【最新】中考数学试题汇编(含答案)
2024年中考数学卷含解析

2024年中考数学卷含解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°2.如图,以O为圆心的圆与直线y x=-+交于A、B两点,若△OAB 恰为等边三角形,则弧AB的长度为()A.23πB.πC.23πD.13π3.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A.方有两个相等的实数根B.方程有一根等于0C.方程两根之和等于0D.方程两根之积等于04.实数213-的倒数是()A.52-B.52C.35-D.35)A.±4B.4C.2D.±26.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A.平均数B.中位数C.众数D.方差7.如图,△ABC 中,DE 垂直平分AC 交AB 于E,∠A=30°,∠ACB=80°,则∠BCE 等于()A.40°B.70°C.60°D.50°8.如图,在△ABC 中,∠ACB=90°,沿CD 折叠△CBD,使点B 恰好落在AC 边上的点E 处.若∠A=24°,则∠BDC 的度数为()A.42°B.66°C.69°D.77°9.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是()A.2sin AB A=B.2cos AB A =C.2tan BC A =D.2cot BC A=10.如图,⊙O 与直线l 1相离,圆心O 到直线l 1的距离=4,将直线l 1绕点A 逆时针旋转30°后得到的直线l 2刚好与⊙O 相切于点C,则OC=()A.1B.2C.3D.411.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.8,9B.8,8.5C.16,8.5D.16,10.512.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103B.28×104C.2.8×105D.0.28×106二、填空题:(本大题共6个小题,每小题4分,共24分.)13.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t 2,那么飞机着陆后滑行_____秒停下.14.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.15.计算:2111x x x+=--___________.16.若反比例函数y=1m x-的图象在每一个象限中,y 随着x 的增大而减小,则m 的取值范围是_____.17.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.有意义,则x 的取值范围是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)12)﹣2(2)化简:22222()x x y x yx y x y x y +--÷++-.20.(6分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?21.(6分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.22.(8分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为.(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.23.(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)24.(10分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.25.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.26.(12分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=2 5.(1)求反比例函数y=mx和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA 与点M,求∠BMC的度数.27.(12分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选D.【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.2、C【解析】过点O作OE AB⊥,∵y x=-+,∴3,0)D ,3)C ,∴COD 为等腰直角三角形,45ODC ∠=︒,26sin 45322OE OD =⋅︒==,∵OAB △为等边三角形,∴60OAB ∠=︒,∴622sin 6023OE AO ==⋅=︒∴60122π22ππ36063AB r ︒=⋅=⋅=︒.故选C.3、C【解析】试题分析:根据已知得出方程ax 2+bx +c =0(a ≠0)有两个根x =1和x =﹣1,再判断即可.解:∵把x =1代入方程ax 2+bx +c =0得出:a +b +c =0,把x =﹣1代入方程ax 2+bx +c =0得出a ﹣b +c =0,∴方程ax 2+bx +c =0(a ≠0)有两个根x =1和x =﹣1,∴1+(﹣1)=0,即只有选项C 正确;选项A、B、D 都错误;4、D 【解析】因为213-=53,所以213-的倒数是35.故选D.5、B【解析】根据算术平方根的意义求解即可.【详解】=4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.6、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、D【解析】根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【详解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故选D.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.8、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.9、C【解析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵90︒∠=C,2AC=,∴2 cos ACAAB AB==,∴2cosABA=,故选项A,B 错误,∵tan 2BC BC A AC ==,∴2tan BC A =,故选项C 正确;选项D 错误.故选C.【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.10、B【解析】先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC 的长.【详解】解:在Rt△ABO 中,sin∠OAB=OB OA =4=2,∴∠OAB=60°,∵直线l 1绕点A 逆时针旋转30°后得到的直线l 1刚好与⊙O 相切于点C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=12OA=1.故选B.【点睛】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.11、A【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.12、C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将280000用科学记数法表示为2.8×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【详解】由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即当t=1秒时,飞机才能停下来.故答案为1.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.14、127或2【解析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=12 7;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.15、x+1【解析】先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果.【详解】解:2111x x x+--=2111x x x ---211x x -=-()()111x x x +-=-1x =+.故答案是:x+1.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.16、m>1【解析】∵反比例函数m 1y x-=的图象在其每个象限内,y 随x 的增大而减小,∴m 1->0,解得:m>1,故答案为m>1.17、﹣1【解析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,整理得k 2+1k=0,解得k 1=0,k 2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18、x2【解析】根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x≥0,解得:x≤2,故答案为x≤2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)2;(2)x﹣y.【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x﹣y.点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.【解析】(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;(2)设每套运动服的售价为y 元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%”即可列不等式求解.【详解】(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=.答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+,y解这个不等式,得200答:每套运动服的售价至少是200元.【点睛】此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解. 21、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面或2或..积不变.②m的值为8【解析】(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【详解】(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC ∽△ACG ,∴AH AC AC AG=,∴AC 2=AG •AH .(3)①△AGH 的面积不变.理由:∵S △AGH =12•AH •AG =12AC 2=12)2=1.∴△AGH 的面积为1.②如图1中,当GC =GH 时,易证△AHG ≌△BGC ,可得AG =BC =4,AH =BG =8,∵BC ∥AH ,∴12BC BE AH AE ==,∴AE =23AB =83.如图2中,当CH =HG 时,易证AH =BC =4,∵BC∥AH,∴BE BCAE AH=1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,设BM=BE=m,则CM=m,∴m m=4,∴m﹣1),∴AE,综上所述,满足条件的m的值为83或2或.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.22、(1)7、30%;(2)补图见解析;(3)105人;(3)1 2【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为1240×100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×740=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=612=12.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、操作平台C离地面的高度为7.6m.【解析】分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.详解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在Rt△ACF中,∵sin∠CAF=CF AC,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.24、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.考点:列表法与树状图法.25、(1)13;(2)13.【解析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.【详解】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=1 3;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是31 93=.26、(1)6yx-=,2y x25=-(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC 的解析式;(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.本题解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=25,∴25OC OA =,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x 轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x,设直线AC 关系式为y=kx+b,∵过A(1,0),C(0,﹣2),∴052k b b =+⎧⎨-=⎩,解得252k b ⎧=⎪⎨⎪=-⎩,∴y=25x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC 和△BCD 中OA BCAOC DBC OC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x 轴,∴四边形AEBD 为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD 为等腰直角三角形,∴∠BMC=∠DAC=41°.27、共有7人,这个物品的价格是53元.【解析】根据题意,找出等量关系,列出一元一次方程.【详解】解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程的应用.。
2024年全国中考数学试题分类汇编——数与式之计算题(文字版,含答案)

4.
5.【答案】 ,
6.【答案】-1
7.【答案】从第②步开始出现错误,正确过程如下:
解: ①
10.【详解】解:
,
当 时,原式 .
11.解:
;
12.解:
.
13.
14.
.
15. 16.
17. 18.
19.
20.
第三组数与式计算题 专题分类汇编
1.(内蒙古赤峰市卷)计算: ;
2.(内蒙古赤峰市卷)已知 ,求代数式 的值.
3.(吉林省长春市卷)先化简,再求值: ,其中 .
4.(吉林省卷)先化简,再求值: ,其中 .
5.(江苏省常州市卷)先化简,再求值: ,其中 .
6.(江苏省连云港市卷)17.计算 .
7.(江苏省连云港市卷)19.下面是某同学计算 解题过程:
解: ①
②
③
上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.
解: …①
…②
…③
…④
…⑤
当 时,原式 .
(1)小乐同学的解答过程中,第______步开始出现了错误;
(2)请帮助小乐同学写出正确的解答过程.
17.(黑龙江省齐齐哈尔市卷)计算:
18.(黑龙江省齐齐哈尔市卷)分解因式:
19.(湖北省卷)计算:
20.(湖南省长沙市卷)计算: .
第一组 中考 数与式计算题 试题汇编答案
【一】
1.【详解】解:原式
,
∵ ,
∴ ,
∴原式 .
2.【详解】解:原式 .
3.
6.解:原式=|﹣2|﹣3+1
=2﹣3+1
=2+1﹣3
6.(四川省广安市卷)计算: .
2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(试题部分)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1B .2C .3D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+B .22a b −>−C .a b −<−D .22a b <4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x <B .2x >C .<2x −D .2x >−5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m <B .1m <C .12m <<D .513m <<8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+B .55x y −<−C .55x y >D .55x y −>−9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥−B .2x ≤−C .2x >−D .2x <−10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .20.(2024·广西·中考真题)不等式7551x x +<+的解集为 .21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .22.(2024·吉林·中考真题)不等式组2030x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.24.(2024·福建·21x −<的解集是 .25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ; 27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可). 三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解. 29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解.30.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来. 31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①② 请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本; (2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.38.(2024·江苏扬州·中考真题)解不等式组260412xxx−≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离()AB a b a b=−≥.特别的,当0a≥时,表示数a的点与原点的距离等于0a−.当a<0时,表示数a的点与原点的距离等于0a−.应用如图,在数轴上,动点A从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(答案详解)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1 B .2 C .3 D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .【答案】A【分析】本题考查了一元一次不等式的解法及在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案. 【详解】解:12x +≥,1x ∴≥.∴在数轴上表示如图所示:故选:A .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+ B .22a b −>− C .a b −<− D .22a b <【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x < B .2x > C .<2x − D .2x >−【答案】A【分析】本题考查了解一元一次不等式.熟练掌握解一元一次不等式是解题的关键. 移项可得一元一次不等式的解集. 【详解】解:20x −<, 解得,2x <, 故选:A .5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【分析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可. 【详解】解:()322211x x x x −<⎧⎪⎨+≥−⎪⎩①② 解不等式①得,2x <, 解不等式②得,3x ≥−,所以,不等式组的解集为:32x −≤<,在数轴上表示为:故选:C .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m −<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <, ∴13m +≥, ∴2m ≥; 故选B .7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m < B .1m < C .12m <<D .513m <<【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:214m m m −<<−, 解得:1m <; 故选B .8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+ B .55x y −<− C .55x y > D .55x y −>−【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意; B .两边都加上5−,不等号的方向不改变,故错误,不符合题意; C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意; D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意; 故选:C .9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥− B .2x ≤− C .2x >− D .2x <−【答案】A【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键. 【详解】解:移项得,34x x −≥−, 合并同类项得,24x ≥−, 系数化为1得,2x ≥−, 故选:A .10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变. 直接利用不等式的性质逐一判断即可. 【详解】解:1a b >−,A 、1a b +>,故错误,该选项不合题意;B 、12a b −>−,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意; 故选:D .12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤【答案】D【分析】本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:212321x x x x +>+⎧⎨+≥−⎩①②,解不等式①,得1x >, 解不等式②,得4x ≤, 故不等式组的解集为14x <≤. 故选:D .13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .【答案】C【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键. 【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−【答案】A【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可. 【详解】根据题意1x −>,可得1x <−, A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意; 故选:A15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .【答案】A【分析】本题考查解一元一次不等式组和在数轴上表示不等式的解集,先分别求出每一个不等式的解集,再根据不等式的解集在数轴上表示方法画出图示是解题的关键.【详解】解:()211326x x −≥⎧⎪⎨−>−⎪⎩①②,解不等式①,得:1x ≥, 解不等式②,得:4x <, ∴不等式组的解集为14x ≤<. 在数轴上表示如下: .故选:A .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③【答案】C【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b , 根据1班班长的对话,得180x ≤,350x a +=, ∴350x a =− ∴350180a −≤, 解得170a ≥, 故①错误,③正确;根据2班班长的对话,得140b >,290y b +=,∴290b y =−, ∴290140y −>, ∴150y <, 故②正确, 故选:C .18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .【答案】1−(答案不唯一)【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x −≤<,然后即可得出整数解.【详解】解:21215x x +≥⎧⎨−<⎩①②,由①得:1x ≥−, 由②得:3x <,∴不等式组的解集为:13x −≤<, ∴不等式组的一个整数解为:1−; 故答案为:1−(答案不唯一).20.(2024·广西·中考真题)不等式7551x x +<+的解集为 . 【答案】<2x −【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x −<−, 合并同类项得,24x <−, 系数化为1得,<2x −, 故答案为:<2x −.21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .不等式组22.(2024·吉林·中考真题)不等式组230x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.∴0x >,且x 为正整数, ∴x 的最小值为1,∴绿球的个数的最小值为3, ∴袋子中至少有3个绿球, 故答案为:3.24.(2024·福建·中考真题)不等式321x −<的解集是 . 【答案】1x <【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解. 【详解】解:321x −<,33x <, 1x <,故答案为:1x <.25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .【答案】3x ≥/3x ≤【分析】本题主要考查了求不等式组的解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >, ∴不等式组的解集为3x ≥, 故答案为:3x ≥.26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ;27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可).三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解.【答案】1,2.【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键. 【详解】解:去分母得,()131x x +≥−, 去括号得,133x x +≥−, 移项得,331x x −≥−−, 合并同类项得,24x −≥−, 系数化为1得,2x ≤, ∴不等式的正整数解为1,2.29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解. 【答案】2,3,4【分析】本题考查了解一元一次不等式组,熟练掌握知识点是解题的关键.先将3479x −<−≤变形为347479x x −<−⎧⎨−≤⎩,再解每一个不等式,取解集的公共部分作为不等式组的解集,再找出其中的整数解即可.【详解】解:由题意得347479x x −<−⎧⎨−≤⎩①②,解①得:1x >, 解②得:4x ≤,∴该不等式组的解集为:14x <≤, ∴整数解为:2,3,430.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来.这个不等式的解集在数轴上表示如下:31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______. 【答案】(1)1x ≤ (2)3x ≥− (3)见解析 (4)31x −≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (3)根据前两问的结果,在数轴上表示不等式的解集; (4)根据数轴上的解集取公共部分即可. 【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥−, 故答案为:3x ≥−;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x −≤≤, 故答案为:31x −≤≤.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩ 【答案】17x −<<【分析】先求出每一个不等式的解集,再根据不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解”确定不等式组的解集.本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键.35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 【答案】整数解为:1,0,1−【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >−解不等式②得:1x ≤∴不等式组的解集为:21x −<≤,∴整数解为:1,0,1−36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有x 本,则语文书有(90)x −本,根据题意可得等量关系:x 本数学书的厚度(90)x +−本语文书的厚度84=,根据等量关系列出方程求解即可;(2)设数学书还可以摆m 本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +−=,解得:60x =,9030x −=.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m 本,根据题意得:1.2100.884m ⨯+≤,解得:90m ≤,∴数学书最多还可以摆90本.37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a (a 为正整数)折售出,最终获利1577元,请直接写出商店的进货方案. 【答案】(1)特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元(2)有3种方案,详见解析(3)特级干品猴头菇40箱,特级鲜品猴头菇40箱【分析】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)正确计算求解.(1)设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x 元和y 元,根据“购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元”,列出方程组求解即可; (2)设商店计划购进特级鲜品猴头菇m 箱,则购进特级干品猴头菇()80m −箱,根据“获利不少于1560元,其中干品猴头菇不多于40箱,”列出不等式组求解即可;(3)根据(2)中三种方案分别求解即可;元和38.(2024·江苏扬州·中考真题)解不等式组260412x x x −≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =−≥.特别的,当0a ≥时,表示数a 的点与原点的距离等于0a −.当a<0时,表示数a 的点与原点的距离等于0a −.应用如图,在数轴上,动点A 从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.【答案】(1)过4秒或6秒(2)3【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x 秒,则A 表示的数为3x −+,B 表示的数为122x −,根据“点A ,B 之间的距离等于3个单位长度”列方程求解即可;≤40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?【答案】(1)50元、30元(2)400棵【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;(2)购买脐橙树苗a棵,根据“总费用不超过38000元”列不等式求解即可.【详解】(1)解:设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据题意,得211023190x y x y +=⎧⎨+=⎩, 解得5030x y =⎧⎨=⎩, 答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;(2)解:设购买脐橙树苗a 棵,则购买黄金贡柚树苗()1000a −棵,根据题意,得()5030100038000a a +−≤,解得400a ≤,答:最多可以购买脐橙树苗400棵.41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩? 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a −亩,根据“所需学生人数不超过55人”列不等式求解即可.【详解】(1)解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩, 解得56x y =⎧⎨=⎩, 答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;(2)解:设种植甲作物a 亩,则种植乙作物()10a −亩,。
2024年中考数学真题汇编专题二 有理数及其运算+答案详解

2024年中考数学真题汇编专题二 有理数及其运算+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,数轴上点P 表示的数是( )A .1−B .0C .1D .22.(2024·四川遂宁·中考真题)中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( )A .60.6210⨯B .66.210⨯C .56.210´D .56210⨯3.(2024·湖南·中考真题)据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家,将4015000用科学记数法表示应为( )A .70.401510⨯B .64.01510⨯C .540.1510⨯D .34.01510⨯4.(2024·河南·中考真题)据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A .8578410⨯B .105.78410⨯C .115.78410⨯D .120.578410⨯ 5.(2024·河南·中考真题)计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭个的结果是( ) A .5a B .6a C .3a a + D .3a a6.(2024·天津·中考真题)据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯7.(2024·四川乐山·中考真题)2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( )A .8410⨯B .9410⨯C .10410⨯D .11410⨯8.(2024·广西·中考真题)广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A .90.84910⨯B .88.4910⨯C .784.910⨯D .684910⨯ 9.(2024·黑龙江绥化·中考真题)实数12025−的相反数是( ) A .2025 B .2025− C .12025− D .1202510.(2024·甘肃临夏·中考真题)据央视财经《经济信息联播》消息:甘肃天水凭借一碗香喷喷的麻辣烫成为最“热辣滚烫”的顶流.2024年3月份,天水市累计接待游客464万人次,旅游综合收入27亿元.将数据“27亿”用科学记数法表示为( )A .82.710⨯B .100.2710⨯C .92.710⨯D .82710⨯11.(2024·吉林·中考真题)长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯12.(2024·四川达州·中考真题)有理数2024的相反数是( )A .2024B .2024−C .12024D .12024− 13.(2024·重庆·中考真题)下列各数中最小的数是( )A .1−B .0C .1D .214.(2024·广东·中考真题)2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A .43.8410⨯B .53.8410⨯C .63.8410⨯D .538.410⨯15.(2024·重庆·中考真题)下列四个数中,最小的数是( )A .2−B .0C .3D .12− 16.(2024·四川德阳·中考真题)下列四个数中,比2−小的数是( )A .0B .1−C .12−D .3−17.(2024·四川广安·中考真题)下列各数最大的是( )A .2−B .12−C .0D .118.(2024·云南·中考真题)中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作( )A .100米B .100−米C .200米D .200−米19.(2024·四川广元·中考真题)将1−在数轴上对应的点向右平移2个单位,则此时该点对应的数是( )A .1−B .1C .3−D .320.(2024·四川凉山·中考真题)下列各数中:553025.827−−−+,,,,,,负数有( ) A .1个 B .2个 C .3个 D .4个21.(2024·江苏苏州·中考真题)用数轴上的点表示下列各数,其中与原点距离最近的是( )A .3−B .1C .2D .322.(2024·湖北·中考真题)在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A .10+元B .10−元C .20+元D .20−元23.(2024·湖南·中考真题)在日常生活中,若收入300元记作300+元,则支出180元应记作( )A .180+元B .300+元C .180−元D .480−元24.(2024·河北·中考真题)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D . 25.(2024·广东广州·中考真题)四个数10−,1−,0,10中,最小的数是( )A .10−B .1−C .0D .1026.(2024·贵州·中考真题)下列有理数中最小的数是( )A .2−B .0C .2D .427.(2024·浙江·中考真题)以下四个城市中某天中午12时气温最低的城市是( )A .北京B .济南C .太原D .郑州 28.(2024·四川内江·中考真题)2023年我国汽车出口491万辆,首次超越日本,成为全球第一大汽车出口国,其中491万用科学记数法表示为( )A .44.9110⨯B .54.9110⨯C .64.9110⨯D .74.9110⨯29.(2024·广西·中考真题)下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A .B .C .D .30.(2024·福建·中考真题)据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110⨯B .2696.110⨯C .46.96110⨯D .50.696110⨯31.(2024·北京·中考真题)为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯32.(2024·湖北武汉·中考真题)国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯33.(2024·浙江·中考真题)2024年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( )A .920.13710⨯B .80.2013710⨯C .92.013710⨯D .82.013710⨯34.(2024·吉林·中考真题)若()3−⨯的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1−35.(2024·内蒙古赤峰·中考真题)央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为( )A .95.210⨯B .110.5210⨯C .95210⨯D .105.210⨯36.(2024·内蒙古包头·中考真题)若,m n 互为倒数,且满足3m mn +=,则n 的值为( )A .14B .12C .2D .437.(2024·四川内江·中考真题)下列四个数中,最大数是( )A .2−B .0C .1−D .338.(2024·甘肃·中考真题)下列各数中,比2−小的数是( )A .1−B .4−C .4D .139.(2024·山东威海·中考真题)一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A .7+B .5−C .3−D .1040.(2024·内蒙古赤峰·中考真题)如图,数轴上点A ,M ,B 分别表示数a a b b +,,,若AM BM >,则下列运算结果一定是正数的是( )A .a b +B .a b −C .abD .a b −二、填空题41.(2024·黑龙江大兴安岭地·中考真题)国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为 .42.(2024·江苏连云港·中考真题)如果公元前121年记作121−年,那么公元后2024年应记作 年. 43.(2024·湖北·中考真题)写一个比1−大的数 .44.(2024·湖南·中考真题)计算:()2024−−= .45.(2024·湖北武汉·中考真题)中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2记作 ℃.46.(2024·陕西·中考真题)小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是 .(写出一个符合题意的数即可)47.(2024·黑龙江齐齐哈尔·中考真题)共青团中央发布数据显示:截至2023年12月底,全国共有共青团员7416.7万名.将7416.7万用科学记数法表示为 .48.(2024·上海·中考真题)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的 倍.(用科学记数法表示) 49.(2024·四川广元·中考真题)2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是1810−秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为秒.50.(2024·北京·中考真题)联欢会有A,B,C,D四个节目需要彩排.所有演员到场后节目彩排开始。
2024中考数学试题及答案

2024中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √2D. 1答案:C2. 已知a > 0,b < 0,且|a| > |b|,下列哪个不等式是正确的?A. a + b > 0B. a + b < 0C. a - b > 0D. a - b < 0答案:C3. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 下列哪个表达式不能简化为0?A. 5 - 5B. 3 + (-3)C. 2 × 0D. 1 - 1答案:C6. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. ±4D. 16答案:C7. 一个数的立方根和这个数本身相等,这个数可能是?A. 0B. 1C. -1D. 8答案:A8. 一个等差数列的首项为3,公差为2,那么第10项是多少?A. 23B. 21C. 19D. 17答案:A9. 一个二次方程x² - 5x + 6 = 0的根是什么?A. x = 2, 3B. x = -2, -3C. x = 2, -3D. x = -2, 3答案:A10. 以下哪个图形不是轴对称图形?A. 圆B. 矩形C. 三角形D. 正方形答案:C二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可能是______。
答案:±512. 一个多项式f(x) = x³ - 6x² + 11x - 6的因式分解是______。
答案:(x - 1)(x - 2)(x - 3)13. 一个正六边形的内角是______度。
答案:12014. 如果一个分数的分子和分母同时乘以2,那么这个分数的大小______。
2023中考数学真题汇编11 反比例函数及其应用(含答案与解析)

2023中考数学真题汇编·11反比例函数及其应用一、单选题1.(2023·云南)若点 1,3A 是反比例函数(0)ky k x图象上一点,则常数k 的值为()A .3B .3C .32D .322.(2023·湖南永州)已知点 2,M a 在反比例函数ky x的图象上,其中a ,k 为常数,且0k ﹐则点M 一定在()A .第一象限B .第二象限C .第三象限D .第四象限3.(2023·湖北随州)已知蓄电池的电压为定值,使用某蓄电池时,电流I (单位:A)与电阻R (单位: )是反比例函数关系,它的图象如图所示,则当电阻为6 时,电流为()A .3AB .4AC .6AD .8A4.(2023·湖南)如图,矩形OABC 的顶点B 和正方形ADEF 的顶点E 都在反比例函数 0ky k x的图像上,点B 的坐标为 2,4,则点E 的坐标为()A . 4,4B . 2,2C . 2,4D .4,25.(2023·浙江)如果100N 的压力F 作用于物体上,产生的压强P 要大于1000Pa ,则下列关于物体受力面积 2S m 的说法正确的是()A .S 小于20.1mB .S 大于20.1m C .S 小于210m D .S 大于210m 6.(2023·浙江嘉兴)已知点 1232,,1,,1,A y B y C y 均在反比例函数3y x的图象上,则123,,y y y 的大小关系是()A .123y y y B .213y y y C .312y y y D .321y y y 7.(2023·天津)若点 123,2,,1,)2(,A x B x C x 都在反比例函数2y x的图象上,则123,,x x x 的大小关系是()A .321x x x B .213x x x C .132x x x D .231x x x 8.(2023·山西)已知(2,),(1,),(3,)A a B b C c 都在反比例函数4y x的图象上,则a 、b 、c 的关系是()A .a b cB .b a cC .c b aD .c a b9.(2023·湖北宜昌)某反比例函数图象上四个点的坐标分别为 1233,,2,3,1,,2,y y y ,则,123,,y y y 的大小关系为()A .213y y y B .321y y y C .231y y y D .132y y y 10.(2023·内蒙古通辽)已知点 1122,,,A x y B x y 在反比例函数2y x的图像上,且120x x ,则下列结论一定正确的是()A .120y y B .120y y C .120y y D .120y y 11.(2023·湖北)在反比例函数4ky x的图象上有两点 1122,,,A x y B x y ,当120x x 时,有12y y ,则k 的取值范围是()A .0k B .0k C .4k D .4k 12.(2023·吉林长春)如图,在平面直角坐标系中,点A 、B 在函数(0,0)k y k x x的图象上,分别以A 、B 为圆心,1为半径作圆,当A 与x 轴相切、B 与y 轴相切时,连结AB ,32AB ,则k 的值为()A .3B .32C .4D .613.(2023·湖南)如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数 0ky k x图像上的一点,过点A 分别作AM x 轴于点M ,AN y 轴于直N ,若四边形AMON 的面积为2.则k 的值是()A .2B .2C .1D .114.(2023·黑龙江绥化)在平面直角坐标系中,点A 在y 轴的正半轴上,AC 平行于x 轴,点B ,C 的横坐标都是3,2BC ,点D 在AC 上,且其横坐标为1,若反比例函数ky x(0x )的图像经过点B ,D ,则k 的值是()A .1B .2C .3D .3215.(2023·湖南张家界)如图,矩形OABC 的顶点A ,C 分别在y 轴、x 轴的正半轴上,点D 在AB 上,且14AD AB,反比例函数 0ky k x的图象经过点D 及矩形OABC 的对称中心M ,连接,,OD OM DM .若ODM △的面积为3,则k 的值为()A .2B .3C .4D .516.(2023·内蒙古)如图,在平面直角坐标系中,OAB 三个顶点的坐标分别为(0,0),(23,0),(3,1),O A B OAB △与OAB 关于直线OB 对称,反比例函数(0,0)ky k x x的图象与A B 交于点C .若A C BC ,则k 的值为()A .23B .332C .3D .3217.(2023·湖南怀化)如图,反比例函数(0)ky k x的图象与过点(1,0) 的直线AB 相交于A 、B 两点.已知点A 的坐标为(1,3),点C 为x 轴上任意一点.如果9ABC S ,那么点C 的坐标为()A .(3,0)B .(5,0)C .(3,0) 或(5,0)D .(3,0)或(5,0)18.(2023·福建)如图,正方形四个顶点分别位于两个反比例函数3y x和ny x的图象的四个分支上,则实数n 的值为()A .3B .13C .13D .319.(2023·广西)如图,过(0)ky x x 的图象上点A ,分别作x 轴,y 轴的平行线交1y x的图象于B ,D两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为1S ,2S ,3S ,4S ,若23452S S S ,则k 的值为()A .4B .3C .2D .120.(2023·黑龙江)如图,ABC 是等腰三角形,AB 过原点O ,底边BC x ∥轴,双曲线ky x过,A B 两点,过点C 作CD y ∥轴交双曲线于点D ,若12BCD S ,则k 的值是()A .6B .12C .92D .921.(2023·四川宜宾)如图,在平面直角坐标系xOy 中,点A 、B 分别在y ,x轴上,BC x 轴.点M 、N 分别在线段BC 、AC 上,BM CM ,2NC AN ,反比例函数 0ky x x的图象经过M 、N 两点,P 为x 正半轴上一点,且:1:4OP BP ,APN 的面积为3,则k 的值为()A .454B .458C .14425D .7225二、填空题22.(2023·广东)某蓄电池的电压为48V ,使用此蓄电池时,电流I (单位:A )与电阻R (单位: )的函数表达式为48I R,当12R 时,I 的值为_______A .23.(2023·四川成都)若点 123,y ,1,A B y 都在反比例函数6y x的图象上,则1y _______2y (填“ ”或“ ”).23.(2023·浙江温州)在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强P (kPa )与汽缸内气体的体积V (mL )成反比例,P 关于V 的函数图象如图所示.若压强由75kPa 加压到100kPa ,则气体体积压缩了___________mL .24.(2023·河北)如图,已知点(3,3),(3,1)A B ,反比例函数(0)ky k x图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.25.(2023·黑龙江齐齐哈尔)如图,点A 在反比例函数 0ky k x图像的一支上,点B 在反比例函数2ky x图像的一支上,点C ,D 在x 轴上,若四边形ABCD 是面积为9的正方形,则实数k 的值为______.26.(2023·广东深圳)如图,Rt OAB 与Rt OBC △位于平面直角坐标系中,30AOB BOC ,BA OA ,CB OB ,若AB 0ky kx恰好经过点C ,则k ______.27.(2023·江苏连云港)如图,矩形OABC 的顶点A 在反比例函数(0)ky x x的图像上,顶点B C 、在第一象限,对角线AC x ∥轴,交y 轴于点D .若矩形OABC 的面积是6,2cos 3OAC ,则k __________.28.(2023·新疆)如图,在平面直角坐标系中,OAB 为直角三角形,90A ,30AOB ,4OB .若反比例函数 0ky k x的图象经过OA 的中点C ,交AB 于点D ,则k ______.29.(2023·山东烟台)如图,在直角坐标系中,A 与x 轴相切于点,B CB 为A 的直径,点C 在函数(0,0)ky k x x的图象上,D 为y 轴上一点,ACD 的面积为6,则k 的值为________.26.(2023·湖北鄂州)如图,在平面直角坐标系中,直线11y k x b 与双曲线22k y x(其中120k k )相交于 2,3A , ,2B m 两点,过点B 作BP x ∥轴,交y 轴于点P ,则ABP 的面积是___________.30.(2023·浙江绍兴)如图,在平面直角坐标系xOy 中,函数ky x(k 为大于0的常数,0x )图象上的两点 1122,,,A x y B x y ,满足212x x .ABC 的边AC x ∥轴,边∥BC y 轴,若OAB 的面积为6,则ABC 的面积是________.31.(2023·四川内江)如图,在平面直角坐标系中,O 为坐标原点,MN 垂直于x 轴,以MN 为对称轴作ODE 的轴对称图形,对称轴MN 与线段DE 相交于点F ,点D 的对应点B 恰好落在反比例函数(0)ky x x的图象上,点O 、E 的对应点分别是点C 、A .若点A 为OE 的中点,且14EAF S △,则k 的值为___________.32.(2023·浙江宁波)如图,点A ,B 分别在函数(0)ay a x图象的两支上(A 在第一象限),连接AB 交x 轴于点C .点D ,E 在函数(0,0)by b x x图象上,AE x 轴,BD y ∥轴,连接,DE BE .若2AC BC ,ABE 的面积为9,四边形ABDE 的面积为14,则a b 的值为__________,a 的值为__________.33.(2023·湖北荆州)如图,点 2,2A 在双曲线(0)k y x x上,将直线OA 向上平移若干个单位长度交y 轴于点B ,交双曲线于点C .若2BC ,则点C 的坐标是___________.34.(2023·山东枣庄)如图,在反比例函数8(0)y x x的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ___________.35.(2023·湖北十堰)函数ky x a的图象可以由函数k y x的图象左右平移得到.(1)将函数1y x的图象向右平移4个单位得到函数1y x a的图象,则 a ____;(2)下列关于函数1y x a的性质:①图象关于点 ,0a 对称;②y 随x 的增大而减小;③图象关于直线y x a 对称;④y 的取值范围为0y .其中说法正确的是________(填写序号);(3)根据(1)中a 的值,写出不等式11x a x的解集:_________.三、解答题36.(2023·湖南常德)如图所示,一次函数1y x m 与反比例函数2ky x相交于点A 和点 3,1B .(1)求m 的值和反比例函数解析式;(2)当12y y 时,求x 的取值范围.37.(2023·湖南)如图,点A 的坐标是 3,0 ,点B 的坐标是(0,4),点C 为OB中点,将ABC 绕着点B 逆时针旋转90 得到A BC △.(1)反比例函数ky x的图像经过点C ,求该反比例函数的表达式;(2)一次函数图像经过A 、A 两点,求该一次函数的表达式.38.(2023·四川广安)如图,一次函数94y kx(k 为常数,0k )的图象与反比例函数(my m x为常数,0)m 的图象在第一象限交于点 1,A n ,与x 轴交于点 3,0B .(1)求一次函数和反比例函数的解析式.(2)点P 在x 轴上,ABP 是以AB 为腰的等腰三角形,请直接写出点P 的坐标.39.(2023·山东)如图,已知坐标轴上两点 0,4,2,0A B ,连接AB ,过点B 作BC AB ,交反比例函数ky x在第一象限的图象于点(,1)C a .(1)求反比例函数ky x和直线OC 的表达式;(2)将直线OC 向上平移32个单位,得到直线l ,求直线l 与反比例函数图象的交点坐标.40.(2023·浙江杭州)在直角坐标系中,已知120k k ,设函数11k y x与函数 2225y k x 的图象交于点A 和点B .已知点A 的横坐标是2,点B 的纵坐标是4 .(1)求12,k k 的值.(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,在第二象限交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点D .求证:直线CD 经过原点.41.(2023·四川自贡)如图,点 24A ,在反比例函数1my x图象上.一次函数2y kx b 的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且OAC △与OBC △的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出12y y 时,x 的取值范围.42.(2023·四川泸州)如图,在平面直角坐标系xOy 中,直线:2l y kx 与x ,y 轴分别相交于点A ,B ,与反比例函数 0my x x的图象相交于点C ,已知1OA ,点C 的横坐标为2.(1)求k ,m 的值;(2)平行于y 轴的动直线与l 和反比例函数的图象分别交于点D ,E ,若以B ,D ,E ,O 为顶点的四边形为平行四边形,求点D 的坐标.43.(2023·四川南充)如图,一次函数图象与反比例函数图象交于点 16A ,3,3B a a,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数与一次函数的解析式;(2)点M 在x 轴上,若OAM OAB S S △△,求点M 的坐标.44.(2023·四川宜宾)如图,在平面直角坐标系xOy 中,等腰直角三角形ABC 的直角顶点 30C ,,顶点A 、 6B m ,恰好落在反比例函数ky x第一象限的图象上.(1)分别求反比例函数的表达式和直线AB 所对应的一次函数的表达式;(2)在x 轴上是否存在一点P ,使ABP 周长的值最小.若存在,求出最小值;若不存在,请说明理由.45.(2023·四川遂宁)如图,一次函数1y k x b 的图像与反比例函数2k y x的图像交于 41A ,, 4B m ,两点.(1k ,2k ,b 为常数)(1)求一次函数和反比例函数的解析式;(2)根据图像直接写出不等式21k k x b x的解集;(3)P 为y 轴上一点,若PAB 的面积为3,求P 点的坐标.46.(2023·四川眉山)如图,在平面直角坐标系xOy 中,直线y kx b与x 轴交于点 4,0A ,与y 轴交于点 0,2B ,与反比例函数m y x在第四象限内的图象交于点 6,C a .(1)求反比例函数的表达式:(2)当mkx b x时,直接写出x 的取值范围;(3)在双曲线my x上是否存在点P ,使ABP 是以点A 为直角顶点的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.47.(2023·江西)如图,已知直线y x b 与反比例函数(0)k y x x的图象交于点(2,3)A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数(0)k y x x的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC 的面积.48.(2023·四川乐山)如图,一次函数y kx b 的图象与反比例函数4y x的图象交于点 ,4A m ,与x 轴交于点B ,与y 轴交于点 0,3C .(1)求m 的值和一次函数的表达式;(2)已知P 为反比例函数4y x图象上的一点,2OBP OAC S S △△,求点P 的坐标.49.(2023·湖南岳阳)如图,反比例函数kyx(k 为常数,0k )与正比例函数y mx (m 为常数,0m )的图像交于 1,2,A B 两点.(1)求反比例函数和正比例函数的表达式;(2)若y 轴上有一点 0,,C n ABC △的面积为4,求点C 的坐标.50.(2023·湖南)如图,正比例函数43y x的图象与反比例函数12(0)y x x的图象相交于点A .(1)求点A 的坐标.(2)分别以点O 、A 为圆心,大于OA 一半的长为半径作圆弧,两弧相交于点B 和点C ,作直线BC ,交x 轴于点D .求线段OD 的长.51.(2023·江苏苏州)如图,一次函数2y x 的图象与反比例函数(0)ky x x的图象交于点 4,A n .将点A 沿x 轴正方向平移m 个单位长度得到点,B D 为x 轴正半轴上的点,点B 的横坐标大于点D 的横坐标,连接,BD BD 的中点C 在反比例函数(0)k y x x的图象上.(1)求,n k 的值;(2)当m 为何值时,AB OD 的值最大?最大值是多少?52.(2023·山东东营)如图,在平面直角坐标系中,一次函数 0y ax b a与反比例函数 0ky k x交于 ,3A m m , 4,3B 两点,与y 轴交于点C ,连接OA ,OB .(1)求反比例函数和一次函数的表达式;(2)求AOB 的面积;(3)请根据图象直接写出不等式kax b x的解集.53.(2023·山东枣庄)如图,一次函数(0)y kx b k 的图象与反比例函数4y x的图象交于(,1),(2,)A m B n 两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式4kx b x的解集;(3)设直线AB 与x 轴交于点C ,若(0,)P a 为y 轴上的一动点,连接,AP CP ,当APC △的面积为52时,求点P 的坐标.54.(2023·山东滨州)如图,直线(,y kx b k b 为常数)与双曲线my x(m 为常数)相交于 2,A a , 1,2B 两点.(1)求直线y kx b 的解析式;(2)在双曲线my x上任取两点 11,M x y 和 22,N x y ,若12x x ,试确定1y 和2y 的大小关系,并写出判断过程;(3)请直接写出关于x 的不等式mkx b x的解集.55.(2023·甘肃兰州)如图,反比例函数 0ky x x与一次函数2y x m的图象交于点 1,4A ,BC y 轴于点D ,分别交反比例函数与一次函数的图象于点B ,C .(1)求反比例函数ky x与一次函数2y x m 的表达式;(2)当1OD 时,求线段BC 的长.56.(2023·湖北黄冈)如图,一次函数1(0)y kx b k 与函数为2(0)my x x的图象交于1(4,1),,2A B a两点.(1)求这两个函数的解析式;(2)根据图象,直接写出满足120y y 时x 的取值范围;(3)点P 在线段AB 上,过点P 作x 轴的垂线,垂足为M ,交函数2y 的图象于点Q ,若POQ △面积为3,求点P 的坐标.57.(2023·四川)如图,已知一次函数6y kx 的图象与反比例函数 0my m x的图象交于 34A ,,B 两点,与x 轴交于点C ,将直线AB 沿y 轴向上平移3个单位长度后与反比例函数图象交于点D ,E .(1)求k ,m 的值及C 点坐标;(2)连接AD ,CD ,求ACD 的面积.58.(2023·山东)如图,正比例函数112y x和反比例函数2(0)ky x x的图像交于点 ,2A m .(1)求反比例函数的解析式;(2)将直线OA 向上平移3个单位后,与y 轴交于点B ,与2(0)ky x x的图像交于点C ,连接AB AC ,,求ABC 的面积.59.(2023·四川内江)如图,在平面直角坐标系中,一次函数y mx n 与反比例函数ky x的图象在第一象限内交于 ,4A a 和 4,2B 两点,直线AB 与x 轴相交于点C ,连接OA .(1)求一次函数与反比例函数的表达式;(2)当0x 时,请结合函数图象,直接写出关于x 的不等式kmx n x≥的解集;(3)过点B 作BD 平行于x 轴,交OA 于点D ,求梯形OCBD 的面积.60.(2023·山东聊城)如图,一次函数y kx b 的图像与反比例函数m y x的图像相交于 1,4A , ,1B a 两点.(1)求反比例函数和一次函数的表达式;(2)点 ,0P n 在x 轴负半轴上,连接AP ,过点B 作BQ AP ∥,交my x的图像于点Q ,连接PQ .当BQ AP 时,若四边形APQB 的面积为36,求n 的值.61.(2023·河南)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数ky x图象上的点A 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作 AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.62.(2023·四川成都)如图,在平面直角坐标系xOy 中,直线5y x 与y 轴交于点A ,与反比例函数ky x的图象的一个交点为(,4)B a ,过点B 作AB 的垂线l .(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上,且ABC 的面积为5,求点C 的坐标;(3)P 是直线l 上一点,连接PA ,以P 为位似中心画PDE △,使它与PAB 位似,相似比为m .若点D ,E 恰好都落在反比例函数图象上,求点P 的坐标及m 的值.【参考答案与解析】1.【答案】A【解析】解:∵点 1,3A 是反比例函数(0)ky k x图象上一点,∴133k ,故选:A .2.【答案】A【解析】解:0k ∵, 反比例函数ky x的图象经过第一、三象限,故点M 可能在第一象限或者第三象限,2,M a ∵的横坐标大于0, 2,M a 一定在第一象限,故选:A .3.【答案】B【解析】解:设该反比函数解析式为 0kI k R,由题意可知,当8R 时,3I ,38k,解得:24k , 设该反比函数解析式为24I R, 当6R 时,2446I,即电流为4A ,故选:B .4.【答案】D【解析】∵ 0k y k x经过 2,4,∴解析式为8y x,设正方形的边长为x ,则点 2,E x x ,∴ 28x x ,解得122,4x x (舍去),故点 4,2E ,故选:D .5.【答案】A【解析】解:假设P 为1000Pa ,∵F 为100N ,2F 100S =0.1m P 1000.P 1000Pa Q ,2S 0.1m .故选:A.6.【答案】B【解析】解:∵30k ,∴图象在一三象限,且在每个象限内y 随x 的增大而减小,∵2101 ,∴2130y y y .故选:B .7.【答案】D【解析】解:2y x,20 ,∴双曲线在二,四象限,在每一象限,y 随x 的增大而增大;∵ 123,2,,1,)2(,A x B x C x ,∴1230,0x x x ,∴231x x x ;故选:D .8.【答案】B【解析】解:∵反比例函数4y x中0k ,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y 随x 的增大而减小.∵20,10, ∴(2,),(1,)A a B b 位于第三象限,∴0,0,a b ∵210, ∴0.a b ∵30,∴点(3,)C c 位于第一象限,∴0,c ∴.b a c 故选:B .9.【答案】C【解析】解:设反比例函数的解析式为k y x,将点 2,3 代入得:236k ,则反比例函数的解析式为6y x,所以这个函数的图象位于第二、四象限,且在每一象限内,y 随x 的增大而增大,又∵点 1233,,1,,2,y y y 在函数6y x 的图象上,且3012 ,1320y y y ,即231y y y ,故选:C .10.【答案】D【解析】解:∵点 11,A x y , 22,B x y )是反比例函数2y x的图像上的两点,∴11222x y x y ,∵120x x ,∴210y y ,即120y y ,故D 正确.故选:D .11.【答案】C【解析】解:∵当120x x 时,有12y y ,∴反比例函数4ky x的图象在一三象限,∴40k 解得:4k ,故选:C .12.【答案】C【解析】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为E D ,,AE BD ,交于点C ,依题意,B 的横坐标为1,A 的纵坐标为1,设 ,1A k , 1,B k ∴ 1,1C ,则1,1AC k BC k ,又∵90ACB ,AB ∴ 22211k k ,∴3BC AC ,∴13k 解得:4k ,故选:C .13.【答案】A【解析】解:AM x ∵轴于点M ,AN y 轴于直N ,90MON , 四边形AMON 是矩形,∵四边形AMON 的面积为2,2k ,∵反比例函数在第一、三象限,2k ,故选:A .14.【答案】C 【解析】设 3,B m ,∵点B ,C 的横坐标都是3,2BC ,AC 平行于x 轴,点D 在AC 上,且其横坐标为1,∴ 3,2,1,2C m D m ,∴32m m ,解得1m ,∴ 3,1B ,∴313k ,故选:C .15.【答案】C【解析】解:∵四边形OCBA 是矩形,∴AB OC ,OA BC ,设B 点的坐标为(,)a b ,∵矩形OABC 的对称中心M ,∴延长OM 恰好经过点B ,(,)22a bM ,∵点D 在AB 上,且14AD AB ,∴1(,)4D a b ,∴34BD a ,∴1133()224216BDM b S BD h a b ab∵D 在反比例函数的图象上,∴14ab k ,∵11332216ODM AOB AOD BDM ab S S S S ab k ,∴11332816ab ab ab ,解得:16ab ,∴144k ab,故选:C .16.【答案】A【解析】解:如图所示,过点B 作BD x 轴,∵(0,0),(23,0),(3,1)O A B ,∴1,3BD OD ∴3AD OD ,3tan BD BOA OD∴222OB AB OD BD ,30BOA BAO ,∴60OBD ABD ,120OBA ,∵OA B 与OAB 关于直线OB 对称,∴120OBA ,∴180OBA OBD ,∴A ,B ,O 三点共线,∴2A B AB ,∵A C BC ,∴1BC ,∴2CD ,∴3,2C ,将其代入(0,0)ky k x x得:23k ,故选:A .17.【答案】D【解析】解:∵反比例函数(0)k y k x的图象过点(1,3),∴133k ∴3y x设直线AB 的解析式为y mx n ,∴30m n m n ,解得:3232m n,∴直线AB 的解析式为3322y x,联立33223y x y x,解得:13x y 或232x y ,∴32,2B ,设 ,0C c ,∵1313922ABC S c,解得:3c 或5c ,∴C 的坐标为(3,0)或(5,0) ,故选:D .18.【答案】A【解析】解:如图所示,连接正方形的对角线,过点,A B 分别作x 轴的垂线,垂足分别为,C D ,点B 在3y x上,∵OB OA ,90AOB BDO ACO ,∴90CAO AOC BOD .∴AOC OBD ≌.∴32AOC OBD S S2n .∵A 点在第二象限,∴3n .故选:A .19.【答案】C【解析】设 ,A a b ,则1,B b b ,1,D a a,11,C b a∵点A 在(0)ky x x的图象上,则1S ab k ,同理∵B ,D 两点在1y x 的图象上,则241S S ,故3511122S ,又∵31211S b a,即112ab ,故2ab ,∴2k ,故选:C .20.【答案】C【解析】解:由题意,设,k B b b,∵AB 过原点O ,∴,k A b b,过点A 作AE BC 于E ,∵ABC 是等腰三角形,∴ 2CE BE b b b ,∴4BC b ,点D 的横坐标为3b ,∵底边BC x ∥轴,CD y ∥轴,∴1141222BCD S BC CD b CD,∴6CD b,∴点D 的纵坐标为66k k b b b ,∴63,k D b b,∴ 6336k k b k b ,解得:92k ,故选:C.21.【答案】B【解析】解:如图,过点N 作NQ x 轴于点Q,设点A 的坐标为 0,0A a a ,点M 的坐标为 5,0,0M b c b c ,点N 的坐标为 ,0,0N m n m n ,则 5,2C b c ,OA a ,5OB b ,:1:4OP BP ∵,,4OP b BP b ,2NC AN ∵, 5202223b m m n c a c,解得53223b m a c n,522,33b a c N ,522,33b a cOQ NQ,23bPQ OQ OP,APN ∵ 的面积为3,3AOP NPQ OANQ S S S 梯形,即15221122232332233a c b a c b a ab ,整理得:29ab bc ,将点 5225,,,33b a c M b c N代入k y x 得:522533b a c k bc ,整理得:27a c ,将27a c 代入29ab bc 得:79bc bc ,解得98bc ,则4558k bc,故选:B .二、填空题22.【答案】4【解析】解:∵12R ,∴4848412I R A 故答案为:4.23.【答案】 【解析】解:∵点 123,y ,1,A B y 都在反比例函数6y x的图象上,∴1623y,2661y ,∵26 ,∴1y 2y ,故答案为: .23.【答案】20【解析】解:设P 关于V 的函数解析式为kP V,由图象可把点 100,60代入得:6000k ,∴P 关于V 的函数解析式为6000P V,∴当75kPa P 时,则60008075V,∴压强由75kPa 加压到100kPa ,则气体体积压缩了1008020mL ;故答案为:20.24.【答案】4(答案不唯一,满足39k 均可)【解析】解:当反比例函数(0)ky k x图像过(3,3)A 时,339k ;当反比例函数(0)ky k x图像过(3,1)B 时,313k ;∴k 的取值范围为39k ,∴k 可以取4.故答案为:4(答案不唯一,满足39k 均可).25.【答案】6 【解析】解:如图:∵点A 在反比例函数 0k y k x 图像的一支上,点B 在反比例函数2ky x 图像的一支上,∴,22ODAE OCBE k k S k k S∵四边形ABCD 是面积为9的正方形,∴9ODAE OCBE S S ,即92kk ,解得:6k .故答案为:6 .26.【答案】3【解析】解:过点C 作CD x 轴于点D ,如图所示:∵30AOB BOC ,BA OA ,CB OB ,∴11,22AB OB BC OC ,∵90AOD ,∴30COD ,∵3AB ∴23OB AB 在Rt OBC △中,2233OB OC BC BC ,∴2BC ,4OC ,∵30COD ,90CDO ,∴122CD OC ,∴323OD CD ,∴点23,2C ,∴43k ,故答案为:4327.【答案】83【解析】解:方法一:∵2cos 3OAC ,∴2cos 3AD AO OAC AO AC设2AD a ,则3AO a ,∴92AC a∵矩形OABC 的面积是6,AC 是对角线,∴AOC 的面积为3,即132AO OC ∴623OC a a在Rt AOC 中,222AC AO OC 即 2229232a a a即22813644a a解得:2a 在Rt ADC中,DO∵对角线AC x ∥轴,则AD OD ,∴2458222153AOD k S a ,∵反比例函数图象在第二象限,∴83k ,方法二:∵2cos 3OAC ,∴2cos 3AD AO OAC AO AC设2AD a ,则3AO a ,∴92AC a,∴24992AD a AC a,488226993AOD AOC S S,∵0k ,∴83k ,故答案为:83.28.【答案】334【解析】解:如图,作CE OB 交OB 于点E ,,∵90A ,30AOB ,4OB ,3cos3043OA OB∵点C 为OA 的中点,113322OC OA∵CE OB ,90OEC ,30COE ∵,113333cos303222CE OC OE OC ,332C,,∵点C 在反比例函数图象上,333224k,3329.【答案】24【解析】解:设,k C a a,∵A 与x 轴相切于点B ,∴BC x 轴,∴,kOB a AC a,则点D 到BC 的距离为a ,∵CB 为A 的直径,∴122k AC BC a ,∴16224ACDk k S a a ,解得:24k ,故答案为:24.26.【答案】152【解析】∵直线11y k x b 与双曲线22k y x(其中120k k )相交于 2,3A , ,2B m 两点,∴2232k m ∴263k m ,,∴双曲线的表达式为:26y x, 3,2B ,∵过点B 作BP x ∥轴,交y 轴于点P ,∴3BP ,∴1153(32)22ABP S,故答案为:152.30.【答案】2【解析】解:如图,过点A B 、作AF y 轴于点F ,AD x 轴于点D ,BE x ⊥于点E,6AFO ABO BOE FABEO S S S S k ∵五边形AFOD FABEO ADEB ADEB S S S k S 矩形五边形梯形梯形6ADEB S 梯形2121()()62y y x x∵212x x 2112y y11112121111()(2)()()32==6224y y x x y y x x y x 11=8x y 8k21121111111111()()82222244ABC S AC BC x x y y x y x y =×=-×-=×==´=故答案为:2.31.【答案】6 【解析】解:连接BO,设对称轴MN 与x 轴交于点G ,∵ODE 与CBA △关于对称轴MN ,∴AG EG ,AC EO ,EC AO ,∵点A 为OE 的中点,设AG EG a ,则2EC AO AE a ,∴4AC EO a ,∵14EAF S △,∴8112EGF EAF S S△△,∵GF OD ,∴EFG EDO ∽△△,∴2EGF EOD S EG S EO △△,即2184EOD a S a △,∴11628EOD S △,∴2ACB S △,∵4AC a ,2AO a ,∴213OCB ACB AOB S S S △△△,∴132k ,∵0k ,∴6k ,故答案为:6 .32.【答案】12;9【解析】解:如图,延长BD ,AE 交于点Q ,BD 与x 轴交于点K ,而AE x 轴,BD y ∥轴,∴90Q ,∵ABE 的面积为9,四边形ABDE 的面积为14,∴BDE △的面积是5,设,a A m m ,,a B n n,∴,a Q n m ,,b D n n ,,bm a E a m∴b a BD n n ,bm EQ n a ,bm AE m a,a a BQ m n ,∴152b a bm n n n a ,192bm a a m a m n ,整理得: 10b a bm an na ①, 18n m a b n ②,∵OK AQ ∥,2AC BC ,∴12BK BC QK AC ,∴2QK BK ,∴2a a m n,则2n m ③,把③代入②得: 3182m a b m ,∴12a b ,即12b a ④,把③代入①得: 220b a b a a ⑤,把④代入⑤得:9a ;故答案为:12;9.33.【答案】【解析】解:把 2,2A 代入(0)ky x x ,可得22k ,解得4k , 反比例函数解析式4(0)y x x,如图,过点A 作x 轴的垂线段交x 轴于点E ,过点C 作y 轴的垂线段交y 轴于点D ,2,2A ∵,AE OE ,45AOE ,9045AOD AOE ,∵将直线OA 向上平移若干个单位长度交y 轴于点B ,45CBD ,在Rt CBD △中,sin 45CD CB 22CD即点C把x 4(0)y x x,可得yC ,故答案为:.34.【答案】2023253【解析】当1x 时,1P 的纵坐标为8,当2x 时,2P 的纵坐标为4,当3x 时,3P 的纵坐标为83,当4x 时,4P 的纵坐标为2,当5x 时,5P 的纵坐标为85,…则11(84)84S ;2881(4)433S ;3881(2)233S ;481(22558S ;…881n S n n ;1238888888844228335111n n S S S S n n n n ,∴12320238202320242532023S S S S.故答案为:2023253.35.【答案】(1)4 ;(2)①④.(3)0x 或4x .【解析】(1)根据“左加右减”的规律即可求解;∵函数1y x 的图象向右平移4个单位得到函数14y x 的图象,∴4a ;(2)根据平移的性质得出①正确;类比反比例函数图象的性质即可判断②④,根据平移的性质将y x 向左平移a 个单位,得出y x a ,即可判断③;∵1y x a可以看作是由1y x 向左平移a 0a 个单位得到的,∵函数1y x 图象的对称中心为 00,,将其对称中心向左平移a 个单位,则对称中心为 ,0a ,故①正确,②类比反比例函数图象,可得x a ¹-,故函数图象不是连续的,在直线x a 两侧,y 随x 的增大而减小;故②错误;③∵1y x关于y x 对称,同①可得,y x 向左平移a 个单位得到: y x a x a ,∴图象关于直线y x a 对称;故③不正确;④∵平移后的对称中心为 ,0a ,左右平移图象后,1y x a与y 轴没有交点,∴y 的取值范围为0y .故④正确,(3)根据题意,画出两个函数图象,结合图象即可求解.∵4a ,∴不等式114x x如图所示,在第三象限内和第一象限内,114x x ,∴0x 或4x ,36.【答案】(1)2m ,3y x;(2)1x 或03x 【解析】(1)将点 3,1B 代入1y x m 得:31m 解得:2m 将 3,1B 代入2k y x得: 313k ∴23y x(2)由12y y 得:32x x,解得121,3x x 所以,A B 的坐标分别为1,3,3,1A B 由图形可得:当1x 或03x 时,12y y 37.【答案】(1)解:∵点B 的坐标是(0,4),点C 为OB 中点,∴ 0,2C ,2OC BC ,由旋转可得:2BC BC ,90CBC ,∴ 2,4C ,∴248k ,∴反比例函数的表达式为8y x;(2)如图,过A 作A H BC 于H ,则90AOB A HB ,而90ABA ,AB A B,∴90ABO BAO ABO A BO ,∴BAO A BH ¢Ð=Ð,∴ABO BA H ≌,∴3AO BH ,4OB A H ,∴431OH ,∴ 4,1A ,设直线AA 为y mx n ,∴3041m n m n ,解得:1737m n,∴直线AA 为1377y x .【解析】(1)由点B 的坐标是(0,4),点C 为OB 中点,可得 0,2C ,2OC BC ,由旋转可得:2BC BC ,90CBC ,可得 2,4C ,可得248k ,从而可得答案;(2)如图,过A 作A H BC 于H ,则90AOB A HB ,而90ABA ,AB A B ,证明ABO BA H ≌,可得3AO BH ,4OB A H , 4,1A ,设直线AA 为y mx n ,再建立方程组求解即可.38.【答案】(1)解:把点 3,0B 代入一次函数94y kx 得,930,4k 解得:34k ,故一次函数的解析式为3944y x,把点 1,A n 代入3944y x ,得39344n ,(1,3)A ,把点(1,3)A 代入m y x,得3m ,故反比例函数的解析式为3y x;(2)解: 3,0B ,(1,3)A ,5AB ,当5AB PB 时,(8,0)P 或(2,0),当PA AB 时,点,P B 关于直线1x 对称,(5,0)P ,综上所述:点P 的坐标为(8,0) 或(2,0)或(5,0).【解析】(1)根据待定系数法,把已知点代入再解方程即可得出答案;(2)首先利用勾股定理求出得AB 的长,再分两种情形讨论即可.39.【答案】(1)如图,过点C 作CD x 轴于点D ,则1CD ,90CDB ,∵BC AB ,∴90ABC ,∴90ABO CBD ,∵90CDB ,∴90BCD CBD ,∴BCD ABO ,∴ABO BCD ∽ ,∴OA BD OB CD,∵ 0,4,2,0A B ,∴4OA ,2OB ,∴421BD ,∴2BD ,∴224OD ,∴点 4,1C ,将点C 代入k y x 中,可得4k ,∴4y x,设OC 的表达式为y mx ,将点 4,1C 代入可得14m ,解得:14m,∴OC 的表达式为14y x ;(2)直线l 的解析式为1342y x,当两函数相交时,可得13442x x ,解得12x ,8x ,代入反比例函数解析式,得1122x y ,22812x y∴直线l 与反比例函数图象的交点坐标为 2,2或18,2【解析】(1)如图,过点C 作CD x 轴于点D ,证明ABO BCD ∽ ,利用相似三角形的性质得到2BD ,求出点C 的坐标,代入k y x可得反比例函数解析式,设OC 的表达式为y mx ,将点 4,1C 代入即可得到直线OC 的表达式;(2)先求得直线l 的解析式,联立反比例函数的解析式即可求得交点坐标.40.【答案】(1)∵点A 的横坐标是2,∴将2x 代入 22255y k x ,∴ 2,5A ,∴将 2,5A 代入11k y x得,110k ,∴110y x ,∵点B 的纵坐标是4 ,∴将4y 代入110y x 得,52x ,∴5,42B ,∴将5,42B 代入 2225y k x 得,254252k,∴解得22k ,∴ 222521y x x ;(2)如图所示,由题意可得,5,52C, 2,4D ,∴设CD 所在直线的表达式为y kx b ,∴55224k b k b ,解得20k b ,∴2y x ,∴当0x 时,0y ,∴直线CD 经过原点.【解析】(1)首先将点A 的横坐标代入 2225y k x 求出点A 的坐标,然后代入11k y x 求出110k ,然后将点B 的纵坐标代入110y x 求出5,42B,然后代入 2225y k x 即可求出22k ;(2)首先根据题意画出图形,然后求出点C 和点D 的坐标,然后利用待定系数法求出CD 所在直线的表达式,进而求解即可.41.【答案】(1)解:将 24A ,代入1m y x 得,42m ,解得8m ,∴反比例函数解析式为18y x;当0x ,2y b ,则 0C b ,,OC b ,当20y ,b x k,则0b B k ,b OB k ,∵OAC 与OBC △的面积比为2:1,∴2212A OC x OC OB ,整理得2A x OB ,即22b k ,解得b k 或b k ,当b k 时,将 24A ,代入2y kx b 得,42k k ,解得43k ,则24433y x ;当b k 时,将 24A ,代入2y kx b 得,42k k ,解得4k ,则244y x ;综上,一次函数解析式为24433y x 或244y x ;∴反比例函数解析式为18y x ,一次函数解析式为24433y x 或244y x ;(2)解:由题意知,由一次函数解析式不同分两种情况求解:①当一次函数解析式为24433y x 时,如图1,联立1284433y x y x ,解得383x y 或24x y ,由函数图象可知,12y y 时,x 的取值范围为3x 或02x ;②当一次函数解析式为244y x 时,如图2,联立12844y x y x ,解得18x y 或24x y ,由函数图象可知,12y y 时,x 的取值范围为1x 或02x ;综上,当一次函数解析式为24433y x 时,x 的取值范围为3x 或02x ;当一次函数解析式为244y x 时x 的取值范围为1x 或02x .【解析】(1)将 24A ,代入1m y x 得,42m ,解得8m ,可得反比例函数解析式为18y x ;当0x ,2y b ,则 0C b ,,OC b ,当20y ,b x k,则0b B k ,,b OB k ,由OAC 与OBC △的面积比为2:1,可得2212A OC x OC OB ,整理得2A x OB ,即22b k ,解得b k 或b k ,当b k 时,将 24A ,代入2y kx b 得,42k k ,解得43k ,则24433y x ;当b k 时,将 24A ,代入2y kx b 得,42k k ,解得4k ,则244y x ;(2)由一次函数解析式不同分两种情况求解:①当一次函数解析式为24433y x 时,如图1,联立1284433y x y x ,解得383x y 或24x y ,根据函数图象判断x 的取值范围即可;②当一次函数解析式为244y x 时,如图2,联立12844y x y x ,解得18x y 或24x y ,根据函数图象判断x 的取值范围即可.42.【答案】(1)解:∵1OA ,∴ 10A ,,∵直线2y kx 经过点 10A ,,∴02k ,解得,2k ,∴直线的解析式为22y x ,∵点C 的横坐标为2,∴2226y ,∴ 26C ,,∵反比例函数 0m y x x的图象经过点C ,∴2612m ;(2)解:由(1)得反比例函数的解析式为12y x ,令0x ,则2022y ,∴点 02B ,,设点 22D a a ,,则点12E a a,,∵以B ,D ,E ,O 为顶点的四边形为平行四边形,∴2DE OB ,∴12222a a,整理得12222a a 或12222a a ,由12222a a得222122a a a ,整理得26a ,解得a ∵0a ,∴a∴点 2D ;由12222a a得222122a a a ,整理得2260a a ,解得1a ,∵0a ,∴1a ,∴点1D ;综上,点D 的坐标为 2或1.【解析】(1)求得 10A ,,利用待定系数法即可求得直线的式,再求得 26C ,,据此即可求解;(2)设点 22D a a ,,则点12E a a,,利用平行四边形的性质得到12222a a ,解方程即可求解.43.【答案】(1)解:设反比例函数解析式为1k y x ,将 16A ,代入1k y x ,可得161k ,解得16k ,反比例函数的解析式为6y x ,把3,3B a a 代入6y x ,可得336a a ,解得1a ,经检验,1a 是方程的解,3,2B ,设一次函数的解析式为2y k x b ,将 16A ,, 3,2B 代入2y k x b ,可得623x bx b ,解得224k b ,一次函数的解析式为24y x ;(2)解:当0y 时,可得024x ,解得2x ,2,0C ,2OC ,112622822OAC OBC OAB S S S △△△,。
2024年中考数学真题-附有答案
8. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( )
A B. C. D.
9. 如图,点 为 的对角线 上一点,AC=5,CE=1,连接 并延长至点 ,使得 ,连接 ,则 为( )
A. B. 3C. D. 4
三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.
17. (1)计算: ;
(2)先化简,再求值: ,其中 .
18. 【实践课题】测量湖边观测点 和湖心岛上鸟类栖息点 之间的距离
实践工具】皮尺、测角仪等测量工具
实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点 .测量 , 两点间的距离以及 和 ,测量三次取平均值,得到数据: 米, , 画出示意图,如图
16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系 中,将点 中的 , 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中 , 均为正整数.例如,点 经过第1次运算得到点 ,经过第2次运算得到点 ,以此类推.则点 经过2024次运算后得到点________.
1
1
________
________
________
7
(1)求 、 的值,并补全表格;
(2)结合表格,当 图像在 的图像上方时,直接写出 的取值范围.
21. 如图,在四边形 中 , 以点 为圆心,以 为半径作 交 于点 ,以点 为圆心,以 为半径作 所交 于点 ,连接 交 于另一点 ,连接 .
(1)求证: 为 所在圆的切线;
2023年辽宁省各市中考数学试题真题汇编——函数(含答案)
函数(真题汇编)2023年辽宁省各市中考数学试题全解析版一.选择题(共8小题);1.(2023•沈阳)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 2.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限3.(2023•大连)已知蓄电池两端电压U为定值,电流I与R成反比例函数关系.当I=4A时,R=10Ω,则当I=5A时R的值为( )A.6ΩB.8ΩC.10ΩD.12Ω4.(2023•大连)已知抛物线y=x2﹣2x﹣1,则当0≤x≤3时,函数的最大值为( )A.﹣2B.﹣1C.0D.25.(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,在△DEF中,DE=DF=5,EF=8,BC与EF在同一条直线上,点C与点E重合.△ABC以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,△ABC停止运动.设运动时间为t秒,△ABC与△DEF重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.6.(2023•营口)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.下列说法:①abc<0;②抛物线的对称轴为直线x=﹣1;③当﹣3<x<0时,ax2+bx+c>0;④当x>1时,y随x的增大而增大;⑤am2+bm≤a﹣b(m为任意实数),其中正确的个数是( )A.1个B.2个C.3个D.4个7.(2023•辽宁)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x 之间函数关系的图象是( )A.B.C.D.8.(2023•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=3cm.动点P从点A出发,以1cm/s的速度沿射线AB匀速运动,到点B停止运动,同时动点Q从点A出发,以cm/s的速度沿射线AC匀速运动.当点P停止运动时,点Q也随之停止运动.在PQ的右侧以PQ为边作菱形PQMN,点N在射线AB上.设点P的运动时间为x(s),菱形PQMN与△ABC的重叠部分的面积为y(cm2),则能大致反映y与x之间函数关系的图象是( )A.B.C.D.二.填空题(共7小题)9.(2023•锦州)如图,在平面直角坐标系中,△AOC的边OA在y轴上,点C在第一象限内,点B=(.(2023•锦州)如图,在平A4B4B5C4,…都是平行四边形,顶点C4,…都在正比例函数y=x2A4C3,…,连接A1B2,A2B3,.(2023•辽宁)如图,在平面直角坐标系中,点A的坐标为(0,2),将线段AO转120°,得到线段AB,连接OB,点B恰好落在反比例函数y=(x>0)的图象上,则值是 ..(2023•沈阳)若点=的图象上,则y2.(用“<”“>”或“=”填空).(2023•大连)如图,在数轴上,且A在OC上方.连接AB.(2023•辽宁)如图,矩形=(B,D,对角线CA的延长线经过原点三.解答题(共13小题).(2023•辽宁)电商平台销售某款儿童组装玩具,进价为每件的销售量y(件)与每件玩具售价.(2023•大连)如图1,在平面直角坐标系为线段OB上一动点(不与点B重合)的重叠面积为S,S关于t的函数图象如图(1)OB的长为 ;△OAB(2)求S关于t的函数解析式,并直接写出自变量21.(2023•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(4,0),与y轴交于点C (0,4),点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.22.(2023•锦州)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣1,0)和B,交y轴于点C(0,3),顶点为D.(1)求抛物线的表达式;(2)若点E在第一象限内对称轴右侧的抛物线上,四边形ODEB的面积为7,求点E的坐标;(3)在(2)的条件下,若点F是对称轴上一点,点H是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G,使以点E,F,G,H为顶点的四边形是菱形,且∠EFG=60°,如果存在,请直接写出点G的坐标;如果不存在,请说明理由.23.(2023•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象交x轴于点A(8,0),交的一个动点(点M不与点C重合),过点M作x轴的垂线交直线CD于点N.设点M的横坐标为m.(1)求a的值和直线AB的函数表达式;(2)以线段MN,MC为邻边作▱MNQC,直线QC与x轴交于点E.①当0≤m<时,设线段EQ的长度为l,求l与m之间的关系式;②连接OQ,AQ,当△AOQ的面积为3时,请直接写出m的值.24.(2023•营口)如图,点A在反比例函数y=(x>0)的图象上,AB⊥y轴于点B,tan∠AOB=,AB=2.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,连接AC并延长交x轴于点D,且∠ADO=45°,求点C的坐标.25.(2023•辽宁)抛物线y=ax2+x+c与x轴交于点A和点B(3,0),与y轴交于点C(0,4),点P为第一象限内抛物线上的动点,过点P作PE⊥x轴于点E,交BC于点F.(1)求抛物线的解析式;(2)如图1,当△BEF的周长是线段PF长度的2倍时,求点P的坐标;(3)如图2,当点P运动到抛物线顶点时,点Q是y轴上的动点,连接BQ,过点B作直线l⊥BQ,连接QF并延长交直线l于点M,当BQ=BM时,请直接写出点Q的坐标.26.(2023•沈阳)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,2),与x轴的交点为点B(,0)和点C.(1)求这个二次函数的表达式;(2)点E,G在y轴正半轴上,OG=2OE,点D在线段OC上,OD=OE.以线段OD,OE 为邻边作矩形ODFE,连接GD,设OE=a.①连接FC,当△GOD与△FDC相似时,求a的值;②当点D与点C重合时,将线段GD绕点G按逆时针方向旋转60°后得到线段GH,连接FH,FG,将△GFH绕点F按顺时针方向旋转α(0°<α≤180°)后得到△G′FH′,点G,H的对应点分别为G′、H′,连接DE.当△G′FH′的边与线段DE垂直时,请直接写出点H′的横坐标.27.(2023•大连)如图,在平面直角坐标系中,抛物线C1:y=x2上有两点A、B,其中点A的横坐标为﹣2,点B的横坐标为1,抛物线C2:y=﹣x2+bx+c过点A、B.过A作AC∥x轴交抛物线C1另一点为点C.以AC、AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式;(2)将矩形ACDE向左平移m个单位,向下平移n个单位得到矩形A′C′D′E′,点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式,并直接写出自变量m的取值范围;②直线A′E′交抛物线C1于点P,交抛物线C2于点Q.当点E′为线段PQ的中点时,求m的值;③抛物线C2与边E′D′、A′C′分别相交于点M、N,点M、N在抛物线C2的对称轴同侧,当MN=时,求点C′的坐标.28.(2023•营口)如图,抛物线y=ax2+bx﹣1(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C,抛物线的对称轴交x轴于点D(3,0),过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当=时,求点P 的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.函数(真题汇编)2023年辽宁省各市中考数学试题全解析版参考答案与试题解析一.选择题(共8小题)1.(2023•沈阳)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【答案】B【解答】解:由图可知该一次函数图象经过第一、三、四象限,则k>0,b<0.故答案为B.2.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵y=﹣(x+1)2+2,∴顶点坐标为(﹣1,2),∴顶点在第二象限.故选:B.3.(2023•大连)已知蓄电池两端电压U为定值,电流I与R成反比例函数关系.当I=4A时,R=10Ω,则当I=5A时R的值为( )A.6ΩB.8ΩC.10ΩD.12Ω【答案】B【解答】解:设I=,则U=IR=40,∴R===8,故选:B.4.(2023•大连)已知抛物线y=x2﹣2x﹣1,则当0≤x≤3时,函数的最大值为( )A.﹣2B.﹣1C.0D.2【答案】D【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2,∴对称轴为直线x=1,∵a=1>0,∴抛物线的开口向上,∴当0≤x<1时,y随x的增大而减小,∴当x=0时,y=﹣1,当1≤x≤3时,y随x的增大而增大,∴当x=3时,y=9﹣6﹣1=2,∴当0≤x≤3时,函数的最大值为2,故选:D.5.(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,在△DEF中,DE=DF=5,EF=8,BC与EF在同一条直线上,点C与点E重合.△ABC以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,△ABC停止运动.设运动时间为t秒,△ABC与△DEF重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.【答案】A【解答】解:过点D作DH⊥CB于H,∵DE=DF=5,EF=8,∴EH=FH=EF=4,∴DH==3,当0≤t<4时,如图,重叠部分为△EPQ,此时EQ=t,PQ∥DH,∴△EPQ∽△EDH,∴,即,∴PQ=t,∴S==2,当4≤t<8时,如图,重叠部分为四边形POC′B′,此时BB′=CC′=t,PB∥DE.∴B′F=BC+CF﹣BB′=12﹣t,FC=8﹣t,∵PB∥DE,∴△PBF∽△DCF,∴,又S△DCF=,∴,∵DH⊥BC.∠AB′C′=90°,∴AC′∥DH,∴△C′QF∽△HFD.∴,即,∴,∴S=S△PB′F﹣S△C′QF==,当8≤t≤12时如图,重叠部分为四边形△PFB′,此时BB′=CC′=t,PB′∥DE.∴B′F=BC+CF﹣BB′=12﹣t,∵PB′∥DE.∴△PB′F∽△DCF,∴,即,∴,S=S△PB′F=,综上,∴符合题意的函数图象是选项A.故选:A.6.(2023•营口)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.下列说法:①abc<0;②抛物线的对称轴为直线x=﹣1;③当﹣3<x<0时,ax2+bx+c>0;④当x>1时,y随x的增大而增大;⑤am2+bm≤a﹣b(m为任意实数),其中正确的个数是( )A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向下,∴a<0,∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),∴对称轴为直线x==﹣1,故②正确;∴﹣=﹣1,∴b=2a<0,∵与y轴的交点在正半轴上,∴c>0,∴abc>0,故①错误;由图象可知,当﹣3<x<0时,y>0,∴当﹣3<x<0时,ax2+bx+c>0,故③正确;由图象可知,当x>1时,y随x的增大而减小,故④错误;∵抛物线的对称轴为直线x=﹣1,∴当x=﹣1时,函数有最大值,∴当m为任意实数时,am2+bm+c≤a﹣b+c,∴am2+bm≤a﹣b,故⑤正确;综上所述,结论正确的是②③⑤共3个.故选:C.7.(2023•辽宁)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x 之间函数关系的图象是( )A.B.C.D.【答案】A【解答】解:∵∠MAN=60°,AC=AB=6,∴△ABC是边长为6的正三角形,∵AD平分∠MAN,∴∠MAD=∠NAD=30°,AD⊥BC,CD=DB=3,①当矩形EFHG全部在△ABC之中,即由图1到图2,此时0<x≤3,∵EG∥AC,∴∠NAD=∠AGE=30°,∴AE=EG=x,在Rt△AEF中,AE=x,∠EAF=60°,∴EF=AE=x,∴S=x2;②图3时,AE+AF=AC,即x+x=6,解得x=4,由图2到图3,此时3<x≤4,如图4,由题意可知△EQB是正三角形,∴EQ=EB=BQ=6﹣x,∴GQ=x﹣(6﹣x)=2x﹣6,∴S=S矩形EFHG﹣S△PQG=x2﹣×(2x﹣6)2=﹣x2+12x﹣18,③图6时,x=6,由图3到图6,此时4<x≤6,如图5,由题意可知△EKB是正三角形,∴EK=EB=BK=6﹣x,FC=AC﹣AF=6﹣x,EF=x,∴S=S梯形EFCK=(6﹣x+6﹣x)×x=﹣x2+3x,综上所述,S与x的函数关系式为S=,因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线,故选:A.8.(2023•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=3cm.动点P从点A出发,以1cm/s的速度沿射线AB匀速运动,到点B停止运动,同时动点Q从点A出发,以cm/s的速度沿射线AC匀速运动.当点P停止运动时,点Q也随之停止运动.在PQ的右侧以PQ为边作菱形PQMN,点N在射线AB上.设点P的运动时间为x(s),菱形PQMN与△ABC的重叠部分的面积为y(cm2),则能大致反映y与x之间函数关系的图象是( )A.B.C.D.【答案】A【解答】解:作PD⊥AC于点D,作QE⊥AB于点E,由题意得AP=x,AQ=x,∴AD=AP•cos30°=x,∴AD=DQ=AQ,∴PD是线段AQ的垂直平分线,∴∠PQA=∠A=30°,∴∠QPE=60°,PQ=AP=x,∴QE=AQ=x,PQ=PN=MN=QM=x,当点M运动到直线BC上时,此时,△BMN是等边三角形,∴AP=PN=BN=AB=1,x=1;当点Q、N运动到与点C,B重合时,∴AP=PN=AB=,x=;当点P运动到与点B重合时,∴AP=AB=3,x=3;∴当0<x≤1时,y=x•x=x2,≤时,如图,作则BN=FN=FB=3﹣2x,FM=MS=FS=(∴y=x2﹣(3x﹣3)•(3x﹣3)=﹣x+x﹣,当<x<3时,如图,作HI⊥AB于点则BP=PH=HB=3﹣x,HI=(3﹣x),∴y=•(3﹣x)•(3﹣x)=x2﹣x+,综上,y与x之间函数关系的图象分为三段,当0<x≤时,是开口向下的一段抛物线,当<x<3时,是开口向上的一段抛物线,=(【答案】4.【解答】解:过点C作CD⊥y轴于点D,如图:设点C的坐标为(a,b),点A的坐标为(0,c),∴CD=a,OA=c,∵△AOC的面积是6,∴,∴ac=12,∵点C(a,b)在反比例函数(x>0)的图象上,∴k=ab,∵点B为AC的中点,∴点,∵点B在反比例函数(x>0)的图象上,∴,即:4k=a(b+c),∴4k=ab+ac,将ab=k,ac=12代入上式得:k=4.故答案为:4.10.(2023•锦州)如图,在平面直角坐标系中,四边形A1B1B2C1,A2B2B3C2,A3B3B4C3,A4B4B5C4,…都是平行四边形,顶点B1,B2,B3,B4,B5…都在x轴上,顶点C1,C2,C3,C4,…都在正比例函数y=x(x≥0)的图象上,且B2C1=2A2C1,B3C2=2A3C2,B4C3=2A4C3,…,连接A1B2,A2B3,A3B4,A4B5,…,分别交射线OC1于点O1,O2,O3,O4,…,连接O1A2,O2A3,O3A4,…,得到△O1A2B2,△O2A3B3,△O3A4A4,…若B1(2,0),B2(3, .【答案】.【解答】解:∵B2(3,0),A1(3,1)∴O1(3,),A1B2⊥x轴,同理可得:A2B3⊥x轴,A3B4⊥x轴,∴,∴,=,∴=O=,:=(∴=()=()=,故答案为:.=( .【答案】.【解答】解:过点B由旋转的性质得,AO∵点A的坐标为(0,∴,由勾股定理得,的坐标为,恰好落在反比例函数(∴,故答案为:.=的图象上,则则,则,【答案】15.【解答】解:设AB为xm1+ .1+,===,=,1+,1+.1+,=(【答案】6.【解答】解:如图,延长∵矩形ABCD的面积是由几何意义得,=三.解答题(共13小题)16.(2023•辽宁)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中100≤x≤160,且x为整数),当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?【答案】见试题解答内容【解答】解:(1)设y与x之间的函数关系式为y=kx+b,∵当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件,∴,解得,即y与x之间的函数关系式为y=﹣2x+320;(2)设利润为w元,由题意可得:w=(x﹣100)(﹣2x+320)=﹣2(x﹣130)2+1800,∴当x=130时,w取得最大值,此时w=1800,答:当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.17.(2023•营口)某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同,当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销,该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.(1)求今年这款消毒洗衣液每瓶进价是多少元;根据题意得:=,)代入得,解得,∴y=﹣x+140;(2)∵规定销售单价不低于进价,且不高于进价的2倍,∴40≤x≤80,设每月出售这种护眼灯所获的利润为w元,根据题意得,w=(x﹣40)y=(x﹣40)(﹣x+140)=﹣x2+180x﹣5600=﹣(x﹣90)2+2500,∴当护眼灯销售单价定为80元时,商店每月出售这种护眼灯所获的利润最大,最大月利润为2400元.19.(2023•锦州)端午节前夕,某批发部购入一批进价为8元/袋的粽子,销售过程中发现:日销量y(袋)与售价x(元/袋)满足如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)每袋粽子的售价定为多少元时,所获日销售利润最大,最大日销售利润是多少元?【答案】(1)y与x的函数关系式为y=﹣40x+680;(2)当粽子的售价定为12.5元/袋时,日销售利润最大,最大日销售利润是810元.【解答】解:(1)设y与x的函数关系式为y=kx+b,把x=10,y=280和x=14,y=120别代入解析式,得,解得,∴y与x的函数关系式为y=﹣40x+680;(2)设这种粽子日销售利润为w元,则w=(x﹣8)(﹣40x+680)=40x2+1000x﹣5440=40(x﹣)2+810,∵﹣40<0,抛物线开口向下, ;【答案】(1)4,;(2)S=.【解答】解:(1)t=0时,P与O重合,此时S=S△ABO=,t=4时,S=0,P与B重合,∴OB=4,B(4,0),,;=OB,即×=,=,∴A(,);当0≤t≤时,设OA交PD于E,如图:∵∠AOB=45°,PD⊥OB,∴△PEO是等腰直角三角形,∴PE=PO=t,∴S△POE=t2,∴S=﹣S△POE=﹣t2;当<t<4时,如图:由A(,),B(4,0)得直线AB解析式为y=﹣x+2,当x=0时,y=2,∴C(0,2),∴OC=2,∵tan∠CBO====,∴DP=PB=(4﹣t)=2﹣t,∴S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=(4﹣t)2=t2﹣2t+4;综上所述,S=.21.(2023•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(4,0),与y轴交于点C (0,4),点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.【答案】(1)见解答.(2)EH=4,(3)点N的坐标为(4,4)或(﹣,)或(,)或(,).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(4,0)和C(0,4),∴解得,∴抛物线的解析式为y=﹣x2+x+4;(2)∵点B(4,0)和C(0,4).设直线BC的解析式为v=kx+4,则0=4k+4,解得k=﹣1.直线BC的解析式为y=﹣x+4,设E(x,﹣x2+x+4),且0<x<4,则F(x,﹣x+4),GH﹣EF=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴解析式的对称轴为﹣,∴H(2﹣x,﹣x2+x+4),∴GF﹣EH=x﹣(4﹣x)=2x﹣2,依题意得2(﹣x2+2x+2x﹣2)=11.解得x=5(舍去)或x=3.∴EH=4,(3)令y=0,则﹣x2+x+4=0,解得x=﹣2或x=4.∴A(﹣2,0).同理,直线AC的解析式为y=2x+4,∵四边形OENM是正方形,∴OE=OM,∠EOM=90°,分别过点M、E作y轴的垂线,垂足分别为P、Q,如图,∠OPM=∠EQO=90°,∠OMP=90°﹣∠MOP=∠EOQ.∴△OMP≌ΔEOQ(AAS).∴PM=OQ,PO=EQ.设E(m,﹣m2+m+4),∴PM=OQ=﹣m,PO﹣EQ=﹣m2+m+4.则M(m2﹣m+4,m),∵点M在直线AC上,∴m=2(﹣m﹣4)+4.解得m=4或m=﹣1当m=4时,M(0,4),E(4,0),即点M与点C重合,点E与点B重合时,四边形OENM是正方形,此时N(4,4):当m=﹣1时,M(﹣,﹣1),E(﹣1,),点O向左平移个单位,再向下平移1个单位,得到点M,则点E向左平移个单位,再向下平移1个单位,得到点N,N(﹣1﹣,﹣1),即N(﹣,).当OM沿着点O逆时针旋转90°得到OE,如图:设M(a,b),则点E(b,﹣a),∵点M在y=2x+4,∴b=2a+4,则点M(a,2a+4),此时点E(2a+4,﹣a),点E在y=﹣x2+x+4的图象上,∴,解得a=0或﹣,∴M1(0,4),E1(4,0),M2(﹣,﹣1),E2(﹣1,),当点E为点M绕点O逆时针旋转90°时,点E(﹣b,a),M(a,2a+4),E(﹣2a﹣4,a),点E在y=﹣x2+x+4的图象上,∴﹣(﹣2a﹣4)2﹣2a﹣4+4=a,解得a=,∴M1(,),E1(,),M2(,),E2(,),∴点N的坐标为(,)或(,),综上,点N的坐标为(4,4)或(﹣,)或(,)或(,).22.(2023•锦州)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣1,0)和B,交y轴于点C(0,3),顶点为D.(1)求抛物线的表达式;(2)若点E在第一象限内对称轴右侧的抛物线上,四边形ODEB的面积为7,求点E的坐标;(3)在(2)的条件下,若点F是对称轴上一点,点H是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G,使以点E,F,G,H为顶点的四边形是菱形,且∠EFG=60°,如果存在,请直接写出点G的坐标;如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)E(2,3);(3)存在,G的坐标为(,)或(,).【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(﹣1,0)和点C(0,3),∴,∴,∴抛物线的表达式y=﹣x2+2x+3.(2)设抛物线的对称轴与x轴交于点M,过点E作EN⊥x轴于点N,设E(x,﹣x2+2x+3),∴BN=3﹣x,MN=x﹣1,∴S四边形ODEB=S△ODM+S梯形DMNE+S△ENB=×1×4+(4﹣x2+4x+3)(x﹣1)+(﹣x2+2x+3)(3﹣x)=﹣x2+4x+3,∵四边形ODEB的面积为7,∴﹣x2+4x+3=7,∴x2﹣4x+4=0,∴x1=x2=2,∴E(2,3).(3)存在点G,使以点E,F,G,H为顶点的四边形是菱形,且∠EFG=60°,满足条件G的坐标为(,)或(,).理由如下:如图,连接CG,DG,∵四边形EFGH是菱形,且∠EFG=60°,∴△EFG是等边三角形,∴△DCE是等边三角形,∴△CEG≌△DEF,∴∠ECG=∠EDF=30°,∴直线CG的表达式为y=﹣x+3,∴,∴G(,);如图,连接CG、DG、CF,∵四边形EFGH是菱形,且∠EFG=60°,∴△EFG是等边三角形,∴△DCE是等边三角形,∴△DGE≌△CFE,∴DG=CF,∴CF=FE,GE=FE,∴DG=GE,∴△CDG≌△CEG,∴∠DCG=∠ECG=30°,∴直线CG的表达式为y=x+3,∴,∴G(,),综上,G(,)或(,).23.(2023•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象交x轴于点A(8,0),交y轴于点B.直线y=x﹣与y轴交于点D,与直线AB交于点C(6,a).点M是线段BC上的一个动点(点M不与点C重合),过点M作x轴的垂线交直线CD于点N.设点M的横坐标为m.(1)求a的值和直线AB的函数表达式;(2)以线段MN,MC为邻边作▱MNQC,直线QC与x轴交于点E.①当0≤m<时,设线段EQ的长度为l,求l与m之间的关系式;②连接OQ,AQ,当△AOQ的面积为3时,请直接写出m的值.【答案】(1)a的值为,直线AB解析式为y=﹣x+6;(2)①l=;②或.【解答】解:(1)∵点C(6,a)在直线y=x﹣上,∴a==,∵一次函数y=kx+b的图象过点A(8,0)和点C(6,),∴,解得,∴直线AB的解析式为y=﹣x+6;(2)①∵M点在直线y=﹣x+6上,且M的横坐标为m,∴M的纵坐标为:﹣m+6,∵N点在直线y=x﹣上,且N点的横坐标为m,∴N点的纵坐标为:m﹣,∴|MN|=﹣m+6﹣m+=﹣,∵点C(6,),线段EQ的长度为l,∴|CQ|=1+,∵|MN|=|CQ|,∴﹣=1+,即l=;②∵△AOQ的面积为3,∴OA•EQ=3,即,解得EQ=,由①知,EQ=6﹣,∴|6﹣|=,解得m=或,即m的值为或.24.(2023•营口)如图,点A在反比例函数y=(x>0)的图象上,AB⊥y轴于点B,tan∠AOB=,AB=2.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,连接AC并延长交x轴于点D,且∠ADO=45°,求点C 的坐标.【答案】(1)反比例函数的解析式为y=;(2)C(4,2).【解答】解:(1)∵AB⊥y轴于点B,∴∠OBA=90°,在Rt△OBA中,AB=2,tan∠AOB=,∴OB=4,∴A(2,4),∵点A在反比例函数y=(x>0)的图象上,∴k=4×2=8;∴反比例函数的解析式为y=;(2)如图,过A作AF⊥x轴于F,∴∠AFD=90°,∵∠ADO=45°,∴∠FAD=90°﹣∠CDE=45°,∴AF=DF=OB=4,∵OF=AB=2,∴OD=6,∴D(6,0),设直线AC的解析式为y=ax+b,∵点A(2,4),D(6,0)在直线AC上,∴,∴,∴直线AC的解析式为y=﹣x+6①,由(1)知,反比例函数的解析式为y=②,联立①②解得,或,∴C(4,2).25.(2023•辽宁)抛物线y=ax2+x+c与x轴交于点A和点B(3,0),与y轴交于点C(0,4),点P为第一象限内抛物线上的动点,过点P作PE⊥x轴于点E,交BC于点F.(1)求抛物线的解析式;(2)如图1,当△BEF的周长是线段PF长度的2倍时,求点P的坐标;(3)如图2,当点P运动到抛物线顶点时,点Q是y轴上的动点,连接BQ,过点B作直线l⊥BQ,连接QF并延长交直线l于点M,当BQ=BM时,请直接写出点Q的坐标.【答案】(1)y=﹣x2+x+4;(2)P(,5);(3)Q(0,+)或(0,﹣).【解答】解:(1)将点B(3,0),点C(0,4)代入y=ax2+x+c,∴,解得,∴抛物线的解析式为y=﹣x2+x+4;(2)∵点B(3,0),点C(0,4),∴OB=3,OC=4,∴tan∠OBC=,∴BE=EF,BF=EF,∴△BEF的周长=3EF,∵△BEF的周长是线段PF长度的2倍,∴3EF=2PF,设直线BC的解析式为y=kx+4,∴3k+4=0,解得k=﹣,∴直线BC的解析式为y=﹣x+4,设P(t,﹣t2+t+4),则F(t,﹣t+4),E(t,0),∴EF=﹣t+4,PF=﹣t2+t+4+t﹣4=﹣t2+4t,∴3(﹣t+4)=2(﹣t2+4t),解得t=3(舍)或t=,∴P(,5);(3)∵y=﹣x2+x+4=﹣(x﹣1)2+,∴P(1,),∵FP⊥x轴,∴F(1,),设Q(0,n),过点M作MN⊥x轴交于点N,∵∠QBM=90°,∴∠QBO+∠MBN=90°,∵∠QBO+∠OQB=90°,∴∠MBN=∠OQB,∵BQ=BM,∴△BQO≌△MBN(AAS),∴QO=BN,MN=OB,∴M(3+n,3),设直线QM的解析式为y=k'x+n,∴k'(3+n)+n=3,解得k'=,∴直线QM的解析式为y=x+n,将点F代入,+n=,解得n=+或n=﹣,∴Q(0,+)或(0,﹣).26.(2023•沈阳)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,2),与x轴的交点为点B(,0)和点C.(1)求这个二次函数的表达式;(2)点E,G在y轴正半轴上,OG=2OE,点D在线段OC上,OD=OE.以线段OD,OE 为邻边作矩形ODFE,连接GD,设OE=a.①连接FC,当△GOD与△FDC相似时,求a的值;②当点D与点C重合时,将线段GD绕点G按逆时针方向旋转60°后得到线段GH,连接FH,F G,将△GFH绕点F按顺时针方向旋转α(0°<α≤180°)后得到△G′FH′,点G,H的对应点分别为G′、H′,连接DE.当△G′FH′的边与线段DE垂直时,请直接写出点H′的横坐标.【答案】(1)y=﹣x+2;(2)①或;②当△G′FH′的边与线段DE垂直时,点H ′的横坐标为2+3或2+或.【解答】解:(1)∵二次函数y=x2+bx+c的图象经过点A(0,2),与x轴的交点为点B (,0),∴,解得:,∴此抛物线的解析式为y=﹣x+2;(2)①令y=0,则﹣x+2=0,解得:x=或x=2,∴C(2,0),∴OC=2.∵OE=a,OG=2OE,OD=OE,∴OG=2a,OD=a.∵四边形ODFE为矩形,∴EF=OD=a,FD=OE=a,∴E(0,a),D(a,0),F(a,a),G(0,2a),∴CD=OC﹣OD=2﹣a.Ⅰ.当△GOD∽△FDC时,∴,∴,∴a=;Ⅱ.当△GOD∽△CDF时,∴,∴,∴a=.综上,当△GOD与△FDC相似时,a的值为或;②∵点D与点C重合,∴OD=OC=2.∴OE=2,OG=2OE=4,EF=OD=2,DF=OE=2,∴EG=OE=2.∴EG=DF=2,∵EG∥DF,∴四边形GEDF为平行四边形,∴FG=DE===4,∴∠GFE=30°,∴∠EGF=60°,∵∠DGH=60°,∴∠EGF=∠DGH,∴∠OGD=∠FGH.在△GOD和△GFH中,,∴△GOD≌△GFH(SAS),∴FH=OD=2,∠GOD=∠GFH=90°.∴GH===2.Ⅰ.当G′F所在直线与DE垂直时,如图,∵∠GFH=90°,GF∥DE,∴∠G′FH′=90°,∴G,F,H′三点在一条直线上,∴GH′=GF+FH′=FG+FH=4+2.过点H′作H′K⊥y轴于点K,则H′K∥FE,∴∠KH′G=∠EFG=30°,∴H′K=H′G•cos30°=×(4+2)=2+3,∴此时点H′的横坐标为2+3;Ⅱ.当G′H′所在直线与DE垂直时,如图,∵GF∥DE,∴G′H′⊥GF,设GF的延长线交G′H′于点M,过点M作MP⊥EF,交EF的延长线于点P,过点H′作H′N⊥MP,交PM的延长线于点N,则H′N∥PF∥x轴,∠PFM=∠EFG=30°.∵G′H′•FM=FH′•FG′,∴4×2=2FM,∴FM=.∴FP=FM•cos30°==,∴PE=PF+EF=2+.∵H′M==,∴H′N=H′M•sin30°=,∴此时点H′的横坐标为PE﹣H′N=2=2+;Ⅲ.当FH′所在直线与DE垂直时,如图,∵∠H′FG′=90°,GF∥DE,∴∠GFH′=90°,∴H,F,H′三点在一条直线上,则∠H′FD=30°,过点H′作H′L⊥DF,交FD的延长线于点L,H′L=H′F•sin30°=2×=,∴此时点H′的横坐标为EF﹣H′L=2=.综上,当△G′FH′的边与线段DE垂直时,点H′的横坐标为2+3或2+或.27.(2023•大连)如图,在平面直角坐标系中,抛物线C1:y=x2上有两点A、B,其中点A的横坐标为﹣2,点B的横坐标为1,抛物线C2:y=﹣x2+bx+c过点A、B.过A作AC∥x轴交抛物线C1另一点为点C.以AC、AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式;(2)将矩形ACDE向左平移m个单位,向下平移n个单位得到矩形A′C′D′E′,点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式,并直接写出自变量m的取值范围;②直线A′E′交抛物线C1于点P,交抛物线C2于点Q.当点E′为线段PQ的中点时,求m 的值;③抛物线C2与边E′D′、A′C′分别相交于点M、N,点M、N在抛物线C2的对称轴同侧,当MN=时,求点C′的坐标.【答案】(1)y=﹣x2﹣2x+4.(2)①n=﹣m2+4m(0<m<4).②.③或.【解答】(1)根据题意,点A的横坐标为﹣2,点B的横坐标为1,代入抛物线C1:y=x2,∴当x=﹣2时,y=(﹣2)2=4,则A(﹣2,4),当x=1时,y=1,则B(1,1),将点A(﹣2,4),B(1,1)代入抛物线C2:y=﹣x2+bx+c,∴,解得,∴抛物线C2的解析式为y=﹣x2﹣2x+4.(2)①∵AC∥x轴交抛物线另一点为C,当y=4时,x=±2,。
2023年中考数学真题汇编:一元二次方程(含答案)
2023年中考数学真题汇编——一元二次方程一、选择题1. (2023·吉林省)一元二次方程x2―5x+2=0根的判别式的值是( )A. 33B. 23C. 17D. 172. (2023·天津市)若x1,x2是方程x2―6x―7=0的两个根,则( )A. x1+x2=6B. x1+x2=―6C. x1x2=76D. x1x2=73. (2023·甘肃省兰州市)关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2―2(1+2c)=( )A. ―2B. 2C. ―4D. 44. (2023·江苏省无锡市)2020年―2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x,下列方程正确的是( )A. 5.76(1+x)2=6.58B. 5.76(1+x2)=6.58C. 5.76(1+2x)=6.58D. 5.76x2=6.585. (2023·内蒙古自治区赤峰市)用配方法解方程x2―4x―1=0时,配方后正确的是( )A. (x+2)2=3B. (x+2)2=17C. (x―2)2=5D. (x―2)2=176. (2023·山东省菏泽市)一元二次方程x2+3x―1=0的两根为x1,x2,则1x1+1x2的值为( )A. 32B. ―3 C. 3 D. ―327. (2023·河南省)关于x的一元二次方程x2+mx―8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8. (2023·全国)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )A. 3.2(1―x)2=3.7B. 3.2(1+x)2=3.7C. 3.7(1―x)2=3.2D. 3.7(1+x)2=3.29. (2023·福建省)根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程( )A. 43903.89(1+x)=53109.85B. 43903.89(1+x)2=53109.85C. 43903.89x2=53109.85D. 43903.89(1+x2)=53109.8510. (2023·山东省聊城市)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是( )A. m≥―1B. m≤1C. m≥―1且m≠0D. m≤1且m≠011. (2023·四川省广元市)关于x的一元二次方程2x2―3x+3=0根的情况,下列说法中正确2的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定12. (2023·山东省滨州市)一元二次方程x2+3x―2=0根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 不能判定13. (2023·四川省乐山市)若关于x的一元二次方程x2―8x+m=0两根为x1、x2,且x1=3x2,则m的值为( )A. 4B. 8C. 12D. 1614. (2023·湖南省永州市)某2020年人均可支收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x,则下面所列方程正确的是( )A. 2.7(1+x)2=2.36B. 2.36(1+x)2=2.7C. 2.7(1―x)2=2.36D. 2.36(1―x)2=2.715. (2023·湖南省怀化市)下列说法错误的是( )A. 成语“水中捞月”表示的事件是不可能事件B. 一元二次方程x2+x+3=0有两个相等的实数根C. 任意多边形的外角和等于360°D. 三角形三条中线的交点叫作三角形的重心16. (2023·四川省广安市)已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断17. (2023·四川省眉山市)关于x的一元二次方程x2―2x+m―2=0有两个不相等的实数根,则m的取值范围是( )A. m<32B. m>3C. m≤3D. m<318. (2023·四川省泸州市)若一个菱形的两条对角线长分别是关于x的一元二次方程x2―10x+m=0的两个实数根,且其面积为11,则该菱形的边长为( )A. 3B. 23C. 14D. 21419. (2023·四川省泸州市)关于x的一元二次方程x2+2ax+a2―1=0的根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 实数根的个数与实数a的取值有关二、填空题20. (2023·江苏省泰州市)关于x的一元二次方程x2+2x―1=0的两根之和为______ .21. (2023·辽宁省)若关于x的一元二次方程x2―6x+k=0有两个不相等的实数根,则k的取值范围是______ .22. (2023·四川省雅安市)已知关于x的方程x2+mx―4=0的一个根为1,则该方程的另一个根为______ .23. (2023·全国)方程x2―4x―m=0有两个相等的实数根,则m的值为______ .24. (2023·山东省泰安市)已知关于x的一元二次方程x2―4x―a=0有两个不相等的实数根,则a的取值范围是______ .25. (2023·辽宁省营口市)若关于x的方程x2+mx―12=0的一个根是3,则此方程的另一个根是______ .26. (2023·黑龙江省牡丹江市)张师傅去年开了一家超市,今年2月份开始盈利,3月份盈利5000元,5月份盈利达到7200元,从3月到5月,每月盈利的平均增长率都相同,则每月盈利的平均增长率是______ .27. (2023·湖北省鄂州市)若实数a、b分别满足a2―3a+2=0,b2―3b+2=0,且a≠b,则1a +1b=______ .28. (2023·贵州省)若一元二次方程kx2―3x+1=0有两个相等的实数根,则k的值是______ .29. (2023·江苏省徐州市)若关于x的方程x2―4x+m=0有两个相等的实数根,则实数m的值为______ .30. (2023·湖南省常德市)若关于x的一元二次方程x2―2x+a=0有两个不相等的实数根,则实数a的取值范围是______ .31. (2023·辽宁省)若关于x的一元二次方程x2―x+k+1=0有两个实数根,则k的取值范围是______ .32. (2023·湖南省张家界市)已知关于x的一元二次方程x2―2x―a=0有两个不相等的实数根,则a的取值范围是______ .33. (2023·黑龙江省绥化市)已知一元二次方程x2+x=5x+6的两根为x1与x2,则1x1+1x2的值为______ .34. (2023·湖南省岳阳市)已知关于x的方程x2+mx―20=0的一个根是―4,则它的另一个根是______ .35. (2023·湖南省岳阳市)已知关于x的一元二次方程x2+2mx+m2―m+2=0有两个不相等的实数根,且x1+x2+x1⋅x2=2,则实数m=______ .36. (2023·湖北省随州市)已知关于x的一元二次方程x2―3x+1=0的两个实数根分别为x1和x2,则x1+x2―x1x2的值为______ .37. (2023·湖南省邵阳市)某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程想想,设这两年绿化面积的年平均增长率为x,则依题意列方程为______ .38. (2023·四川省达州市)已知x1,x2是方程2x2+kx―2=0的两个实数根,且(x1―2)(x2―2)=10,则k的值______ .39. (2023·重庆市)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程______ .40. (2023·重庆市)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为______ .41. (2023·上海市)如果关于x的方程x2―4x+2c=0有实数根,那么实数c的取值范围是______ .三、解答题42. (2023·上海市)解方程:(x―2)2―4(x―2)=12.43. (2023·江苏省泰州市)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价0.01元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在1000~1750kg之间时的最大利润;(3)当一次性销售多少千克时利润为22100元?44. (2023·辽宁省)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中100≤x≤160,且x为整数),当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?45. (2023·江苏省无锡市)(1)解方程:2x2+x―2=0;(2)解不等式组:x+3>―2x2x―5<1.46. (2023·内蒙古自治区通辽市)阅读材料:材料1:关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根x1x2和系数a,b,c,有如下关系:x1+x2=―ba ,x1x2=ca.材料2:已知一元二次方程x2―x―1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵m,n是一元二次方程x2―x―1=0的两个实数根,∴m+n=1,mn=―1.则m2n+mn2=mn(m+n)=―1×1=―1.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程2x2+3x―1=0的两个实数根为x1,x2,则x1+x2=______ ,x1x2 =______ .(2)类比:已知一元二次方程2x2+3x―1=0的两个实数根为m,n,求m2+n2的值;(3)提升:已知实数s,t满足2s2+3s―1=0,2t2+3t―1=0且s≠t,求1s ―1t的值.47. (2023·山东省东营市)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.48. (2023·浙江省杭州市)设一元二次方程x2+bx+c=0.在下面的四组条件中选择其中一组b,c的值,使这个方程有两个不相等的实数根,并解这个方程.①b=2,c=1;②b=3,c=1;③b=3,c=―1;④b=2,c=2.注:如果选择多组条件分别作答,按第一个解答计分.49. (2023·湖南省郴州市)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?参考答案1.C2.A3.A4.A5.C6.C7.A8.B9.B10.D11.C12.A13.C14.B15.B16.A17.D18.C19.C20.―221.k<922.―423.―424.a>―425.―426.20%27.3228.9429.430.a<131.k≤―3432.a>―133.―2334.535.336.237.1000(1+x)2=144038.739.301(1+x)2=50040.1501(1+x)2=181541.c≤242.解:(x―2)2―4(x―2)=12,(x―2)2―4(x―2)―12=0,(x―2―6)(x―2+2)=0,x(x―8)=0,x=0或x―8=0,∴x1=0,x2=8.43.解:(1)根据题意,当x=800时,y=800×(50―30)=800×20=16000,∴当一次性销售800千克时利润为16000元;(2)设一次性销售量在1000~1750kg之间时,销售价格为50―30―0.01(x―1000)=―0.01x+30,∴y=x(―0.01x+30)=―0.01x2+30x=―0.01(x2―3000)=―0.01(x―1500)2+22500,∵―0.01<0,1000≤x≤1750,∴当x=1500时,y有最大值,最大值为22500,∴一次性销售量在1000~1750kg之间时的最大利润为22500元;(3)由(2)知,当x=1750时,y=―0.01(1750―1500)2+22500=16250<22100,∴当一次性销售量在1000~1750kg之间时,利润为22100元,∴―0.01(x ―1500)2+22500=22100,解得x 1=1700,x 2=1300,∴当一次性销售为1300或1700千克时利润为22100元.44.解:(1)设y 与x 之间的函数关系式为y =kx +b ,∵当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件,∴120k +b =80140k +b =40,解得k =―2b =320,即y 与x 之间的函数关系式为y =―2x +320;(2)设利润为w 元,由题意可得:w =(x ―100)(―2x +320)=―2(x ―130)2+1800,∴当x =130时,w 取得最大值,此时w =1800,答:当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.45.解:(1)2x 2+x ―2=0,∵a =2,b =1,c =―2,∴b 2―4ac =12+4×2×(―2)=17,∴x =―b ±b 2―4ac 2a =―1±174,∴x 1=―1+ 174,x 2=―1― 174;(2)x +3>―2x①2x ―5<1②,解不等式①得x >―1,解不等式②得:x <3,∴不等式组的解集为:―1<x <3.46.―32 ―1247.解:(1)设矩形ABCD 的边AB =xm ,则边BC =70―2x +2=(72―2x)m .根据题意,得x(72―2x)=640,化简,得x 2―36x +320=0解得x 1=16x 2=20,当x =16时,72―2x =72―32=40;当x=20时,72―2x=72―40=32.答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为644m2的羊圈;(2)答:不能,理由:由题意,得x(72―2x)=650,化简,得x4―366+322=0,Δ=(―36)2―4×335=―4<0,∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.48.解:∵使这个方程有两个不相等的实数根,∴b2―4ac>0,即b2>4c,∴①②③均可,选①解方程,则这个方程为:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=―1.49.解:(1)设这两个月中该景区游客人数的月平均增长率为x,由题意可得:1.6(1+x)2=2.5,(不合题意舍去),解得:x=25%,x=―94答:这两个月中该景区游客人数的月平均增长率为25%;(2)设5月份后10天日均接待游客人数是a万人,由题意可得:2.125+10a≤2.5(1+25%),解得:a≤0.1,答:5月份后10天日均接待游客人数最多是0.1万人.。
2023年黑龙江省各市中考数学真题汇编——方程与不等式(含答案)
2023年黑龙江省各市中考数学真题汇编——方程与不等式一.选择题(共7小题)1.(2023•齐齐哈尔)如果关于x的分式方程的解是负数,那么实数m的取值范围是( )A.m<﹣1B.m>﹣1且m≠0C.m>﹣1D.m<﹣1且m≠﹣2 2.(2023•黑龙江)如图,在长为100m,宽为50m的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是3600m2,则小路的宽是( )A.5m B.70m C.5m或70m D.10m3.(2023•齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150cm的导线,将其全部截成10cm和20cm两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有( )A.5种B.6种C.7种D.8种4.(2023•黑龙江)某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A,B,C三种图书,A种每本30元,B种每本25元,C种每本20元,其中A种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( )A.5种B.6种C.7种D.8种5.(2023•牡丹江)若分式方程=1﹣的解为负数,则a的取值范围是( )A.a<﹣1且a≠﹣2B.a<0且a≠﹣2C.a<﹣2且a≠﹣3D.a<﹣1且a≠﹣36.(2023•黑龙江)已知关于x的分式方程+1=的解是非负数.则m的取值范围是( )A.m≤2B.m≥2C.m≤2且m≠﹣2D.m<2且m≠﹣27.(2023•绥化)某运输公司,运送一批货物,甲车每天运送货物总量的.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x天,由题意列方程,正确的是( )A.+=1B.+(+)=1C.(1+)+=1D.+(+)=1的不等式组有三个整数解,则实数组有则+的值为衫,求有几种购买方案?(3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款每件让利m元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m值.方程与不等式(真题汇编)2023年黑龙江省各市中考数学试题全解析版参考答案与试题解析一.选择题(共7小题)1.(2023•齐齐哈尔)如果关于x的分式方程的解是负数,那么实数m的取值范围是( )A.m<﹣1B.m>﹣1且m≠0C.m>﹣1D.m<﹣1且m≠﹣2【答案】D【解答】解:将分式方程两边同乘(x+1),去分母可得:2x﹣m=x+1,移项,合并同类项得:x=m+1,∵原分式方程的解是负数,∴m+1<0,且m+1+1≠0,解得:m<﹣1且m≠﹣2,故选:D.2.(2023•黑龙江)如图,在长为100m,宽为50m的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是3600m2,则小路的宽是( )A.5m B.70m C.5m或70m D.10m【答案】A【解答】解:设小路的宽是xm,则余下的部分可合成长为(100﹣2x)m,宽为(50﹣2x)m的矩形,根据题意得:(100﹣2x)(50﹣2x)=3600,整理得:x2﹣75x+350=0,解得:x1=5,x2=70(不符合题意,舍去),∴小路的宽是5m.故选:A.3.(2023•齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150cm的导线,将其全部截成10cm和20cm两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有( )A.5种B.6种C.7种D.8种【答案】C【解答】解:设截成10cm的导线x根,截成20cm的导线y根,根据题意得10x+20y=150,∴x=15﹣2y,∵15﹣2y>0,∴y<7.5,∵y是正整数,∴y的值为1,2,3,4,5,6,7,即截取方案共有7种.故选:C.4.(2023•黑龙江)某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A,B,C三种图书,A种每本30元,B种每本25元,C种每本20元,其中A种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( )A.5种B.6种C.7种D.8种【答案】B【解答】解:当购买5本A种图书时,设购买x本B种图书,y本C种图书,根据题意得:30×5+25x+20y=500,∴x=14﹣y,又∵x,y均为正整数,∴或或,∴当购买5本A种图书时,有3种采购方案;当购买6本A种图书时,设购买m本B种图书,n本C种图书,根据题意得:30×6+25m+20n=500,∴n=16﹣m,又∵m,n均为正整数,∴或或,∴当购买6本A种图书时,有3种采购方案.∴此次采购的方案有3+3=6(种).故选:B.5.(2023•牡丹江)若分式方程=1﹣的解为负数,则a的取值范围是( )A.a<﹣1且a≠﹣2B.a<0且a≠﹣2C.a<﹣2且a≠﹣3D.a<﹣1且a≠﹣3【答案】D【解答】解:方程两侧同乘(x+2)得,a=x+2﹣3,∴x=a+1,∵解为负数,∴a+1<0,即a<﹣1,要是分式有意义,x≠﹣2,即a+1≠﹣2,∴a≠﹣3.故选:D.6.(2023•黑龙江)已知关于x的分式方程+1=的解是非负数.则m的取值范围是( )A.m≤2B.m≥2C.m≤2且m≠﹣2D.m<2且m≠﹣2【答案】C【解答】解:分式方程去分母得:m+x﹣2=﹣x,解得:x=,由分式方程的解是非负数,得到≥0,且﹣2≠0,解得:m≤2且m≠﹣2,故选:C.7.(2023•绥化)某运输公司,运送一批货物,甲车每天运送货物总量的.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x天,由题意列方程,正确的是( )A.+=1B.+(+)=1.(1+)+=.+(+)=+(+)=的不等式组有三个整数解,则实数的不等式组有,则+的值为﹣ .﹣.所以原式===﹣.﹣.由题意得:×2=,解得:x=80,经检验,x=80是原方程的解,且符合题意,则x﹣2=78,+=30,答:该学校两批共购买了30个足球.14.(2023•牡丹江)某商场欲购进A和B两种家电,已知B种家电的进价比A种家电的进价每件多100元,经计算,用1万元购进A种家电的件数与用1.2万元购进B种家电的件数相同.请解答下列问题:(1)这两种家电每件的进价分别是多少元?(2)若该商场欲购进两种家电共100件,总金额不超过53500元,且A种家电不超过67件,则该商场有哪几种购买方案?(3)在(2)的条件下,若A和B两种家电的售价分别是每件600元和750元,该商场从这100件中拿出两种家电共10件奖励优秀员工,其余家电全部售出后仍获利5050元,请直接写出这10件家电中B种家电的件数.【答案】(1)A种家电每件的进价为500元,B种家电每件的进价为600元;(2)该商场共有3种购买方案,方案1:购进A种家电65件,B种家电35件;方案2:购进A种家电66件,B种家电34件;方案3:购进A种家电67件,B种家电33件;(3)这10件家电中包含4件B种家电.【解答】解:(1)设A种家电每件进价为x元,则B种家电每件进价为(x+100)元,根据题意得:,解得:x=500,经检验,x=500是所列方程的解,且符合题意,∴x+100=500+100=600.答:A种家电每件的进价为500元,B种家电每件的进价为600元;(2)设购进A种家电a件,则购进B种家电(100﹣a)件,根据题意得:,解得:65≤a≤67,又∵a为正整数,∴a可以为65,66,67,∴该商场共有3种购买方案,方案1:购进A种家电65件,B种家电35件;方案2:购进A种家电66件,B种家电34件;方案3:购进A种家电67件,B种家电33件;(3)设这10件家电中包含m件B种家电,则包含(10﹣m)件A种家电,当a=65时,600×[65﹣(10﹣m)]+750(35﹣m)﹣500×65﹣600×35=5050,解得:m=,∵m为正整数,∴m=不符合题意,舍去;当a=66时,600×[66﹣(10﹣m)]+750(34﹣m)﹣500×66﹣600×34=5050,解得:m=,∵m为正整数,∴m=不符合题意,舍去;当a=67时,600×[67﹣(10﹣m)]+750(33﹣m)﹣500×67﹣600×33=5050,解得:m=4.答:这10件家电中包含4件B种家电.15.(2023•黑龙江)2023年5月30日上午9点31分,神州十六号载人飞船在酒泉发射中心发射升空.某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A,B 两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B 款的文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?(3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款每件让利m元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m值.【答案】(1)A款文化衫每件50元,B款文化衫每件40元;(2)共有6种购买方案;(3)m=5.【解答】解:(1)设B款文化衫每件x元,则A款文化衫每件(x+10)元,根据题意得:=,解得:x=40,经检验,x=40是所列方程的解,且符合题意,∴x+10=40+10=50.答:A款文化衫每件50元,B款文化衫每件40元;(2)设购买y件A款文化衫,则购买(300﹣y)件B款文化衫,根据题意得:,解得:275≤y≤280,又∵y为正整数,∴y可以为275,276,277,278,279,280,∴共有6种购买方案;(3)设购买300件两款文化衫所需总费用为w元,则w=50×0.7y+(40﹣m)(300﹣y)=(m﹣5)y+300(40﹣m),∵(2)中的所有购买方案所需资金恰好相同,∴w的值与y值无关,∴m﹣5=0,∴m=5.答:m的值为5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学试题汇编一、填空题:1. 一种细菌的半径约为0.000045米,用科学记数法表示为 米.2. 8-的立方根是 ,2的平方根是 ;3. 如果|a+2|+,那么a 、b 的大小关系为a b(填“>”“=”或“<”);4. 计算:)13)(13(-+= 。
5.计算:= 。
6. 在实数范围内分解因式:ab 2-2a =___ ______.7. 计算:x -1x -2 +12-x= 。
8. 不等式组x x -<+>⎧⎨⎩21210的解集是___________。
9. 方程2x 33x 2-=-的解是________________. 10. 观察下列等式,21 ×2 = 21 +2,32 ×3 = 32 +3,43 ×4 = 43 +4,54 ×5 = 54 +5 设n 表示正整数,用关于n 的等式表示这个规律为_______ ____; 11. 在函数y x =-12中,自变量x 的取值范围是__________。
12. 如果反比例函数的图象经过点(1,-2),那么这个反比例函数的解析式为_________________。
13. 函数25+-=x y 与x 轴的交点是 ,与y 轴的交点是 ,与两坐标轴围成的三角形面积是 ;14. 某地的电话月租费24元,通话费每分钟0.15元,则每月话费y (元)与通话时间x (分钟)之间的关系式是 ,某居民某月的电话费是38.7元,则通话时间是 分钟,若通话时间62分钟,则电话费为 元;15. 函数xy 2-=的图像,在每一个象限内,y 随x 的增大而 ;16. 把函数22x y =的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是 ;17. 把二次函数842+-=x x y 化成n h x y ++=2)(的形式是 ,顶点坐标是 ,对称轴是 ; 18. 1,2,3,x 的平均数是3,则3,6,x 的平均数是 ;19. 2004年5月份,某市市区一周空气质量报告中某项污染指数的数据是:3135 31 34 30 32 31 这组数据的中位数是 ; 20. 为了调查某校初中三年级240名学生的身高情况,从中抽测了40名学生的身高,在这个问题中总体是 ,个体是 ,样本是 ;21. 点P(1-,2)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点的坐标是 ;22. 若点()m m P +-21, 在第一象限,则m 的取值范围是 ;23. 已知10<<x ,化简2)1(-+x x 的结果是 ;24. 方程0222=--x x 的根是31±=x ,则222--x x 可分解为 ; 25. 方程022=-x 的解是______=x ;26. 方程 032=--kx x 的一根是3,则它的另一根是 , _____=k ; 27. 已知2-=x 时,分式ax bx +-无意义,4=x 时此分式值为0,则_____=+b a ; 28. 若方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a =_________,b =_______;29. 10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)= ,P(摸到奇数)= ;30. 甲、乙两人进行射击比赛,在相同条件下各射击 10 次他们的平均成绩均为7 环10 次射击成绩的方差分别是:3S 2=甲,2.1S 2=乙.成绩较为稳定的是________.(填“甲”或“乙” )二、选择题:31、在实数π,2,41.3&&,2-,tan45°中,有理数的个数是 ( ) A 、 2个 B 、3个 C 、 4个 D 、5个 32、下列二次根式中与3是同类二次根式的是 ( ) A 、 18 B 、3.0 C 、30 D 、30033、在下列函数中,正比例函数是 ( ) A x y 2= B xy 21=C 2x y =D 4--=x y 34、李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速前进,结果准时到校,在课堂上,李老师请学生画出:自行车行进路程S(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的示意图如下,你认为正确的是 ( )35、正比例函数kx y =和反比例函数xky=)0(>k 在同一坐标系内的图象为( ) 36、二次函数0,2=+++=b a b ax x y 若中,则它的图象必经过点 ( )A (1-,1-)B (1,1-)C (1,1)D (1-,1)37、不等式组⎩⎨⎧≥+->+053032x x 的整数解的个数是 ( )A 1B 2C 3D 438、在同一坐标系中,作出函数2kx y =和)0(2≠-=k kx y 的图象,只可能是 ( )39、若关于x 的方程0222=-+-a ax x 有两个相等的实根,则a 的值是 ( )A -4B 4C 4或-4D 2 40、某中学为了了解初中三年级数学的学习情况,在全校学生中抽取了50名学生进行测试(成绩均为整数,满分为100分),将50名学生的数学成绩进行整理,分成5组画出的频率分布直方图如图所示,已知从左至右4个小组的频率分别是0.06,0.08,0.20,0.28,那么这次测试学生成绩为优秀的有(分数大于或等于80分为优秀)。
( ) A 30人 B 31人 C 33人 D 34人41、某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ( )A 205.0420420=--x x B 204205.0420=--x x C 5.020420420=--x x D 5.042020420=--xx 42、在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b )(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证( ) (A )222()2a b a ab b +=++ (B )222()2a b a ab b -=-+(C )22()()a b a b a b -=+- (D )22(2)()2a b a b a ab b +-=+-y yyy xxxx OOOO -2-2-2ABCD2a图2图1三、解答题: 43、计算: ()13122-⎪⎭⎫ ⎝⎛+---;44、计算:1121222+-÷++-a aa a a a45、解不等式组⎪⎩⎪⎨⎧<-+≤+351)2(354x x x x46、抛物线的对称轴是2=x ,且过(4,-4)、(-1,2),求此抛物线的解析式;47、为了保护学生的视力,课桌椅的高度是按一定的关系配套设计的。
研究表明:假设课桌的高度为y cm ,椅子的高度(不含靠背)为x cm ,则y 应是x 的一次函数,右边的表中给出两套符合条件的桌椅的高度:(1)请确定y 与x 的函数关系式;(2)现有一把高42.0cm 的椅子和一张高78.2cm 的课桌,它们是否配套?请通过计算说明理由。
48、有一个抛物线形拱桥,其最大高度为16m ,跨度为40m ,现把它的示意图放在平面直角坐标系中如 图(4),求抛物线的解析式x49、某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554 台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 % .该厂第一季度生产甲、乙两种机器各多少台?50、为节约用电,某学校于本学期初制定了详细的用电计划。
如果实际每天比计划多用2度电,那么本学期的用电量将会超过2530度;如果实际每天比计划节约2度电,那么本学期用电量将会不超过2200度电。
若本学期的在校时间按110天计算,那么学校每天用电量应控制在什么范围内?51、某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如果不合理,请你制定一个较合理的销售定额,并说明理由;52、小刚为书房买灯,现有两种灯可供选择,其中一种是9瓦(0.009千瓦)的节能灯,售价49元/盏;另一种是40瓦(0.04千瓦)的白炽灯,售价18元/盏。
假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,并已知小刚家所在地的电价是每千瓦时0.5元。
(1)设照明时间是x 小时,设一盏节能灯的费用1y 和一盏白炽灯的费用2y ,求出21,y y 与x 之间的函数关系式(注:费用=灯的售价+电费)(2)小刚想在这两种灯中选一盏。
①当照明时间是多少时,使用两种灯的费用一样多?②照明时间是在什么范围内,选用白炽灯的费用最低?③照明时间是在什么范围内,选用节能灯的费用最低?(3)小刚想在这两种灯中选购两盏。
假定照明时间是3000小时,使用寿命就是2800小时。
请你帮他设计一种费用最低的选灯方案,并说明理由。
答案: 一、填空题1)、4.5×10-5 2)、-2,2± 3)、< 4)、2 5)、0 6)、a(b-2)(b+2) 7)、1 8)、321〈〈-x 9)、x=510)、))(1(1)1(1为正整数n n nn n n n +++=+⨯+ 11)、2≠x 12)、x y 2-= 13)、52)2,0()0,52(、、 14)、y=0.15x+24,()0>X 、98,3.3315)、增大 16)、y=2(x-3)2-2 17)、y=(x-2)2+4 18)、5 19)、31 20)、某校初中三年级240名学生的身高,一名学生的身高,某校初中三年级40名学生的身高21)、(-1,-2)(1,2)(1,-2) 22)、12〈〈-m 23)、1 24)、)31)(31(+---x x25)、2± 26)、-1,2 27)、6 28)、-5,3 29)、101,2130、乙 二、选择题31、B 32、D 33、A 34、C 35、B 36、C 37、C 38、B 39、B 40、C 41、B 42、C 三、解答题 43)、444)、a145)、123≤〈-x 46)、544)2(562--=x y 47)、(1)y=1.6x+11 (2)当高为4.20cm 时,y=42×1.6+11=78.2 ∴它们是配套的48)、依题意得:A(20,16) B (0,40) 设16)20(2+-=x k y∴16)200(402+-=k k=0.06 ∴16)200(06.02+-=y49)、解:设第一季度生产甲机器x 台,乙机器y 台⎩⎨⎧-=+=+480554%20%10480y x y x 解得:⎩⎨⎧==260220y x答:甲机器220台,乙机器260台。