(完整版)材料先进加工技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 快速凝固

快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。

2. 半固态成型

半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压)

3. 无模成型

为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。

4.超塑性成型技术

超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。

5. 金属粉末材料成型加工

粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。

6. 陶瓷胶态成型

20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。

7. 激光快速成型

激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

织,从而具有优越的力学性能和物理化学性能,同时零件的复杂程度基本不受限制,并且可以缩短加工周期,降低成本。目前发达国家已进入实际应用阶段,主要应用于国防高科技领域。国内激光快速成形起步稍晚于发达国家,在应用基础研究和相关设备建设方面已有较好的前期工作,具备了通过进一步研究形成自身特色的激光快速成形技术的条件。

8.电磁场附加制备与成型技术

在材料的制备与成形加工过程中,通过施加附加外场(如温度场、磁场、电场、力场等),可以显著改善材料的组织,提高材料的性能,提高生产效率。典型的温度场附加制备与形加工技术有熔体过热处理、定向凝固技术等;典型的力场附加制备与成形技术有半固态加工等;典型的电磁场附加制备与成形加工技术有电磁铸轧技术、电磁连铸技术、磁场附加热处理技术、电磁振动注射成形技术等。近年来,有关电磁场附加制备与成形加工技术的研究在国际上已形成一门新的材料科学分支——材料电磁处理,并且得到迅速发展。

9.先进连接技术

①铝合金激光焊接

②镁合金激光焊接

③机器人智能焊接

10.表面改质改性

在材料的使用过程中,材料的表面性质和功能非常重要,许多体材料的失效也往往是从表面开始的。通过涂覆(或沉积、外延生长)表面薄层材料或特殊能量手段改变原材料表面的结构(即对处理进行表面改性),赋予较廉价的体材料以高性能、高功能的表面,可以大大提高材料的使用价值和产品的附加值,是数十年来材料表面加工处理研究领域的主要努力方向。

材料加工技术的总体发展趋势,可以概括为三个综合,即过程综合、技术综合、学科综合。由于上述材料加工技术的总体发展趋势,可以预见,在今后较长一段时间内,材料制备、成型与加工技术的发展将具有以下两个主要特征:(1)性能设计与工艺设计的一体化。(2)在材料设计、制备、成型与加工处理的全过程中对材料的组织性能和形状尺寸进行精确控制。实际上,第一个特征实现材料技术的第五次革命、进入新材料设计与制备加工工艺时代的标志。实现第二个特征则要求具备两个基本条件:一是计算机模拟仿真技术的高度发展;二是材料数据库的高度完备化。基于上述材料加工技术的总体发展趋势和特征,金属材料加工技术的主要发展方向包括以下几个方面。

1)常规材料加工工艺的短流程化和高效化。

打破传统材料成形与加工模式,工艺环节,实现近终形、短流程的连续化生产提高生产效率。例如,半固态流变成形、连续铸轧、连续铸挤等是将凝固与成形两个过程合二为一,实行精确控制,形成以节能、降耗、提高生产效率为主要特征的新技术和新工艺。

目前国外铝合金和镁合金半固态加工技术已经进入较大规模工业应用阶段。铝合金半固态成型方法主要有流变压铸

2)发展先进的成形加工技术,实现组织与性能的精确控制

例如,非平衡凝固技术、电磁铸轧技术、电磁连铸技术、等温成形技术、低温强加工技术、先进层状复合材料成形、先进超塑性成形、激光焊接、电子束焊接、复合热源焊接、扩散焊接、摩擦焊接等先进技术,实现组织与性能的精确控制,不仅可以提高传统材料的使用性能,还有利于改善难加工材料的加工性能,开发高附加值材料。

3)材料设计(包括成分设计、性能设计与工艺设计)、制备与成形加工一体化

发展材料设计、制备与成型加工一体化技术,可以实现先进材料和零部件的高效,近终形,短流程成型。典型的技术有喷射技术、粉末注射成形、激光快速成型等,是不锈钢、高温合金、钛合金、难熔金属及金属间化合物、陶瓷材料、复合材料、梯度功能材料零部件制备成

相关文档
最新文档