性。

总之,钢筋作为建筑工程中的重要建筑材料,其质量和技术指标对建筑物的安全和寿命有着至关重要的影响。

只有选择符合标准、性能优良的钢筋,才能确保建筑工程的质量和安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.2 建筑钢材的主要技术性能钢材的技术性质主要包括力学性能(抗拉性能、冲击韧性、耐疲劳和硬度等)和工艺性能(冷弯和焊接)两个方面。

一、力学性能(一) 拉伸性能拉伸是建筑钢材的主要受力形式,所以拉伸性能是表示钢材性能和选用钢材的重要指标。

将低碳钢(软钢)制成一定规格的试件,放在材料试验机上进行拉伸试验,可以绘出如图8.2.1所示的应力一应变关系曲线。

从图中可以看出,低碳钢受拉至拉断,经历了四个阶段:弹性阶段(O一A)、屈服阶段(A-B)、强化阶段(B一C)和颈缩阶段(C一D)。

图8.2.1 低碳钢受拉的应力一应变图1.弹性阶段曲线中OA段是一条直线,应力与应变成正比。

如卸去外力,试件能恢复原来的形状,这种性质即为弹性,此阶段的变形为弹性变形。

与A点对应的应力称为弹性极限,以σp表示。

应力与应变的比值为常数,即弹性模量E,E=σ/ε。

弹性模量反映钢材抵抗弹性变形的能力,是钢材在受力条件下计算结构变形的重要指标。

2.屈服阶段应力超过A点后,应力、应变不再成正比关系,开始出现塑性变形。

应力的增长滞后于应变的增长,当应力达B上点后(上屈服点),瞬时下降至B下点(下屈服点),变形迅速增加,而此时外力则大致在恒定的位置上波动,直到B点,这就是所谓的“屈服现象”,似乎钢材不能承受外力而屈服,所以AB 段称为屈服阶段。

与B下点(此点较稳定、易测定)对应的应力称为屈服点(屈服强度),用σs表示。

钢材受力大于屈服点后,会出现较大的塑性变形,已不能满足使用要求,因此屈服强度是设计上钢材强度取值的依据,是工程结构计算中非常重要的一个参数。

3.强化阶段当应力超过屈服强度后,由于钢材内部组织中的晶格发生了畸变,阻止了晶格进一步滑移,钢材得到强化,所以钢材抵抗塑性变形的能力又重新提高,B 一C 呈上升曲线,称为强化阶段。

对应于最高点C 的应力值(σb )称为极限抗拉强度,简称抗拉强度。

显然,σb 是钢材受拉时所能承受的最大应力值。

屈服强度和抗拉强度之比(即屈强比=σs /σb )能反映钢材的利用率和结构安全可靠程度。

屈强比越小,其结构的安全可靠程度越高,但屈强比过小,又说明钢材强度的利用率偏低,造成钢材浪费。

建筑结构钢合理的屈强比一般为0.60~0.75。

4.颈缩阶段试件受力达到最高点C 点后,其抵抗变形的能力明显降低,变形迅速发展,应力逐渐下降,试件被拉长,在有杂质或缺陷处,断面急剧缩小,直到断裂。

故CD 段称为颈缩阶段。

中碳钢与高碳钢(硬钢)的拉伸曲线与低碳钢不同,屈服现象不明显,难以测定屈服点,则规定产生残余变形为原标距长度的0.2%时所对应的应力值,作为硬钢的屈服强度,也称条件屈服点,用σ0.2表示。

如图8.2.2所示。

O 0.2O b O 0.20%1d L L图8.2.2 中、高碳钢的应力-应变图 图8.2.3 钢材的伸长率(二)塑性建筑钢材应具有很好的塑性。

钢材的塑性通常用伸长率和断面收缩率表示。

将拉断后的试件拼合起来,测定出标距范围内的长度L 1(mm ),其与试件原标距L 0(mm )之差为塑性变形值,塑性变形值与之比L 0称为伸长率(δ),如图8.2.3所示。

伸长率(δ)即如下计算。

伸长率是衡量钢材塑性的一个重要指标,δ越大说明钢材的塑性越好。

而一定的塑性变形能力,可保证应力重新分布,避免应力集中,从而钢材用于结构的安全性越大。

塑性变形在试件标距内的分布是不均匀的,颈缩处的变形最大,离颈缩部位越远其变形越小。

所以原标距与直径之比越小,则颈缩处伸长值在整个伸长值中的比重越大,计算出来的δ值就大。

通常以δ5和δ10分另表示L0=5d0和L0=10 d0时的伸长率。

对于同一种钢材,其δ5 >δ10。

(三) 冲击韧性冲击韧性是指钢材抵抗冲击荷载而不被破坏的能力。

钢材的冲击韧性是用有刻槽的标准试件,在冲击试验机的一次摆锤冲击下,以破坏后缺口处单位面积上所消耗的功(J/cm2)来表示,其符号为αk。

试验时将试件放置在固定支座上,然后以摆锤冲击试件刻槽的背面,使试件承受冲击弯曲而断裂。

αk 值越大,冲击韧性越好。

对于经常受较大冲击荷载作用的结构,要选用αk值大的钢材。

影响钢材冲击韧性的因素很多,如化学成分、冶炼质量、冷作及时效、环境温度等。

(四)耐疲劳性钢材在交变荷载的反复作用下,往往在最大应力远小于其抗拉强度时就发生破坏,这种现象称为钢材的疲劳性。

疲劳破坏的危险应力用疲劳强度(或称疲劳极限)来表示,它是指疲劳试验时试件在交变应力作用下,于规定的周期基数内不发生断裂所能承受的最大应力。

一般把钢材承受交变荷载106~107次时不发生破坏的最大应力作为疲劳强度。

设计承受反复荷载且需进行疲劳验算的结构时,应了解所用钢材的疲劳极限。

研究证明,钢材的疲劳破坏是拉应力引起的,首先在局部开始形成微细裂纹,其后由于裂纹尖端处产生应力集中而使裂纹迅速扩展直至钢材断裂。

因此,钢材的内部成分的偏析、夹杂物的多少以及最大应力处的表面光洁程度、加工损伤等,都是影响钢材疲劳强度的因素。

疲劳破坏经常是突然发生的,因而具有很大的危险性;往往造成严重事故。

(五)硬度硬度是指金属材料在表面局部体积内,抵抗硬物压入表面的能力。

亦即材料表面抵抗塑性变形的能力。

测定钢材硬度采用压入法。

即以一定的静荷载(压力),把一定的压头压在金属表面,然后测定压痕的面积或深度来确定硬度。

按压头或压力不同,有布氏法、洛氏法等,相应的硬度试验指标称布氏硬度(HB)和洛氏硬度(HR)。

较常用的方法是布氏法,其硬度指标是布氏硬度值。

各类钢材的HB值与抗拉强度之间有一定的相关关系。

材料的强度越高,塑性变形抵抗力越强,硬度值也就越大。

由试验得出,其抗拉强度与布氏硬度的经验关系式如下:当HB<175时,σb ≈ 0.36HB当HB>175时,σb ≈ 0.35HB根据这一关系,可以直接在钢结构上测出钢材的HB值,并估算该钢材的σb。

音频教学二、工艺性能良好的工艺性能,可以保证钢材顺利通过各种加工,而使钢材制品的质量不受影响。

冷弯、冷拉、冷拔及焊接性能均是建筑钢材的重要工艺性能。

(一) 冷弯性能冷弯性能是指钢材在常温下承受弯曲变形的能力。

钢材的冷弯性能指标是以试件弯曲的角度(α)和弯心直径对试件厚度(或直径)的比值(d /α)来表示。

钢材的冷弯试验是通过致敬(或厚度)为α的试件,采用标准规定的弯心直径d(d=nα),弯曲到规定的弯曲角(180°或90°)时,试件的弯曲处不发生裂缝、裂断或起层,即认为冷弯性能合格。

钢材弯曲时的弯曲角度愈大,弯心直径愈小,则表示其冷弯性能愈好。

图8.2.4为弯曲时不同弯心直径的钢材冷弯试验。

d=a 180d=0180180d=2a 180d=3a图8.2.4 钢材的冷弯试验通过冷弯试验更有助于暴露钢材的某些内在缺陷。

相对于伸长率而言,冷弯是对钢材塑性更严格的检验,它能揭示钢材是否存在内部组织不均匀、内应力和夹杂物等缺陷,冷弯试验对焊接质量也是一种严格的检验,能揭示焊件在受弯表面存在未熔合、微裂纹及夹杂物等缺陷。

(二)焊接性能在建筑工程中,各种型钢、钢板、钢筋及预埋件等需用焊接加工。

钢结构有90%以上是焊接结构。

焊接的质量取决于焊接工艺、焊接材料及钢的焊接性能。

钢材的可焊性是指钢材是否适应通常的焊接方法与工艺的性能。

可焊性好的钢材指易于用一般焊接方法和工艺施焊,焊口处不易形成裂纹、气孔、夹渣等缺陷;焊接后钢材的力学性能,特别是强度不低于原有钢材,硬脆倾向小。

钢材可焊性能的好坏,主要取决于钢的化学成分。

含碳量高将增加焊接接头的硬脆性,含碳量小于0.25%的碳素钢具有良好的可焊性。

钢筋焊接应注意的问题是:冷拉钢筋的焊接应在冷拉之前进行;钢筋焊接之前,焊接部位应清除铁锈、熔渣、油污等;应尽量避免不同国家的进口钢筋之间或进口钢与国产钢筋之间的焊接。

(三)冷加工性能及时效处理 1.冷加工强化处理将钢材在常温下进行冷加工(如冷拉、冷拔或冷轧),使之产生塑性变形,从而提高屈服强度,但钢材的塑性、韧性及弹性模量则会降低,这个过程称为冷加工强化处理。

建筑工地或预制构件厂常用的方法是冷拉和冷拔。

冷拉是将热轧钢筋用冷拉设备加力进行张拉,使之伸长。

钢材经冷拉后倔服强度可提高20%~30%,可节约钢材10%~20%,钢材经冷拉后屈服阶段缩短,伸长率降低,材质变硬。

冷拔是将光面圆钢筋通过硬质合金拔丝模孔强行拉拔,每次拉拔断面缩小应在10%以下。

钢筋在冷拔过程中,不仅受拉,同时还受到挤压作用,因而冷拔的作用比纯冷拉作用强烈。

经过一次或多次冷拔后的钢筋,表面光洁度高,屈服强度提高40%~60%,但塑性大大降低,具有硬钢的性质。

2.时效钢材经冷加工后,在常温下存放15~20d 或加热至100~200℃,保持2h 左右,其屈服强度、抗拉强度及硬度进一步提高,而塑性及韧性继续降低,这种现象称为时效。

前者称为自然时效,后者称为人工时效。

钢材经冷加工及时效处理后,其性质变化的规律,可明显地在应力—应变图上得到反映,如图8.2.5所示。

图中OABCD 为未经冷拉和时效试件的σ—ε曲线。

当试件冷拉至超过屈服强度的任意一点K ,卸去荷载,此时由于试件已产生塑性变形,则曲线沿KO ’下降,K0’大致与AO 平行。

如立即再拉伸,则σ一ε曲线将成为0’KCD (虚线),屈服强度由B 点提高到K 点。

但如在K 点卸荷后进行时效处理,然后再拉伸,则σ一ε曲线将成为0’K 1C 1D 1,这表明冷拉时效以后,屈服强度和抗拉强度均得到提高,但塑性和韧性则相应降低。

OO D未冷拉OBA D C 111K KC 冷拉经时效冷拉无时效图8.2.5 钢筋冷拉时效后应力—应变图的变化(四) 钢材的热处理钢材的热处理通常有以下几种基本方法。

1.淬火将钢材加热至723℃以上某一温度,并保持一定时间后,迅速置于水中或机油中冷却,这个过程称钢材的淬火处理。

钢材经淬火后,强度和硬度提高,脆性增大,塑性和韧性明显降低。

2.回火将淬火后的钢材重新加热到723℃以下某一温度范围、保温一定时间后再缓慢地或较快地冷却至室温,这一过程称为回火处理。

回火可消除钢材淬火时产生的内应力,使其硬度降低,恢复塑性和韧性。

按回火温度不同,又可分为高温回火(500~650℃)、中温回火(300~500℃)和低温回火(150~300℃)种。

回火温度愈高,钢材硬度下降愈多,塑性和韧性恢复愈好,若钢材淬火后随即进行高温回火处理,则称调质处理,其目的是使钢材的强度、塑性、韧性等性能均得以改善。

3.退火退火是指将钢材加热至723℃以上某一温度,保持相当时间后,就在退火炉中缓慢冷却。

退火能消除钢材中的内应力,细化晶粒、均匀组织,使钢材硬度降低,塑性和韧性提高,从而达到改善性能。

相关文档
最新文档