高等数学A习题课(1)

合集下载

高等数学课后习题答案--第一章

高等数学课后习题答案--第一章

《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。

1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。

3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。

4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。

大学《高等数学A》课后复习题及解析答案

大学《高等数学A》课后复习题及解析答案

大学数学A (1)课后复习题第一章一、选择题1.下列各组函数中相等的是. …….. ……..…………………………………………………………………………………….( ) A .2ln )(,ln 2)(x x g x x f ==B .0)(,1)(x x g x f ==C .1)(,11)(2-=-⋅+=x x g x x x f D .2)(|,|)(x x g x x f ==2.下列函数中为奇函数的是. ……. …….. …………………………………………………………………………………….( ). A .)1ln()(2++=x x x f B .||)(x e x f = C .x x f cos )(= D .1sin )1()(2--=x xx x f3.极限⎪⎭⎫⎝⎛+++∞→22221lim n n n n n 的值为………………………………………………………………………..…….( ) A .0 B .1 C .21D .∞ 4.极限xxx x sin lim+∞→的值为.. …….. ……..……………………………………………………………………………...…….( )A .0B .1C .2D .∞5.当0→x 时,下列各项中与 23x 为等价无穷小的是…………………………………………………….( )A .)1(3-xe x B .x cos 1- C .x x sin tan - D .)1ln(x + 6.设12)(-=xx f ,则当0→x 时,有…………………………………………………………………………..…….( ). A .)(x f 与x 是等价无穷小 B .)(x f 与x 同阶但非等价无穷小 C .)(x f 是比x 高阶的无穷小 D .)(x f 是比x 低阶的无穷小7.函数)(x f 在点x 0可导是)(x f 在点x 0连续的____________条件. ………...………………....…..( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要8.设函数⎪⎩⎪⎨⎧<≤--<≤≤≤-=01,110,21,2)(2x x x x x x x f ,则下述结论正确的是……………………………………….( )A .在0=x ,1=x 处间断B .在0=x ,1=x 处连续C .在0=x 处间断,在1=x 处连续D .在1=x 处间断,在0=x 处连续 9.极限xx x 10)1(lim -→-的值为.. …….. ……..…………………………………………………………………………………….( )A .1B .e -C .e1D .e 二、填空题10.函数ln y x =的定义域为(用区间表示) . 11. 函数xxy -+=11的定义域为(用区间表示) . 12. 已知x xx f +=1)(,则=))((x f f . 13. 函数x x y 2353+-=的反函数为 .14. =→xx x 1sin lim 20 .15. 当________=α时,αx 与x 2sin 是0→x 时的同阶无穷小.16. 设21)1(lim e kx xx =+→,则=k .17. 设1sin lim0-=→xkxx ,则=k .18. =⎪⎭⎫ ⎝⎛+++∞→11232lim x x x x .9. 设⎪⎩⎪⎨⎧≤+>=0,0,1sin )(2x x a x xx x f 在点0=x 处连续,则=a . 三、解答与证明题20. 求下列数列极限 (1)⎪⎪⎭⎫⎝⎛+⨯++⨯+⨯∞→)1(1321211lim n n n (2))12(lim +-+∞→n n n n (3)⎪⎭⎫⎝⎛++++++∞→n n n n n n n n 22221lim (4)n n n nx 10...21lim +++∞→ 21. 求下列函数极限(1)15723lim 2323+++-∞→x x x x x (2)134lim 22++∞→x x x(3)503020)12()23()32(lim ++-∞→x x x x (4)11lim 31--→x x x (5)28lim 32--→x x x (6))1311(lim 31x x x ---→ (7))1(lim x x x -++∞→ (8)xx x x ln )1(lim1-→(9)xx x sin ln lim 0→ (10)x xx 3sin 2sin lim 0→(11)30sin tan lim xx x x -→ (12)x x x 10)51(lim -→ 22. 若432lim23=-+-→x ax x x ,求a 的值. 23. 若已知411lim21=-++→x b a x x ,求a,b 值. 24. 当 a 取何值时,函数)(x f 在 x =0 处连续:(1)⎩⎨⎧≥+<=0,0,)(x x a x e x f x . (2)⎪⎩⎪⎨⎧≤+>-+=0),cos(0,11)(x x a x xx x f . 25. 证明(1)方程01423=+-x x 在区间)1,0(内至少有一个根.(2)方程x e x 3=在)1,0(内至少有一个根.第二章一、选择题1、设函数)(x f 在点0x 可导,则=-+→hx f h x f h )()2(lim000( ).(A ) )(0x f '-; (B) )(0x f '; (C) )(20x f '; (D) )(20x f '-. 2、设函数)(x f 是可导函数,且13)1()1(lim-=--→xx f f x ,则曲线)(x f y =在点))1(,1(f 处切线的斜率是 ……………………………………………( ). (A) 3; (B) 1- ; (C) 13 ; (D) 3-.3、设)()()(x a x x f ϕ-=,其中)(x ϕ在a x =处连续,则)(a f '= ………( ). (A) )(a ϕ ; (B)0; (C)a ; (D))(a a ϕ.4、若0x 为函数)(x f 的极值点,则…………………………………………( ). (A)0)(0='x f ; (B)0)(0≠'x f ; (C)0)(0='x f 或不存在; (D))(0x f '不存在.5、设)0)(1ln(≠+=a ax y ,则y ''= ( ).(A)22)1(ax a +; (B)2)1(ax a +; (C)22)1(ax a +-; (D)2)1(ax a +-. 6、由方程5ln =-y xe y 确定的隐函数)(x y y =的导数=dxdy( ). (A)1-y y xe e ; (B)y y xe e -1; (C)yy e xe -1; (D)y y e xe 1-.7、)2sin sin (lim xx x x x +∞→= ……………………………………… ( ).(A)2; (B)1; (C)3; (D)极限不存在.8、设x x y =)0(>x 则='y ( ).(A)x x ; (B) x x x ln ; (C) 1-x x ; (D))1(ln +x x x .9、曲线x y sin 1+=在点)1,0(处的切线方程是…………………………( ). (A)01=--y x (B)01=+-y x (C)01=++y x (D)01=-+y x 10.下列函数在所给区间满足罗尔定理条件的是……………………( )(A) 2(),[0,3]f x x x =∈ (B) 21(),[1,1]f x x x=∈-(C) (),[1,1]f x x x =∈-(D) ()[0,3]f x x =∈ 二、填空题11、 设x x y 2sin 2+=,则=dy .12、已知x x y n ln )3(=-,(N n n ∈≥,3),则)(n y = .13、已知过曲线24y x =-上点P 的切线平行于直线x y =,则切点P 的坐标为 . 14. 已知2)1(='f ,则=-+-→2)1()(lim31x x f x f x .15. 设x a y =(0>a 且1≠a ),则=)(n y .16. 曲线3)1(-=x y 的拐点是 . 17.设函数)(x f 在0x 处可导,则xx x f x x f x ∆∆--∆+→∆)()(lim000= .18.设⎩⎨⎧≥+<=0)(x x a x e x f x ,当a =_____时,)(x f 在x = 0处可导.19.若函数5)(23-+-=x x ax x f 在),(+∞-∞上单调递增,则a 的取值范围为 .20. 设由参数方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x (其中0>a )确定的函数为)(x y y =,则=dxdy. 三、解答与证明题21.设e x x e y +=,求y '. 22.求下列函数的二阶导数.(1) 设x e y x sin =,求y ''. (2) 设1arctan1xy x-=+,求y ''23. 求曲线21x y =在点(4,2)处的切线方程和法线方程. 24. 讨论下列函数在点0=x 处的连续性和可导性:(1) 0 0 )1ln()(⎩⎨⎧<≥+=x x x x x f , (2) 0 tan 01sin )(2⎪⎩⎪⎨⎧≤>=x x x xx x f . 25. 求由方程ln xy x y x e -=所确定的隐函数y 的导数dxdy. 26. 求极限: (1)]1)1ln(1[lim 0x x x -+→; (2)30sin tan lim xx x x -→; (3))arctan 2(lim x x x -+∞→π; (4)x x x +→0lim ;(5))1sin 1(lim 0x x x -→; (6)200sin lim xdt t xx ⎰→. 27. 设函数)(x y y =由参数方程⎩⎨⎧-=+=tt y t x arctan )1ln(2所确定,求22dx yd .28.求函数()(f x x =-. 29. 求函数32332y x x x =-++的凹凸区间、拐点. 30. 已知点)3,1(为曲线1423+++=bx ax x y 的拐点. (1) 求b a ,的值; (2)求函数1423+++=bx ax x y 的极值. 31. 设11xy x-=+,求()n y 32.设b a <<0,证明:a b ab ba a --<+ln ln 222. 33. 设0,()(0)0,x f x f ≥=连续,0'()x f x >当时,存在且'()f x 单调增加,证明:当0x >时函数()f x x 单调增加.34. 证明:当0>x 时,x x x x<+<+)1ln(1. 35. 证明:当0x >时,有1x x x e xe <-<成立.第三章一、选择题:1.下列凑微分正确的一个是 ( ) A .)2(sin cos x d xdx = ; B. )11(arctan 2xd xdx += C .)1(ln x d xdx = D. )1(12x d dx x -=2.若⎰+=,)(c x dx x f 则⎰-dx x f )32(= ( )A .2-3x+c ; B. c x +-31; C. x+c ; D. c x +-2)32(213.在以下等式中,正确的一个是 ( ) A .⎰=')()(x f dx x f B. ⎰=')(])([x f dx x f C .⎰=)(])([x f dx x f d D. ⎰='')(])([x f dx x f 4. 设x x f 3sin )(=',则⎰dx x f )(是 ( )A .cos3x ; B. cos3x+c ; C.c x +-3cos 31; D.2193sin c x c x++- 5. 若,0(),0x x x f x e x ≥⎧=⎨<⎩,则21()d f x x -=⎰( ). A. 13e -- B. 13e -+ C. 3e - D. 3e + 6. 下列定积分是负数的是( )(A )dx x ⎰20sin π(B)dx x ⎰20cos π(C)dx x ⎰ππ2sin (D)dx x ⎰ππ2cos7. 若4)12(1=+⎰dx x a,则a = ( )(A) 3 (B) 2 (C) 0 (D) 48.若⎰∞-=31dx e kx ,则k=( ) (A)31 (B)-31(C) 3 (D)-3 9.=+⎰)1(212x dt t t dx d ( ) (A )x x+12(B) 212-+x x(C) 241x x + (D) 2512x x +10.若,21)(21)(0-=⎰x f dt t f x且1)0(=f ,则=)(x f ( ) (A)2x e (B)x e 21 (C)x e 2 (D)x e 221 二、填空题: 1.x d xdx 3(arcsin ________312=-).2.⎰=+________________912dx x .3.若⎰+=,3cos )(c x dx x f 则f (x )= .4. ⎰='____________________)()(22dx x f x xf . 5. F(x ) =dt t x ⎰+223,则=')1(F _________.6. 极限020cos d limxx t t x→⎰= ;7. 23423sin 1x e xdx x x -++⎰= 8.设()f x 连续,(0)1f =,则曲线0()d xy f x x =⎰在()0,0处的切线方程是 ;三、解答题:1、2x dx 2、⎰-+322x x dx3、⎰+dx x x214、422331.1x x dx x ⎛⎫++ ⎪+⎝⎭⎰ 5、cos 2.cos sin xdx x x -⎰6、dx x x ⎰-42 7、⎰-+211xdx8、⎰xdx x arctan 29、1x ⎰10、10d e ex xx-+⎰11、10x ⎰12、22()e d xx x x --+⎰;13.40d 1cos2xx xπ+⎰;14.41x ⎰;15.1d ln x x x+∞⎰16.2203sin d limx x t t x→⎰;17.求曲线xxe y e y -==,及直线1=x 所围成的平面图形的面积.18. 求由曲线)cos 2(2θ+=a r 所围图形的面积19. 由曲线2y x =和2x y =所围成的图形绕y 轴旋转后所得旋转体体积. 20. 计算曲线)3(31x x y -=上相应于31≤≤x 的一段弧的弧长大学数学A (1)复习题参考答案第一章一、选择题1、D2、A3、C4、B5、C6、B7、A8、C9、D二、填空题10、]3,0( 11、)1,1[- 12、x x21+ 13、)23(2353≠-+=x x x y 14、0 15、1 16、2 17、-1 18、e 19、0三、解答与证明题20(1)⎪⎪⎭⎫⎝⎛+⨯++⨯+⨯∞→)1(1321211lim n n n )1113121211(lim +-++-+-=∞→n n n 1)111(lim =+-=∞→n n . (2)2111211lim12lim )12(lim=+++=+++=+-+∞→∞→∞→nn n n n n n n n n n . (3)因为 1212222222+≤++++++≤+n n n n n n n n n n n n ,而 11lim lim 2222=+=+∞→∞→n n n n n n n , 所以121lim 222=⎪⎭⎫⎝⎛++++++∞→n n n n n n nn . (4)因为n nn n n nn n n nn 101010...101010...211010=+++<+++<=,110lim 10lim 1==∞→∞→nn nn ,故1010...21lim =+++∞→n n n n n .21(1)15723lim2323+++-∞→x x x x x 33115723lim x xx x x +++-=∞→53=.(2)331341lim 134lim 2222=++=++∞→∞→xx x x x x . (3)503020)12()23()32(lim ++-∞→x x x x 503020122332lim ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=∞→x x x x 503020)02()03()02(++-=3023⎪⎭⎫⎝⎛=. (4)11lim31--→x x x 1)1)(1(lim333231-++-=→x x x x x 3)1(lim 3321=++=→x x x .(5)12)42(lim 28lim2232=++=--→→x x x x x x . (6)112lim 131lim )1311(lim 2132131-=+++-=--++=---→→→xx x x x x x x x x x . (7))1(lim x x x -++∞→011lim=++=+∞→xx x .(8)11)1(lim ln )1(lim11=--=-→→x x x x x x x x .(9)0sin lim ln sin lnlim 00==→→xxx x x x . (10)x xx 3sin 2sin lim0→3232lim 32lim 00===→→x x x x . (11)30sin tan limx x x x -→30)cos 1(tan lim x x x x -⋅=→3202lim x x x x ⋅=→21=. (12)xx x 1)51(lim -→ xt 51-== tt t 511lim -∞→⎪⎭⎫ ⎝⎛+511lim -∞→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=t t t 5-=e .22 解 由题意知 0)2(lim 23=+-→a x x x ,即06232=+⨯-a ,从而3-=a .23 解 因1→x 时, 012→-x , 而函数极限存在, 则)1(0→→++x b a x即 0lim 1=++→b a x x从而01=++b a (1)故原式=)1)(1)(1(1lim 11lim121a a x x x x x a a x x x ++++--=-+-+→→ aa a x x x +=++++=→141)1)(1(1lim1即41141=+a(2) 由(1)(2)解得1,0-==b a .24 解 (1)因为 a x a x f x x =+=++→→)(lim )(lim 0,1lim )(lim 0==--→→x x x e x f ,而 ,)0(a f = 故要使 )(lim 0x f x -→)(lim 0x f x +→=)0(f =,须且只须 1=a .所以当且仅当1=a 时,函数)(x f 在0=x 处连续.(2)因为 21111lim 11lim )(lim 00=++=-+=+++→→→x xx x f x x x , a x a x f x x cos )cos(lim )(lim 00=+=--→→,而 ,cos )0(a f = 故要使 )(lim 0x f x -→)(lim 0x f x +→=)0(f =, 须且只须 21cos =a ,即32ππ±=k a )(Z k ∈. 所以当且仅当32ππ±=k a )(Z k ∈时,函数)(x f 在0=x 处连续.25 证 (1)令14)(23+-=x x x f ,则)(x f 在[0,1]上连续, 且,02)1(,01)0(<-=>=f f由零点定理知,),1,0(∈∃ξ使,0)(=ξf 即01423=+-ξξ,所以方程01423=+-x x 在(0,1)内至少有一个根.(2)设x e x f x3)(-=,则)(x f 在]1,0[上连续,且03)1(,01)0(<-=>=e f f ,故由零点定理知方程在)1,0(内至少有一个根.第二章一、选择题1、C2、D3、A4、C5、C6、B7、A8、D9、B 10、D 二、填空题11、dx x x )2cos 2(2+ 12、21x -13、)415,21(- 14、1215、n x a a )(ln 16、(1,0) 17、)(20x f ' 18、1. 19、),31(+∞ 20、t tcos 1sin -.三、解答与证明题21、解:1-+='e x ex e y .22、解:(1)(sin cos )xy e x x '=+,(sin cos )(cos sin )2cos x x x y e x x e x x e x ''=++-=.(2) 2111111x y x x x '-⎛⎫'=⎪+⎝⎭-⎛⎫+ ⎪+⎝⎭()()2222(1)1(1)(1)(1)1x x x x x x -+--+=⋅+++- 22212(1)(1)x x --==++()1211y x -'⎡⎤''=-+⎢⎥⎣⎦()()22222121x x x x -=+⋅=+23、解:2121-='x y ,所以4121)4(421=='=-x x y , 所以切线方程为)4(412-=-x y ,法线方程为)4(42--=-x y . 24、解:(1)因为0)(lim 0=+→x f x ,0)(lim 0=-→x f x ,所以,0)(lim 0=→x f x .且0)0(=f ,因此,函数在0=x 处连续.10lim 0)0()(lim )0(00'=--=--=++→→+x x x f x f f x x ,10)1ln(lim 0)0()(lim )0(00'=--+=--=+-→→-x x x f x f f x x ,所以函数在0=x 处可导. (2)因为0)(lim 0=+→x f x ,0)(lim 0=-→x f x ,所以,0)(lim 0=→x f x .且0)0(=f ,因此,函数在0=x 处连续.01sin lim 001sinlim 0)0()(lim )0(0200'==--=--=+++→→→+xx x x x x f x f f x x x , 10tan lim 0)0()(lim )0(00'=--=--=--→→-x x x f x f f x x ,所以函数在0=x 处不可导.25、解:两边同时对x 求导得,11ln ()xy y x y e y xy x ''--=+,所以,1ln xyxy yye x y x xe--'=+. 26、解:(1)原式=)1ln()1ln(limx x x x x ++-→=20)1ln(lim xx x x +-→=xx x 2111lim 0+-→=)1(21lim 0x x +→=21.(2)30sin tan lim x x x x -→=30)1cos 1(sin lim xx x x -→=x x x x x cos )cos 1(sin lim 30⋅-→121lim 320⋅⋅=→x x x x =21. (3))arctan 2(lim x x x -+∞→πx x x 1)arctan 2(lim -=+∞→π22111limxx x -+-=+∞→11lim 22=+=+∞→x x x .(4)xx x +→0lim =xx xx x x eeln lim ln 00lim +→+=→,0ln lim 0=+→x x x ,所以原极限10=e .(5))1sin 1(lim 0x x x -→ x x x x x sin sin lim 0-=→20sin lim xx x x -=→x x x 2cos 1lim 0-=→2sin lim 0x x →=0=. (6)2sin lim x dt t x x ⎰→=x x x 2sin lim 0→=21.27、解:22111221dy dy t dt t dx t dx dt t -+===+, 22221()12241d dy d y t dt dx dx t dx t dt t +===+.28、解:函数定义域为),(+∞-∞.'()f x =,令'()0f x =,得驻点1=x ,1x =-为不可导点.由上表可以看出,函数在),1(),1,(+∞--∞上单调上升,函数在(1,1)-上单调下降;函数在1-=x 处取得极大值0)1(=-f ,在1=x 处取得极小值343)1(-=f , 29、解:函数定义域为),(+∞-∞.2363y x x '=-+,666(1)y x x ''=-=-, 令0y ''=,得x =1.当1x >时,0y ''>;当1x <时,0y ''<,所以函数的拐点为(1,3),在(-∞,1)上是凸的;在(1,+∞)上是凹的. 30、解:(1)b ax x y ++='232,a x y 26+=''.由条件,有⎩⎨⎧+=+++=ab a 2601413,解得9,3-=-=b a .(2)149323+--=x x x y ,函数定义域为),(+∞-∞.)3)(1(3963)(2-+=--='x x x x x f ,)1(666)(-=-=''x x x f .令0)(='x f ,得稳定点 11-=x ,32=x . 又012)1(<-=-''f ,012)3(>=''f故149323+--=x x x y 在点1-=x 处取极大值,极大值为19)1(=-f , 在点3=x 处取极小值,极小值为13)3(-=f .31. 解:122111x y x x--+==-+++()2121(1)y x '=-+,()()()312121y x ''=--+ ()()()41212(3)1y x '''=---+…… ()n y()()1121!1nn n x +=-+32. 证明:令x x f ln )(=, 则)(x f 在],[b a 上连续,在),(b a 内可导.所以由Lagrange 中值定理知,),(b a ∈∃ξ,使)()()(ξf ab a f b f '=--,即ξ1ln ln =--a b a b .又由),(b a ∈ξ,故22211ba ab +>>ξ.. 即222ln ln ba aa b a b +>--. 33. 证明:1)令()(0)f x F x x x=>()2'()()(2)'()xf x f x F x x-=2(0)0'()[()(0)]f xf x f x f x =-- 2'()'()(0)xf x xf x xξξ-<<微分中值定理 '()'()f x f xξ-=当0x >时,'()f x 单调增加 ∴'()'(),'()'()0f f x f x f ξξ<->即故有()'()0.(0,)f x F x x>+∞即在单调增加 34. 证明:令)1ln()(u u f +=,则)(u f 在],0[x 上满足Lagrange 中值定理条件,故),0(x ∈∃ξ,使)0)(()0()(-'=-x f f x f ξ,即)0(11)01ln()1ln(-+=+-+x x ξ,即ξ+=+1)1ln(x x . 又由),0(x ∈ξ,故x xx x <+<+ξ11,即x x xx <+<+)1ln(1. 35. 证明:令()[],0,t f t e t x =∈,()t f t e =在[]0,x 应用拉格朗日中值定理 ()00,0x e e e x x ξ-=-<ξ<x e 是单调增函数,0x e e e ξ∴<<,故有1xxx e xe <-<,0x > 证毕第三章一、选择题1-5 DCBDA 6-10 CBCDC 二、填空题 1.3 2. 11arctan 33x C + 3. -3sin3x 4. 221()+C 4f x5. -2 6. -1 7. 0 8.y x =三、解答题1. 572222=557x dx x dx dx x x C --=-+⎰⎰2.2111=23(3)(1)41311ln ||43dx dx dx dx x x x x x x x Cx ⎛⎫=- ⎪+-+--+⎝⎭-=++⎰⎰⎰⎰3. 22221(1)1=ln |1|+C 1212x d x dx x x x +=+++⎰⎰ 4. 42232233113arctan .11x x dx x dx x x C x x ⎛⎫++⎛⎫=+=++ ⎪ ⎪++⎝⎭⎝⎭⎰⎰5.22cos 2cos sin (cos sin )sin cos .cos sin cos sin x x x dx dx x x dx x x C x x x x-==+=-+--⎰⎰⎰ 6.dx x x ⎰-42=c xx +--)2arccos 24(tan 227.⎰-+211xdx =cxx x +-+-211arcsin8.⎰xdx x arctan 2=c x x x x +++-)1ln(6161arctan 312239.令t x tan =,则1x ⎰=3344111cos d ln sin 21cos t t t t ππππ-=+⎰=10. 10d e e x x x -+⎰=112200e 1d de e 1e 1x x x x x =++⎰⎰1arctan(e )arctan e 4xπ==-11.10x ⎰=102⎰2121216π===⎰12. 22()e d xx x x --+⎰=22220002e d 2de 2e2e d xxx x x x x x x ----=-=-+⎰⎰⎰262e =-13.40d 1cos2x x x π+⎰=442001d d tan 2cos 2x x x x x ππ=⎰⎰ 444000111ln 2tan tan d lncos 228284x x x x x πππππ=-=+=-⎰14. 41x⎰412ln x =⎰4112x x ⎤=-⎥⎦⎰124ln 2x ⎡⎤=-⎢⎥⎣⎦⎰ 14218ln 22d x x -=-⎰8ln24=-15. ee 11d d(ln )ln(ln )ln ln e x x x x xx +∞+∞+∞===+∞⎰⎰ 16. 22220322000sin d 2sin 22(2)8=333lim lim lim x x x x t t x x x x x →→→==⎰17.如图所示,解方程组xxy e y e -⎧=⎨=⎩,得交点(0,1),所求面积为11100()d []2x x x x A e e x e e e e---=-=+=+-⎰18.解:∵1D :⎩⎨⎧+<<<<)cos 2(200θπθa r∴12220141122[2(2cos3)]4[4(sin 3sin 6)1823212D D S S a d a a ππθθπθθθπ==+=+++=⎰19. 思路: 该平面图形绕y 轴旋转而成体积V 可看作1D :⎩⎨⎧≤≤≤≤yx y 010绕y 轴旋转而成的体积1V ,减去2D :⎩⎨⎧≤≤≤≤2010y x y 绕y 轴旋转而成的立体体积2V 所得,见图解: πππ103)()(102221021=-=-=⎰⎰dy y dy y V V V20.解:12y '==, ∴3432322(21)214)1(113123313122-=+=+=-+='+=⎰⎰⎰x x dx x x dx x x dx y s ba。

高等数学(第六版)课后习题(完整版)及答案

高等数学(第六版)课后习题(完整版)及答案

高等数学课后答案习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式. 解 A ⋃B =(-∞, 3)⋃(5, +∞), A ⋂B =[-10, -5), A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B ); (2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ), 所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A . (2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A .6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x xy --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4]. (8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么? (1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g . (4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性: (1)x x y -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的.(2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x xx x x x x x y y ,所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明: (1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数. (2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y =x 2(1-x 2); (2)y =3x 2-x 3;(3)2211x xy +-=;(4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x aa y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数. (5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数. (6)因为)(22)()()(x f a a a ax f x x x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2);解 是周期函数, 周期为l =2π. (2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin πx ;解 是周期函数, 周期为l =2. (4)y =x cos x ; 解 不是周期函数. (5)y =sin 2x .解 是周期函数, 周期为l =π. 14. 求下列函数的反函数: (1)31+=x y ;解 由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1. (2)xx y +-=11;解 由x x y +-=11得y yx +-=11, 所以x x y +-=11的反函数为xx y +-=11.(3)dcx b ax y ++=(ad -bc ≠0);解 由d cx b ax y ++=得a cy bdy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=.(4) y =2sin3x ;解 由y =2sin 3x 得2arcsin 31yx =, 所以y =2sin3x 的反函数为2arcsin 31x y =.(5) y =1+ln(x +2);解 由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)122+=x xy .解 由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为xx y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; 解 y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy .(2) y =sin u , u =2x , 81π=x ,42π=x ;解 y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy . (3)u y =, u =1+x 2, x 1=1, x 2= 2;解 21x y +=, 21121=+=y , 52122=+=y . (4) y =e u , u =x 2, x 1 =0, x 2=1;解 2x e y =, 1201==e y , e e y ==212.(5) y =u 2 , u =e x , x 1=1, x 2=-1. 解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域: (1) f (x 2);解 由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1]. (2) f (sin x );解 由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为 [2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) . (3) f (x +a )(a >0);解 由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ]. (4) f (x +a )+f (x -a )(a >0).解 由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义.18. 设⎪⎩⎪⎨⎧>-=<=1||11||01||1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形. 解 ⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 001)]([x x x x g f .⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| )]([101)(x e x x e e x f g x f , 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g . 19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式, 并指明其定义域.图1-37解 40sin hDC AB ==, 又从)]40cot 2([21Sh BC BC h =⋅++ 得h hS BC ⋅-=40cot 0, 所以h h S L 40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS确定, 定义域为40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数; (2)将厂方所获的利润P 表示成订购量x 的函数; (3)某一商行订购了1000台, 厂方可获利润多少? 解 (1)当0≤x ≤100时, p =90.令0.01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75. 当100<x <1600时,p =90-(x -100)⨯0.01=91-0. 01x . 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.091100090x x x x p . (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 15160010001.0311000 30)60(2x x x x x x x x p P . (3) P =31⨯1000-0.01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限: (1)nn x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2)nx n n 1)1(-=;解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n .(3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→n n . (4)11+-=n n x n ;解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n .(5) x n =n (-1)n .解 当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N .解 0lim =∞→n n x .n n n x n 1|2c o s||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000.3. 根据数列极限的定义证明:(1)01lim 2=∞→n n ;分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim2=∞→n n .(2)231213lim =++∞→n n n ;分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n .证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n .(3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n .(4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M .又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞),证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε .取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞). 习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;分析 因为|(3x -1)-8|=|3x -9|=3|x -3|,所以要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε>0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)12)25(lim 2=+→x x ;分析 因为|(5x +2)-12|=|5x -10|=5|x -2|, 所以要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有 |(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)424lim 22-=+--→x x x ; 分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x ,所以要使ε<--+-)4(242x x , 只须ε<--|)2(|x . 证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x .(4)21241lim 321=+--→x x x . 分析 因为|)21(|2|221|212413--=--=-+-x x x x ,所以要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x . 2. 根据函数极限的定义证明:(1)2121lim 33=+∞→x xx ; 分析 因为333333||21212121x x x x x x =-+=-+, 所以要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x . 证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有 ε<-+212133x x , 所以2121lim 33=+∞→x xx . (2)0sin lim =+∞→xx x .分析 因为x xx x x 1|s i n |0s i n≤=-.所以要使ε<-0sin xx , 只须ε<x1, 即21ε>x . 证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0s i n xx , 所以0sin lim =+∞→xx x .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0.001? 解 由于当x →2时, |x -2|→0, 故可设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001, 只要0002.05001.0|2|=<-x .取δ=0.0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001.4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只要397301.04||=->x , 故397=X . 5. 证明函数f (x )=|x |当x →0时极限为零. 证明 因为|f (x )-0|=||x |-0|=|x |=|x -0|, 所以要使|f (x )-0|<ε, 只须|x |<ε.因为对∀ε>0, ∃δ=ε, 使当0<|x -0|<δ, 时有 |f (x )-0|=||x |-0|<ε, 所以0||lim 0=→x x .6. 求,)(x x x f = xx x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===---→→→x x x x x x f , 11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim||lim )(lim 000===+++→→→x x x x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-,所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0,∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ; ∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有 |f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有 |f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有 | f (x )-A |<ε , 即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |. 习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x xy 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε>0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x xy 为无穷小.(2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε>0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数x x y 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M x x >+21,所以当x →0时, 函数xx y 21+=是无穷大.取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由:(1)xx x 12lim +∞→;(2)xxx --→11lim 20.解 (1)因为xx x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x x x +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x .5. 根据函数极限或无穷大定义, 填写下表:f (x )→Af (x )→∞f (x )→+∞f (x )→-∞x→x 0 ∀ε>0, ∃δ>0, 使 当0<|x -x 0|<δ时,有恒|f (x )-A |<ε.x →x 0+x →x 0-x →∞∀ε>0, ∃X >0, 使当|x |>X 时,有恒|f (x )|>M .x →+∞x →-∞解 f (x )→A f (x )→∞ f (x )→+∞ f (x )→-∞ x →x 0∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ∀M >0, ∃δ>0, 使当∀M >0, ∃δ>0, 使当∀M >0, ∃δ>0, 使当时, 有恒|f (x )-A |<ε.0<|x -x 0|<δ时, 有恒|f (x )|>M .0<|x -x 0|<δ时, 有恒f (x )>M .0<|x -x 0|<δ时, 有恒f (x )<-M .x→x 0+ ∀ε>0, ∃δ>0,使当0<x -x 0<δ时, 有恒|f (x )-A |<ε.∀M >0,∃δ>0, 使当0<x -x 0<δ时, 有恒|f (x )|>M .∀M >0, ∃δ>0, 使当0<x -x 0<δ时, 有恒f (x )>M .∀M >0, ∃δ>0, 使当0<x -x 0<δ时, 有恒f (x )<-M .x →x 0- ∀ε>0, ∃δ>0,使当0<x 0-x <δ时, 有恒|f (x )-A |<ε.∀M >0,∃δ>0, 使当0<x 0-x <δ时, 有恒|f (x )|>M .∀M >0, ∃δ>0, 使当0<x 0-x <δ时, 有恒f (x )>M .∀M >0, ∃δ>0, 使当0<x 0-x <δ时, 有恒f (x )<-M .x →∞∀ε>0, ∃X >0, 使当|x |>X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0, 使当|x |>X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0, 使当|x |>X 时, 有恒f (x )>M .∀ε>0, ∃X >0, 使当|x |>X 时, 有恒f (x )<-M .x →+∞∀ε>0, ∃X >0, 使当x >X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0, 使当x >X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0, 使当x >X 时, 有恒f (x )>M .∀ε>0, ∃X >0, 使当x >X 时, 有恒f (x )<-M .x →-∞∀ε>0, ∃X >0,使当x <-X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0,使当x <-X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0,使当x <-X 时, 有恒f (x )>M .∀ε>0, ∃X >0,使当x <-X 时, 有恒f (x )<-M .6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数x x y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M . 习题1-51. 计算下列极限:(1)35lim22-+→x x x ;解 9325235lim222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x .(5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2x x x +-∞→;解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x . (8)13lim 242--+∞→x x xx x ;解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零). 或 012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→;解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n .(13)35)3)(2)(1(limnn n n n +++∞→; 解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112l i m 21-=+++-=→x x x x .2. 计算下列极限:(1)2232)2(2lim -+→x x x x ;解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x xx ;解 ∞=+∞→12lim2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限:(1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1-51. 计算下列极限:(1)35lim22-+→x x x ;解 9325235lim222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2xx x +-∞→; 解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x . (8)13lim 242--+∞→x x xx x ;解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零).或 012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x .(9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim 3=+++∞→nn n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n .(14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112l i m 21-=+++-=→x x x x . 2. 计算下列极限:(1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2limx x x x .(2)12lim 2+∞→x x x ;解 ∞=+∞→12lim2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限:(1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim202320=--=--→→xx x x x x x x x , 所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim212131=++=-++-=--→→→x x x x x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2xx -.证明 (1)因为1tan limarctan lim 00==→→y yxx y x (提示: 令y =arctan x , 则当x →0时, y →0), 所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x , 所以当x →0时, 2~1s e c2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim 0→(n , m 为正整数);(3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x . 解 (1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2s i n t a n 2)1(c o s t a n t a n s i n x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~s i n ~1s i n 1s i n 1s i n1++=-+(x →0),所以 33121l i m )1s i n 1)(11(tan sin lim 230320-=⋅-=-+-+-→→xx x x x x x x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim =αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim lim lim =⋅=βαγβγα. 因此α~γ.习题1-81. 研究下列函数的连续性, 并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;解 已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x . 所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 只需考察函数在x =-1和x =1处的连续性. 在x =-1处, 因为f (-1)=-1, 并且)1(11l i m )(l i m 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续.在x =1处, 因为f (1)=1, 并且1l i m )(l i m 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续. 2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x xy , x =1, x =2;解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x xy x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的.(2)x x y tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点.因∞=→x x k x tan lim π(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim 0=→x x x ,0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=, x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点. (4)⎩⎨⎧>-≤-=1311x x x x y , x =1.解 因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim)(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n . 在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点; 解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n 1±, ⋅ ⋅ ⋅处是间断的且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;解 函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义, 但仅在一点连续.解 函数⎩⎨⎧∉-∈=Q Q x x x x x f)(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x . 在函数的间断点x =2和x =-3处, ∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x , 582)1)(1(lim)(lim 33-=-+-=-→-→x x x x f x x . 2. 设函数f (x )与g (x )在点x 0连续, 证明函数 ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;。

上海财经大学《高等数学》习题一及解答

上海财经大学《高等数学》习题一及解答

上海财经大学《高等数学》习题一及解答在学习高等数学课程的过程中,不可避免地会遇到各种各样的习题。

习题的目的是帮助学生巩固所学的内容,提高解题能力和应用能力。

本文将介绍上海财经大学《高等数学》课程中的习题一及解答,旨在帮助学生更好地理解和掌握相关知识。

一、习题一1. 计算下列极限:lim(x→∞) (2x^2 + 3x - 1) / (4x^2 - x + 1)lim(x→0) sin3x / sin2x2. 求函数f(x) = √(4x + 3) + √(x - 1) 的定义域和值域。

3. 设函数f(x) = √x,g(x) = x^2 + 1,求函数 h(x) = (f∘g)(x) 的表达式。

二、解答1. 对于第一题,我们可以将分子和分母都除以 x^2,得到:lim(x→∞) (2 + 3/x - 1/x^2) / (4 - 1/x + 1/x^2)当 x 趋向于正无穷时,分别以最高项的系数来比较三个项,得到极限为 2/4 = 1/2。

对于第二题,我们可以将 sin3x 和 sin2x 都展开为泰勒级数的形式,并截取最低阶的项,得到:lim(x→0) (3x - (1/6)x^3) / (2x - (1/6)x^3)当 x 趋向于 0 时,分别以最高项的系数来比较两个项,得到极限为3/2。

2. 对于函数f(x) = √(4x + 3) + √(x - 1),要使得函数有定义,需要满足以下两个条件:4x + 3 ≥ 0(根式内部不可小于0)x - 1 ≥ 0(根式内部不可小于0)解得x ≥ -3/4 和x ≥ 1。

因此,定义域为x ≥ 1。

对于值域,我们可以利用函数的图像进行分析。

函数f(x) = √(4x + 3) + √(x - 1) 是两个平方根函数之和,其中第一个平方根函数的图像为右移3/4单位,上移3单位的开口向上的抛物线;第二个平方根函数的图像为右移1单位,上移1单位的开口向上的抛物线。

高等数学课后习题详解

高等数学课后习题详解

习题三1.填空(1)设f x x x x x ()()(),()=-⋅0ϕϕ在点x 0连续)( 0x f = .答案:)(0x ϕ(2)设f x x x ()||=⋅,则f '(0)= . 答案:0(3)设f x ()在点a 可导,则af x x ([lim +∞→)2x +)](a f -=___________. 答案:)(2a f '(4)曲线y xx =+31在点(,)22处的切线方程为 ,法线方程为 .答案:083 043=-+=+-y x y x(5)设f x x x x x n ()()()()=---12 ,则f '(0)=_____ .答案:!.)1(n n - (6)曲线x y y 236=-在点(,)-22处切线的斜率k =答案:32(7)设z x y x=+()2,则∂∂z x = ∂∂z y =. .答案:1)2](2)2ln().2[(-++++=∂∂x y x x y x y x x z1)2(-+=∂∂x y x x x z(8)设z z x y =(,)由方程e xyz z-=0所确定,则∂∂zx = .答案:xy e bz x z z-=∂∂(9)设z xf xy e x=(,),则∂∂z x = . ∂∂z y = .答案:1221 ,f x x zf e f y f x z x '=∂∂'+'+=∂∂(10)设z arctgx yx y =+-,则dz = .答案:dy y x xdx y x y dz 2222+++-=(11)设u e xyz =,则∂∂22u x = ∂∂22u y =答案:xyz e ze y x u 2222=∂∂, xyz e z x xyz u 222=∂1.选择题(1)下列各极限均存在,则( )式成立.a .lim()()'()∆∆∆x f x f x x x f x →-+=0000 b lim ()()'()∆∆∆x f x f x x x f x →--=0000c lim()()'()∆∆∆x f x x f x x f x →--=0000 d lim ()()'()∆∆∆x f x x f x x f x →+-=00002答案:b(2)设{f x xe x x x x()=>≤02,则f x ()在x =0处( )a 连续b 可导c 可微d 连续,不可导 答案:a,d(3)设f x x ()sin =,则f f x '[()]=( ) a sinsin x b cossin x c sincos x d coscos x 答案 b (4)设f x x ()=-1,则函数f x ()在x =1处( )a 连续b 不可导c 可导d 不连续答案:a,b (5)设f x ex()=-1,则lim'()'()∆∆∆x f x f x →--=22( )a 116e b -116e c 316e d -316e答案:c(6)设f t ()可导,且y f e x=(),则dy =( )a dy f e dx x='() b dy f e de x x='() c -dy f e de x x =⋅[()]' d dy f e e dx x x='()答案:b,d(7)设f (x ,y )在点(a ,b )处偏导数存在,则有lim(,)(,)x f a x b f a x b x →+--0=( )a .0b .'f a b x (,)2 c. 'f a b x (,) d. 2'f a b x (,)答案:d(8)函数z=),(y x f 在点(,)x y 00处有偏导数是它在该点存在全微分的( )a.必要条件b.充分条件c.充分不必要条件d.既非充分条件又非必要条件答案:a(9)设),(y x f 在区域D 内具有二阶偏导数,则下述结论正确的是( )a.∂∂∂∂∂∂22f x y fy x =b.),(y x f 在D 内连续c. ),(y x f 在D 内可微d.a,b,c,结论都不对 答案:d(10)设z=z (x,y)是由方程F y x z x (,)=0所确定.则x z xy z y ∂∂∂∂+=( ) a.-z b. z c.-x d.x答案:b(11)函数f x y xy x y (,)()=+-221的极值点是( )a.(1,0)b.(0,1)c.(1212,)d.(1212,-)答案:a,b3.设f x ()在x 0可导,求(1)lim()()h f x h f x h →--0002 (2)lim()()h f x h f x h h →+--000αβ解:(1)原式=000(2)()(2)lim2h f x h f x h→---=-(2)-)(0'x f 。

川大版高等数学(第一册)部分课后题详细答案

川大版高等数学(第一册)部分课后题详细答案

高数第一册 第一章 习题1.13.(1)(,1)(1,)(2){|1,}1(1,1)(1,)(3)(1,1)x x x R -∞-⋃-+∞≠±∈∞-⋃-⋃+∞-或(-,)(4)22903[3,1)(1,3]10x x x x x ⎧⎫-≥⇒-⎪⎪⇒--⋃⎨⎬-⇒⎪⎪⎩⎭≤ ≤3>>1或<-12222(5)(,3)(6)sin 0,,()241(7)114(1),11(1)3x x k x k k z x x x x x x πππ-∞≠≠≠∈⎡⎤≤⇒≤⇒≤+⇒-⎢⎥++⎣⎦(8)0ln 0x x x x x ⎧⎫⇒⇒⎨⎬⇒⎩⎭> >0>1>>1(9)[1,2]-(10)21()x x x f x x x x x x x x ⎧⎫⇒⎪⎪⎪⎪=⇒⇒≠⇒∴⎨⎬⎪⎪⎪⎪⇒⎩⎭-1 <00≤≤10即0<<1 < 0和0<≤2e 1≤≤27.(1)(2)(3)(4)(5)奇函数偶函数偶函数偶函数非奇非偶(6)2()()f x f x -=+=偶函数(7)11()lnln ()11x xf x f x x x+--==-=--+奇函数)(8)2112()()2112x xx xf x f x -----===-++奇函数(9)()sin cos f x x x -=--非奇非偶 13.(1)22(())(2)24,(())2,xxxx f x f f x x Rϕϕ====∈(2)11(())(0,1)111x f f x x xx-==≠--(3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.[]22(1)(0)0.(2)0,111111(3)01(4)1lg ,lg 1,lg 1,.1(5)11()(6)1log (16)y x x y x y y x y x x y y y xx y x y y x xy xx x y x x x =≤≤+∞=≥=++===≠-+==-=--=≠-+∞⎧=≤≤∞反函数反函数x=,x-1=,x=1+反函数y ,定义域反函数定义域x >0反函数,定义域(x )-<<1反函数16)<<+⎫⎪⎬⎪⎩⎭习题1.2 2。

文科高等数学

文科高等数学

文科高等数学习题课第一章函数、极限与连续一、判断是非题1.y =y x =相同 ( )2.()(22ln x x y x -=+是奇函数 ( )3.凡是分段函数表示的函数都不是初等函数 ( ) 4.2(0)y x x =>是偶函数 ( )5.复合函数(())y f x ϕ=的定义域就是()x ϕ的定义域 ( )6.若数列{}n n a b 极限存在,则数列{}n a 的极限存在。

( )7.数列{}n x 和{}n y 都发散,则数列{}n n x y +也发散。

( )8.若l i m 0n n n x y →∞= ,则l i m 0n n x →∞=或lim 0n n y →∞=.。

( ) 9.若0lim ()x x f x A →=,则0()f x A =。

( ) 10.已知0()f x 不存在,但0lim ()x x f x →有可能存在。

( ) 11.lim arctan 2x x π→∞=。

( ) 12.1lim 1x x e →+∞=。

( ) 13.非常小的数是无穷小量。

( )14.零是无穷小量。

( )15.无限变小的变量是无穷小量。

16.无限个无穷小量的和还是无穷小量。

( )17.在某极限过程中,若()f x 的极限存在,()g x 无极限,则()()f x g x +无极限。

( )18.在某极限过程中,若(),()f x g x 均无极限,则()()f x g x +无极限。

( )19.22221212limlim lim lim 0n n n n n n n n n n →∞→∞→∞→∞+++=++= 。

( ) 20.00011lim sin lim limsin 0x x x x x x x →→→== 。

( ) 21.22lim(3)lim lim3x x x x x x x →∞→∞→∞-=-=∞-∞。

( )22. 1lim(1)x x e x→∞-= ( ) 23.若(),()f x g x 在点0x 处均不连续,则()()f x g x +在0x 处亦不连续; ( )24.若()f x 在点0x 处连续,()g x 在点0x 处不连续,则()()f x g x 在0x 处必不连续; ( )25.设()y f x =在区间(,)a b 内连续,则()f x 在(,)a b 内必有界。

同济大学《高等数学》(第四版)第一章习题课

同济大学《高等数学》(第四版)第一章习题课

记作 lim f ( x) A 或 x x0 0
f ( x0 0) A.
( x x0 )
定理 : lim x x0
f (x)
A
f (x0
0)
f (x0
0)
A.
2、无穷小与无穷大
无穷小: 极限为零的变量称为无穷小.
记作 lim f ( x) 0 (或 lim f ( x) 0).
存在, 但f ( x0
0)
设函数f ( x)是一一对应
函数, 则
y y f 1( x)
1 f ( f 1 ( x)) f 1 ( f ( x))
x
x Df
2 y f ( x)与y f 1( x)的
图象对称于直线y x.
( f ( xLeabharlann , x)y f (x)( x, f ( x))
o
单调增加和单调减少的函数统称为单调函数。
y y x2 当 x 0 时为减函数;
当 x 0 时为增函数;
o
x
(4) 函数的有界性:
若X D, M 0,x X ,有 f ( x) M 成立, 则称函数f ( x)在X上有界.否则称无界.
y
y 1 x
在(,0)及(0,)上无界; 在(,1]及[1,)上有界.
的增量y 也趋向于零,即
lim y 0
x 0

lim [
x 0
f
(
x0
x)
f ( x0 )] 0
那末就称函数 f ( x)在点x 0 连续,x 0 称为 f ( x)的连
续点.
定义2
lim
x x0
f (x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档