北师大版七年级数学上册 同步练习 全套含答案详解

合集下载

北师大版七年级数学上册第三章 3.2 代数式 同步测试题(含答案)

北师大版七年级数学上册第三章 3.2 代数式 同步测试题(含答案)

北师大版七年级数学上册第三章 3.2 代数式同步测试题一、选择题1.下列式子中,不属于代数式的是( )A.a+3 B.2mn C.0 D.x>y2.下列语句正确的是( )A.1+a不是一个代数式B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式3.用代数式表示:a的2倍与3的和.下列表示正确的是( )A.2a-3 B.2a+3 C.2(a-3) D.2(a+3) 4.当m=-1时,代数式2m+3的值是( )A.-1 B.0 C.1 D.25.若x=-3,y=1,则代数式2x-3y+1的值为( )A.-10 B.-8 C.4 D.106.下列解释3a表示的意义不正确的是( )A.如果葡萄的价格是3元/千克,那么3a表示买a千克葡萄的金额B.如果一个等边三角形的边长为a,那么3a表示这个三角形的周长C.如果在校平均一天的生活费用为a元,那么3a表示3天的生活费用D.如果步行的速度为a米/分钟,那么3a表示步行3米所用的时间7.下列用代数式表示错误的是( )A.比a的2倍大1的数是2a+1 B.a的相反数与b的和是-a+bC.比a的平方小1的数是a2-1 D.a的2倍与b的差的3倍是2a-3b8.根据流程图中的程序,当输入数值x 为-2时,输出数值y 为( )A .4B .6C .8D .10 9.设某数为m ,则代数式3m 2-52表示( ) A .某数的3倍的平方减去5除以2 B .某数平方的3倍与5的差的一半C .某数的3倍减5的一半D .某数与5的差的3倍除以210.按如图所示的运算程序,能使输出y 值为5的是( )A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1二、填空题11.用代数式表示:(1)x 与y 两数的差的平方:_______;(2)a 与b 的平方差:_______.12.设一个三位数的个位数字为a ,十位数字为b ,百位数字为c ,请你用含a ,b ,c 的代数式表示这个三位数:_______.13.某风景区在“十一”黄金周期间推出了特惠活动:票价为每人100元,团体购票超过20人,票价可以享受八折优惠.活动期间,某旅游团有m(m>20)人来该景区观光,则应付票价总额为_______元.14.若x=1,则代数式2x2-x的值为_______.15.据省统计局发布,2019年我省有效发明专利数比2018年增长22.1%.假定2018年的年增长率保持不变,2018年和2020年我省有效发明专利分别为a万件和b万件,则b=_______.16.体育委员小金带了500元经费去买体育用品,已知一个足球x元,一个篮球y元,则代数式500-3x-2y表示的实际意义是_______.17.若a,b互为相反数,则代数式a+b-2的值为_______.18.用代数式表示:把a本书分给若干名学生,若每人5本,还剩余3本,则学生人数为_______人.19.已知a2+2a=1,则3(a2+2a)+2的值为_______.20.若代数式(m-2)x2+5y2+3的值与x的取值无关,则m=_______.三、解答题21.联系实际背景,说明代数式6a2的意义.22.某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x人、学生y人.(1)该旅游团应付多少门票费?(2)如果该旅游团有30个成人和15个学生,那么他们应付多少门票费?23.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.那么顾客到哪家超市购买这种商品更合算?请通过计算加以说明.24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款[4000+40(x-20)]元(用含x的代数式表示);若该客户按方案②购买,需付款(3_600+36x)元(用含x的代数式表示);(2)若x=30,通过计算说明此时选择哪种方案购买较为合算?参考答案一、选择题1.下列式子中,不属于代数式的是(D)A.a+3 B.2mn C.0 D.x>y2.下列语句正确的是(B)A.1+a不是一个代数式B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式3.用代数式表示:a的2倍与3的和.下列表示正确的是(B)A.2a-3 B.2a+3 C.2(a-3) D.2(a+3) 4.当m=-1时,代数式2m+3的值是(C)A.-1 B.0 C.1 D.25.若x=-3,y=1,则代数式2x-3y+1的值为(B)A.-10 B.-8 C.4 D.106.下列解释3a表示的意义不正确的是(D)A.如果葡萄的价格是3元/千克,那么3a表示买a千克葡萄的金额B.如果一个等边三角形的边长为a,那么3a表示这个三角形的周长C.如果在校平均一天的生活费用为a元,那么3a表示3天的生活费用D.如果步行的速度为a米/分钟,那么3a表示步行3米所用的时间7.下列用代数式表示错误的是(D)A.比a的2倍大1的数是2a+1 B.a的相反数与b的和是-a+bC.比a的平方小1的数是a2-1 D.a的2倍与b的差的3倍是2a-3b8.根据流程图中的程序,当输入数值x 为-2时,输出数值y 为(A)A .4B .6C .8D .10 9.设某数为m ,则代数式3m 2-52表示(B) A .某数的3倍的平方减去5除以2 B .某数平方的3倍与5的差的一半C .某数的3倍减5的一半D .某数与5的差的3倍除以210.按如图所示的运算程序,能使输出y 值为5的是(D)A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1二、填空题11.用代数式表示:(1)x 与y 两数的差的平方:(x -y)2;(2)a 与b 的平方差:a 2-b 2.12.设一个三位数的个位数字为a ,十位数字为b ,百位数字为c ,请你用含a ,b ,c 的代数式表示这个三位数:100c +10b +a .13.某风景区在“十一”黄金周期间推出了特惠活动:票价为每人100元,团体购票超过20人,票价可以享受八折优惠.活动期间,某旅游团有m(m >20)人来该景区观光,则应付票价总额为80m 元.14.若x =1,则代数式2x 2-x 的值为1.15.据省统计局发布,2019年我省有效发明专利数比2018年增长22.1%.假定2018年的年增长率保持不变,2018年和2020年我省有效发明专利分别为a 万件和b 万件,则b =(1+22.1%)2a .16.体育委员小金带了500元经费去买体育用品,已知一个足球x 元,一个篮球y 元,则代数式500-3x -2y 表示的实际意义是体育委员小金买了3个足球、2个篮球后剩余的经费.17.若a ,b 互为相反数,则代数式a +b -2的值为-2.18.用代数式表示:把a 本书分给若干名学生,若每人5本,还剩余3本,则学生人数为a -35人.19.已知a 2+2a =1,则3(a 2+2a)+2的值为5.20.若代数式(m -2)x 2+5y 2+3的值与x 的取值无关,则m =2.三、解答题21.联系实际背景,说明代数式6a 2的意义.解:答案不唯一,如:6个边长为a 的正方形的面积之和.22.某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x 人、学生y 人.(1)该旅游团应付多少门票费?(2)如果该旅游团有30个成人和15个学生,那么他们应付多少门票费?解:(1)该旅游团应付门票费为(10x +5y)元.(2)当x =30,y =15时,10x+5y=10×30+5×15=375,即他们应付375元门票费.23.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.那么顾客到哪家超市购买这种商品更合算?请通过计算加以说明.解:设商品价格为a(a>0)元,甲超市的价格为a(1-20%)(1-10%)=0.72a元,乙超市的价格为a(1-15%)2=0.722 5a元,丙超市的价格为a(1-30%)=0.7a元,因为0.7a<0.72a<0.722 5a,所以到丙超市购买最合算.24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款[4000+40(x-20)]元(用含x的代数式表示);若该客户按方案②购买,需付款(3_600+36x)元(用含x的代数式表示);(2)若x=30,通过计算说明此时选择哪种方案购买较为合算?解:当x=30时,4000+40(x-20)=4000+40×(30-20)=4 400(元),3 600+36x=3 600+36×30=4 680(元),因为4 400<4 680,所以选择方案①购买较为合算.。

北师大版七年级数学上册章节同步练习题(全册-共57页)

北师大版七年级数学上册章节同步练习题(全册-共57页)

北师⼤版七年级数学上册章节同步练习题(全册-共57页)北师⼤版七年级数学上册章节同步练习题(全册,共57页)⽬录第⼀章丰富的图形世界1 ⽣活中的⽴体图形2 展开与折叠3 截⼀个⼏何体4 从三个⽅向看物体的形状单元测验第⼆章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘⽅ 10 科学记数法11 有理数的混合运算 12 ⽤计算器进⾏运算单元测验第三章整式及其加减1 字母表⽰数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平⾯图形1 线段射线直线2 ⽐较线段的长短3 ⾓ 4⾓的⽐较5 多边形和圆的初步认识单元测验第五章⼀元⼀次⽅程1 认识⼀元⼀次⽅程2 求解⼀元⼀次⽅程3 应⽤⼀元⼀次⽅程——⽔箱变⾼了4 应⽤⼀元⼀次⽅程——打折销售5 应⽤⼀元⼀次⽅程——“希望⼯程”义演6 应⽤⼀元⼀次⽅程——追赶⼩明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表⽰4 统计图的选择第⼀章丰富的图形世界1.1⽣活中的⽴体图形(1)基础题:1.如下图中为棱柱的是()2.⼀个⼏何体的侧⾯是由若⼲个长⽅形组成的,则这个⼏何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长⽅体、正⽅体都是棱柱 B.三棱柱的侧⾯是三⾓形C.直六棱柱有六个侧⾯、侧⾯为矩形 D.球体和圆是不同的图形4.数学课本类似于,⾦字塔类似于,西⽠类似于,⽇光灯管类似于。

5.⼋棱柱有个⾯,个顶点,条棱。

6.⼀个漏⽃可以看做是由⼀个________和⼀个________组成的。

7.如图是⼀个正六棱柱,它的底⾯边长是3cm,⾼是5cm.(1)这个棱柱共有个⾯,它的侧⾯积是。

(2)这个棱柱共有条棱,所有棱的长度是。

提⾼题:⼀只⼩蚂蚁从如图所⽰的正⽅体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数⼀数,⼩蚂蚁有种爬⾏路线。

北师大版初中数学七年级上册《2.10 科学记数法》同步练习卷(含答案解析

北师大版初中数学七年级上册《2.10 科学记数法》同步练习卷(含答案解析

北师大新版七年级上学期《2.10 科学记数法》同步练习卷一.解答题(共50小题)1.学校组织同学们去参观博物馆,在一块恐龙化石前,小明对小亮说:“这块化石距今已经230000001年了.”解说员听到后用略带嘲讽的口气对小明说:“小朋友!你比科学家厉害,知道得这么准确!”小明说:“我去年也参观了,去年是你说的,这块化石距今约230000000年了.”(1)用科学记数法表示230000000;(2)小明的说法正确吗?为什么?2.地球上海洋总面积为3.6×108km2,按海洋的海水平均深度3.7×103m计算,海水的体积约为多少?3.卫星绕地球表面做圆周运动的速度约为7.9×103米/秒,则卫星运行8×103秒所走的路程约是多少?4.我国约有9.6×106平方千米的土地,平均1平方千米的土地一年从太阳得到的能相当于燃烧1.5×105吨煤所产生的能量(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤?(用科学记数法表示)(2)若1吨煤大约可以发出8×103度电,那么(1)中的煤大约发出多少度电?(用科学记数法表示)5.已知全国总人口约1.41×109人,若平均每人每天需要粮食0.5kg,则全国每天大约需要多少kg粮食?(结果用科学记数法表示)6.计算机存储容量的基本单位是字节,用b表示,计算机中一般用Kb(千字节)或Mb(兆字节)或Gb(吉字节)作为存储容量的计算单位,它们之间的关系为1Kb=210b,1Mb=210Kb,1Gb=210Mb.一种新款电脑的硬盘存储容量为80Gb,它相当于多少Kb?(结果用科学记数法表示,精确到百万位)7.已知1cm3的氢气重约为0.00009g,一块橡皮重45g(1)用科学记数法表示1cm3的氢气质量;(2)这块橡皮的质量是1cm3的氢气质量的多少倍.8.经过30多年的观测,人们发现冥王星的直径只有2.3×106米,比月球还要小,因此2006年8月24日在在捷克首都布拉格举行的国际天文学联合会第26届大会上,根据新定义,冥王星被排在行星行列之外,而将其列入“矮行星”.若银河系密集部分的直径是十万光年,用科学记数法表示冥王星与银河系密集部分直径的比值.(结果保留两位有效数字)9.用激光技术测得地球和月球之间的距离为377985654.32米,请按要求分别取得这个数的近似值,并分别写出相应的有效数字.(1)精确到千位;(2)精确到千万位;(3)精确到亿位.10.地球绕太阳转动每小时经过的路程约为1.1×105km,声音在空气中每小时传播1.2×103km,地球绕太阳转动的速度与声音传播的速度哪个快?11.下面用科学记数法表示的数,原来是什么数?地球上的海洋面积约为3.6×108平方千米.12.为节约水资源,某学校环保宣传小组作了一个调查,得到了如下的一组数据:我们所在的城市人口大约900万人,每天早晨起来刷牙,如果大家都有一个坏习惯,刷牙时都不关水龙头,那么我们每个人刷牙时可浪费75毫升的水.(1)按这样计算我们全市一天早晨仅这一项就浪费了多少升水?请用科学记数法表示;(2)如果我们用500毫升的纯净水瓶来装浪费的水,约可以装多少瓶?13.在一次水灾中,大约有2.5×107个人无家可归,假如一顶帐篷占地100平方米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000平方米.要安置这些人,大约需要多少个这样的广场?(所有结果用科学记数法表示)14.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长168 000 000m,用科学记数法表示这个数.15.若5万粒芝麻的质量总共是200克,则一粒芝麻的质量是多少千克?(列式计算,结果用科学记数法表示)16.(1)写出绝对值大于3且小于7的所有整数.(2)用科学记数法表示海王星与地球的距离约为4350000000千米.17.用科学记数法表示下列各数:(1)地球距离太阳约有150000000千米;(2)第五次全国人口普查,我国人口总数约为129533万人.18.为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:我们所在的城市大约有160万人,每天早晨起来漱口,如果大家都有一个坏习惯,漱口时都不关水龙头,那么我们每个人漱口时要浪费56毫升的水.(1)按这样计算,我们全市一天早晨要浪费多少升水?请用科学记数法表示最后的结果,并精确到千位.(2)如果我们用500毫升的纯净水瓶来装浪费的水,可以装多少瓶?19.对非负有理数x“四舍五入”到个位的值记为<x>.例如:<0>=<0.48>=0,<0.64>=<1.493>=1,<18.75>=<19.499>=19,….解决下列问题:(1)<π>=(π为圆周率);(2)如果<2x﹣1>=3,则有理数x有最(填大或小)值,这个值为.20.按括号里的要求对下列各数取值(1)0.9541(精确到十分位)(2)2.5678(精确到千分位)(3)14595(用科学记数法表示)(4)﹣30130978(用科学记数法表示)(5)789532000(用科学记数法表示)21.用四舍五入方法,按下列要求对159 897 000 000 分别取近似值:(1)精确到千万位;(2)精确到亿位;(3)精确到百亿位.22.用四舍五入法,对下列各数按括号中的要求取近似数:(1)0.6328(精确到0.01)(2)7.9122(精确到个位)(3)130.96(精确到十分位)(4)46021(精确到百位)23.油滴的体积为10﹣4cm3,相当于多少立方米(用科学记数法表示).24.鸵鸟是世界上最大的鸟,体重约160千克,蜂鸟是世界上最小的鸟,体重仅2克,一只蜂鸟相当于多少只鸵鸟的重量(用科学记数法表示)?25.下列用科学记数法写出的数,原数分别是什么数?1×107,4.5×106,7.04×105,3.96×104,﹣7.4×105.26.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算(1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(5)经过以上计算,你有何感想和建议?27.根据要求,用四舍五入法取下列各数的近似值:(1)1.4249≈(精确到百分位);(2)0.02951≈(精确到0.001).(3)近似数1.23×105精确到位,有个有效数字.(4)所有绝对值小于4的整数的积是,和是.28.用四舍五入法,按括号中的要求对下列各数取近似值.(1)349995(精确到百位);(2)349995(精确到千位)(3)3.4995(精确到0.01);(4)0.003584(精确到千分位)29.用四舍五入法得到a的近似数为4.60,则这个数a的范围是.30.已知一平方千米的土地上,一年内从太阳得到的能量相当于燃烧1.3×108千克的煤所产生的能量,那么我国9.6×106平方千米的土地上一年内从太阳得到的能量相当于燃烧a×10n千克的煤,求a,n的值.31.下列各数都是由四舍五入法得到的近似数,它们分别精确到哪一位?各有几个有效数字?(1)小红的体重为45.0千克;(2)小明的妈妈的年薪约为5万元;(3)月球轨道呈椭圆形,远地点平均距离为4.055×105千米.32.向月球发射无线电波,无线电波到月球并返回地面需2.57s,已知无线电波每秒传播3×105km,求地球和月球之间的距离.(结果保留三个有效数字)33.某少年合唱团招收新学员,要求女生身高在1.48米以上.现报名人数有几十人,如果用以0.1米为单位的刻度尺测量,能否准确测出每个女生符不符合条件?如果用以0.01米为单位的刻度尺测量,能否准确测出符合条件的女生?请你说说理由?34.21世纪,纳米技术被广泛应用,纳米是长度计算单位,1纳米=10﹣9米.VCD 光碟的两面有用激光刻成的小凹坑,已知小凹坑的宽度只有0.4微米(1微米=10﹣6米),试将小凹坑的宽度用纳米作为计算单位表示出来.(结果用科学记数法表示)35.北京首都大剧院演出歌剧时,成都电视台现场直播,你知道谁先听到歌剧的开始?是与歌舞台相距25米的现场观众,还是距离2300千米的成都观众?(声音速度是340米/秒,电波速度是3×108米/秒)36.用科学记数法表示下列各数(1)900200(2)300(3)10000000(4)﹣510000.37.已知下列用科学记数法表示的数,写出原来的数(1)2.01×104(2)6.070×105(3)6×105(4)104.38.请写出用科学记数法表示的数5.0301×103.39.用科学记数法表示下列各小题中的量(1)光的速度是300000000米/秒;(2)银河系中的恒星约有160000000000个;(3)地球离太阳大约有一亿五千万千米;(4)月球质量约为734734万吨.40.用科学记数法表示1502.41.水珠不断地滴在一块石头上,经过40年,石头上形成了一个深为3.6×10﹣2m的小洞,问平均每个月小洞的深度增加多少(单位:m,用科学记数法表示)?42.1972年3月发射的“先驱者10号”是人类发往大阳系外的第一艘人造太空探测器,至2003年2月人们最后一次收到它回到的信号时,它已飞离地球12200000000km.(1)用科学记数法表示这个距离;(2)地球赤道长约4千万米,用科学记数法表示赤道长;“先驱者10号”飞离地球的距离是地球赤道长的多少倍?43.某户居民家的水龙头有漏水现象,据观察,1分钟漏水40滴,若一年(按365天计算)由于这种现象而浪费的水的质量为1.0512×103千克,则1滴水的质量为多少克?(结果用科学记数法表示.)44.在显微镜下发现一种球状微生物的半径约为0.0002毫米,试求出它的体积.(π取值3.14,结果用科学记数法表示)45.用科学记数法表示下列各数:728500;3600000000;﹣2009000000;2011.46.有一句谚语说:“捡了芝麻,丢了西瓜.”据测算,5万粒芝麻才200g,你能换算出1粒芝麻有多少克吗?(结果用科学记数法表示)47.上海浦东磁悬浮铁路全长30千米,单程运行时间约8分钟,那么磁悬浮列车的平均速度约为多少米/分钟?(用科学记数法表示)48.据科学家测算,用1吨废纸造出的再生好纸相当于0.3~0.4亩森林木材的造纸量.某市今年大约有6.7×104名初中毕业生,每个毕业生离校时大约有12千克废纸,若他们都把废纸送到回收站生产再生好纸,则至少可使森林免遭砍伐多少亩(保留三个有效数字)?49.6.829(精确到0.1).50.太阳系外距离地球最近的一颗恒星叫比邻星,它与地球的距离为360013000001300130千米,问:比邻星上的光发出多长时间才能到达地球?(已知光的速度为300000千米/秒,一年以30000000秒计算,结果用科学记数法表示)北师大新版七年级上学期《2.10 科学记数法》同步练习卷参考答案与试题解析一.解答题(共50小题)1.学校组织同学们去参观博物馆,在一块恐龙化石前,小明对小亮说:“这块化石距今已经230000001年了.”解说员听到后用略带嘲讽的口气对小明说:“小朋友!你比科学家厉害,知道得这么准确!”小明说:“我去年也参观了,去年是你说的,这块化石距今约230000000年了.”(1)用科学记数法表示230000000;(2)小明的说法正确吗?为什么?【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:(1)230000000=2.3×108,(2)小明的说法错误,因为解说员说的“这块化石距今已经230000001年”中的230000000是一个近似数,它的精确数位是千万位,增加的这一年是忽略不计的.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.地球上海洋总面积为3.6×108km2,按海洋的海水平均深度3.7×103m计算,海水的体积约为多少?【分析】首先化成同一单位km,再利用3.6×108乘以深度3.7即可.【解答】解:3.7×103m=3.7km,3.6×108×3.7=1.332×109(km3)答:海水的体积约为1.332×109km3.【点评】此题主要考查了科学记数法,关键是掌握把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数.3.卫星绕地球表面做圆周运动的速度约为7.9×103米/秒,则卫星运行8×103秒所走的路程约是多少?【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:(7.9×103)×(8×103)=6.32×107,答:卫星运行8×103秒所走的路程约是6.32×107米.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.我国约有9.6×106平方千米的土地,平均1平方千米的土地一年从太阳得到的能相当于燃烧1.5×105吨煤所产生的能量(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤?(用科学记数法表示)(2)若1吨煤大约可以发出8×103度电,那么(1)中的煤大约发出多少度电?(用科学记数法表示)【分析】(1)根据乘法的意义列出算式(9.6×106)×(1.5×105)计算,再用科学记数法表示即可;(2)用(1)的结果乘以8×103,求出结果后再用科学记数法表示即可.【解答】解:(1)(9.6×106)×(1.5×105)=(9.6×1.5)×(106×105)=1.44×1012(吨).答:一年内我国土地从太阳得到的能量相当于燃烧1.44×1012吨煤.(2)(1.44×1012)×(8×103)=(1.44×8)×(1012×103)=1.152×1016(度).答:(1)中的煤大约发出1.152×1016度电.【点评】此题主要考查了科学记数法﹣表示较大的数,整式的混合运算,熟练应用运算法则是解题关键.5.已知全国总人口约1.41×109人,若平均每人每天需要粮食0.5kg,则全国每天大约需要多少kg粮食?(结果用科学记数法表示)【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:1.41×109×0.5=0.705×109=7.05×108(kg).答:全国每天大约需要7.05×108kg粮食.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.计算机存储容量的基本单位是字节,用b表示,计算机中一般用Kb(千字节)或Mb(兆字节)或Gb(吉字节)作为存储容量的计算单位,它们之间的关系为1Kb=210b,1Mb=210Kb,1Gb=210Mb.一种新款电脑的硬盘存储容量为80Gb,它相当于多少Kb?(结果用科学记数法表示,精确到百万位)【分析】1Gb=210Mb,1Mb=210Kb,根据这个关系求出80Gb=210×210×80=8.38×107Kb,然后结果保留到百万位即可.【解答】解:∵1Gb=210Mb,1Mb=210Kb,∴80Gb=210×210×80,将其转化成a×10n的形式∴210×210×80≈8.4×107Kb.答:它相当于8.4×107Kb.【点评】本题考查用科学记数法表示较大的数.科学记数法在实际生活中有着广泛的应用,给我们记数带来方便,考查科学记数法就是考查我们应用数学的能力.7.已知1cm3的氢气重约为0.00009g,一块橡皮重45g(1)用科学记数法表示1cm3的氢气质量;(2)这块橡皮的质量是1cm3的氢气质量的多少倍.【分析】(1)绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定;(2)利用有理数除法运算法则求出答案即可.【解答】解:(1)0.00009g=9×10﹣5g;(2)45÷0.00009=500000=5×105,故这块橡皮的质量是1cm3的氢气质量的5×105倍.【点评】本题考查用科学记数法表示较小的数以及有理数除法等知识,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.经过30多年的观测,人们发现冥王星的直径只有2.3×106米,比月球还要小,因此2006年8月24日在在捷克首都布拉格举行的国际天文学联合会第26届大会上,根据新定义,冥王星被排在行星行列之外,而将其列入“矮行星”.若银河系密集部分的直径是十万光年,用科学记数法表示冥王星与银河系密集部分直径的比值.(结果保留两位有效数字)【分析】根据光年的速度乘以时间,可得银河系密集部分直径,根据同底数幂的除法,可得答案.【解答】解:银河系密集部分直径是9.46×1012×105×103=9.46×1020(米),示冥王星与银河系密集部分直径的比值是(2.3×106)÷(9.46×1020)=2.4×10﹣15.【点评】本题考查了科学记数法与有效数字,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字,用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.9.用激光技术测得地球和月球之间的距离为377985654.32米,请按要求分别取得这个数的近似值,并分别写出相应的有效数字.(1)精确到千位;(2)精确到千万位;(3)精确到亿位.【分析】(1)首先利用科学记数法表示,然后对千位以后的数位进行四舍五入;(2)首先利用科学记数法表示,然后对千万位以后的数位进行四舍五入;(3)首先利用科学记数法表示,然后亿位以后的数位进行四舍五入;【解答】解:(1)精确到千位;377985654.32米≈377986000米,即3.77986×108米(2)精确到千万位;377985654.32米≈380000000米,即3.8×108米(3)精确到亿位;377985654.32米≈400000000米,即4×108米.【点评】本题考查了近似数和有效数字,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.10.地球绕太阳转动每小时经过的路程约为1.1×105km,声音在空气中每小时传播1.2×103km,地球绕太阳转动的速度与声音传播的速度哪个快?【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.1×105km=110000km,1.2×103km=1200km,地球绕太阳转动的速度快.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.下面用科学记数法表示的数,原来是什么数?地球上的海洋面积约为3.6×108平方千米.【分析】根据科学记数法,可得答案.【解答】解:3.6×108平方千米=360000000平方米.【点评】本题考查了科学记数法,n是几小数点向右移动几位.12.为节约水资源,某学校环保宣传小组作了一个调查,得到了如下的一组数据:我们所在的城市人口大约900万人,每天早晨起来刷牙,如果大家都有一个坏习惯,刷牙时都不关水龙头,那么我们每个人刷牙时可浪费75毫升的水.(1)按这样计算我们全市一天早晨仅这一项就浪费了多少升水?请用科学记数法表示;(2)如果我们用500毫升的纯净水瓶来装浪费的水,约可以装多少瓶?【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:(1)900 0000×75÷1000=675000≈6.75×105.按这样计算我们全市一天早晨仅这一项就浪费了6.75×105升水;(2)675000×1000÷500=1350000瓶,答:如果我们用500毫升的纯净水瓶来装浪费的水,约可以装1350000瓶【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.在一次水灾中,大约有2.5×107个人无家可归,假如一顶帐篷占地100平方米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000平方米.要安置这些人,大约需要多少个这样的广场?(所有结果用科学记数法表示)【分析】用人数除以每一顶帐篷的床位数,计算即可求出帐篷数;用帐篷数乘以每一顶帐篷所占的面积计算即可求出占地面积;用所有帐篷的占地面积除以广场的面积计算即可求出广场的个数.【解答】解:帐篷数:2.5×107÷40=6.25×105;这些帐篷的占地面积:6.25×105×100=6.25×107;需要广场的个数:6.25×107÷5000=1.25×104.【点评】本题考查了科学记数法表示较大的数,读懂题目信息,正确列出算式是解题的关键.14.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长168 000 000m,用科学记数法表示这个数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:168 000 000m,用科学记数法表示1.68×108m.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.若5万粒芝麻的质量总共是200克,则一粒芝麻的质量是多少千克?(列式计算,结果用科学记数法表示)【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:200×10﹣3÷(5×104)=4×10﹣6,答:一粒芝麻的质量是4×10﹣6千克.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.(1)写出绝对值大于3且小于7的所有整数.(2)用科学记数法表示海王星与地球的距离约为4350000000千米.【分析】(1)利用绝对值的性质求出所有符合题意的答案即可;(2)科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:(1)绝对值大于3且小于7的所有整数有:﹣6,﹣5,﹣4,4,5,6;(2)将4350000000用科学记数法表示为:4.35×109.【点评】此题考查了科学记数法的表示方法以及绝对值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.用科学记数法表示下列各数:(1)地球距离太阳约有150000000千米;(2)第五次全国人口普查,我国人口总数约为129533万人.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:(1)150000000=1.5×108(千米);(2)1295330000=1.29533×109(人).【点评】本题考查了科学记数法,此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:我们所在的城市大约有160万人,每天早晨起来漱口,如果大家都有一个坏习惯,漱口时都不关水龙头,那么我们每个人漱口时要浪费56毫升的水.(1)按这样计算,我们全市一天早晨要浪费多少升水?请用科学记数法表示最后的结果,并精确到千位.(2)如果我们用500毫升的纯净水瓶来装浪费的水,可以装多少瓶?【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:(1)160 0000×56÷1000=89600≈9.0×104.(2)89600×1000÷500=179200【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.对非负有理数x“四舍五入”到个位的值记为<x>.例如:<0>=<0.48>=0,<0.64>=<1.493>=1,<18.75>=<19.499>=19,….解决下列问题:(1)<π>=3(π为圆周率);(2)如果<2x﹣1>=3,则有理数x有最小(填大或小)值,这个值为.【分析】(1)根据新定义把π四舍五入得到3;(2)根据新定义得到2.5≤2x﹣1<3.5,解得≤x<.【解答】解:(1)<π>=3(π为圆周率);(2)如果<2x﹣1>=3,则有理数x有最小值,这个值为.故答案为3,小,.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.20.按括号里的要求对下列各数取值(1)0.9541(精确到十分位)(2)2.5678(精确到千分位)(3)14595(用科学记数法表示)(4)﹣30130978(用科学记数法表示)(5)789532000(用科学记数法表示)【分析】(1)直接将小数点后第三位四舍五入即可;(2)直接将小数点后第五位四舍五入即可;(3)先用科学记数法表示,然后按要求精确即可;(4)用科学记数法表示即可;(5)用科学记数法表示即可.【解答】解:(1)0.9541≈1.0(精确到十分位)。

北师大版数学七年级上全册10分钟课堂小测(同步练习)含答案

北师大版数学七年级上全册10分钟课堂小测(同步练习)含答案

北师大版数学七年级上全册10分钟课堂小测第一章丰富的图形世界1生活中的立体图形第1课时认识几何体1.从下列物体抽象出来的几何体可以看成圆柱的是()2.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个4.如图,电镀螺杆呈现出了两个几何体的组合,则这两个几何体分别是()A.圆柱和圆柱B.六棱柱和六棱柱C.长方体和六棱柱D.圆柱和六棱柱5.一个四棱柱一共有条棱,有个面;如果四棱柱的底面边长都是2cm,侧棱长都是4cm,那么它所有棱长的和是.6.将下列几何体分类:其中柱体是,锥体是,球体是(填序号).第2课时立体图形的构成1.下列几何体没有曲面的是()A.圆柱B.圆锥C.球D.长方体2.围成圆柱的面有()A.1个B.2个C.3个D.4个3.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是()A.点动成线B.线动成面C.面动成体D.以上答案都不对4.下列选项中的图形,绕其虚线旋转一周能得到左边的几何体的是()5.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.6.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?2展开与折叠第1课时正方体的展开图1.下面图形中是正方体的展开图的是()2.如图是正方体的一种展开图,其中每个面上都有一个数字,那么在原正方体中,与数字6相对面上的数字是()A.1B.4C.5D.23.如图,该几何体的展开图可能是()4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第2课时柱体、锥体的展开与折叠1.下列立体图形中,侧面展开图是扇形的是()2.下面图形中,是三棱柱的侧面展开图的是()3.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()4.如图,沿虚线折叠能形成一个立体图形,它的名称是.5.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).3截一个几何体1.如图,用一个平面去截一个圆柱,截得的形状应为()2.用平面去截一个几何体,若截面为长方形,则该几何体不可能是()A.正方体B.长方体C.圆柱D.圆锥3.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,得到的截面可能是圆的几何体是()A.①②④B.①②③C.②③④D.①③④4.如果用一个平面截一个几何体,截面形状是三角形,那么这个几何体可能是(写出两个几何体名称).5.如图是一个正方体,用一个平面去截这个正方体,截面形状不可能是(填序号).6.说出下列几何体被阴影部分所截得的截面的形状.4从三个方向看物体的形状1.如图是由5个相同的小正方体搭成的几何体,从正面看到的图形是()2.如图是某几何体从三个方向看到的图形,则这个几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱3.如图是由三个相同小正方体组成的几何体从上面看到的图形,那么这个几何体可以是()4.一个积木由若干个大小相同且棱长为1的正方体搭成,如图分别是从三个方向看到的形状图,则该积木中棱长为1的正方体的个数是()A.6个B.7个C.8个D.9个5.下面是用几个相同的小正方体搭成的两种几何体,分别画出从三个方向看到的几何体的形状图.第二章 有理数及其运算1 有理数1.下列各数中是负数的是( ) A.-3 B.0 C.1.7 D.122.飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( ) A.-8米 B.+8米 C.-15米 D.+15米3.下列说法正确的是( )A.非负数包括0和整数B.正整数包括自然数和0C.0是最小的整数D.整数和分数统称为有理数4.在“1,-0.3,+13,0,-3.3”这五个数中,非负有理数是 (写出所有符合题意的数).5.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .6.把下列各数填入表示它所在的数集的圈里.-18,227,3.1416,0,2001,-35,-0.142857,95%.数 轴1.下列所画数轴正确的是( )2.如图,点M 表示的数是( )A.1.5B.-1.5C.2.5D.-2.53.在0,-2,1,12这四个数中,最小的数是( )A.0B.-2C.1D.124.比较下列各组数的大小: (1)-3 1; (2)0 -2.3; (3)-23 -35.5.在数轴上,与表示数-1的点的距离为1的点表示的数是 .6.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .7.在数轴上表示下列各数,并用“〉”连接起来.1.8,-1,52,3.1,-2.6,0,1.3 绝对值第1课时 相反数1.-3的相反数是( ) A.-3 B.3 D.-13 D.132.下列各组数互为相反数的是( )A.4和-(-4)B.-3和13C.-2和-12 D.0和03.若一个数的相反数是1,则这个数是 .4.写出下列各数的相反数:(1)-3.5的相反数为 ; (2)35的相反数为 ;(3)0的相反数为 ; (4)28的相反数为 ; (5)-2018的相反数为 .第2课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )3.比较大小:-5 -2,-12 -23(填“〉”或“〈”).4.计算:(1)|7|= ; (2)⎪⎪⎪⎪-58= ; (3)|5.4|= ; (4)|-3.5|= ; (5)|0|= .4 有理数的加法第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝⎛⎭⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝⎛⎭⎫-212=-3 D.(-71)+0=71 5.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2016)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝⎛⎭⎫-718+⎝⎛⎭⎫-16.第2课时 有理数加法的运算律1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( ) A.加法交换律 B.加法结合律 C.分配律 D.加法交换律与加法结合律2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝⎛⎭⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某运动员在东西走向的公路上练习跑步,跑步情况记录如下(向东为正,单位:m):1000,-1200,1100,-800,1400,该运动员跑完后位于出发点的什么位置?有理数的减法1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝⎛⎭⎫-23-112-⎝⎛⎭⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?有理数的加减混合运算第1课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A .7+3-5-2 B .7-3-5-2 C .7+3+5-2 D .7+3-5+22.计算8+(-3)-1所得的结果是( ) A .4 B .-4 C .2 D .-23.算式“-3+5-7+2-9”的读法正确的是( ) A .3、5、7、2、9的和 B .减3正5负7加2减9C .负3,正5,减7,正2,减9的和D .负3,正5,负7,正2,负9的和4.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为( )A .-1B .0C .1D .2 5.计算下列各题:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝⎛⎭⎫-312-⎝⎛⎭⎫-523+713.6.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.第2课时 有理数加减混合运算中的简便运算1.下列各题运用加法结合律变形错误的是( ) A .1+(-0.25)+(-0.75)=1+[(-0.25)+(-0.75)] B .1-2+3-4+5-6=(1-2)+(3-4)+(5-6) C .34-16-12+23=⎝⎛⎭⎫34+12+⎝⎛⎭⎫-16+23 D .7-8-3+6+2=(7-3)+(-8)+(6+2) 2.计算-256+15-116的结果是( )A .-345B .345C .-415D .4153.计算:(1)27+18-(-3)-18; (2)23-18-⎝⎛⎭⎫-13+⎝⎛⎭⎫-38;(3)-0.5+⎝⎛⎭⎫-14-(-2.75)-12; (4)314+⎝⎛⎭⎫-718+534+718;(5)7.54+(-5.72)-(-12.46)-4.28; (6)0.125+⎝⎛⎭⎫-418+⎝⎛⎭⎫-234+0.75.第3课时有理数加减混合运算的应用1.下表是某种股票某一周每天的收盘价情况(收盘价:股票每天交易结束时的价格):(1)填表,并回答哪天的收盘价最高,哪天的收盘价最低;(2)最高价与最低价相差多少?2.某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,低于80分的分数记为负,成绩记录如下:+10,-2,+15,+8,-13,-7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测该小组成员中得分最高与最低相差多少分?7 有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A .-1 B .-5 C .-6 D .12.-74的倒数是( )A .-74B .74C .-47D .473.下列运算中错误的是( ) A .(+3)×(+4)=12 B .-13×(-6)=-2C .(-5)×0=0D .(-2)×(-4)=8 4.下列计算结果是负数的是( ) A .(-3)×4×(-5) B .(-3)×4×0C .(-3)×4×(-5)×(-1)D .3×(-4)×(-5) 5.填表(想法则,写结果):6.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝⎛⎭⎫-1625; (4)(-2.5)×⎝⎛⎭⎫-213.第2课时 有理数乘法的运算律1.用简便方法计算(-27)×(-3.5)+27×(-3.5)时,要用到( ) A .乘法交换律 B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律 2.计算(-4)×37×0.25的结果是( )A .-37B .37C .73D .-733.下列计算正确的是( ) A .-5×(-4)×(-2)×(-2)=80 B .-9×(-5)×(-4)×0=-180C .(-12)×⎝⎛⎭⎫13-14-1=(-4)+3+1=0 D .-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝⎛⎭⎫3-12,用分配律计算正确的是( ) A .(-2)×3+(-2)×⎝⎛⎭⎫-12 B .(-2)×3-(-2)×⎝⎛⎭⎫-12 C .2×3-(-2)×⎝⎛⎭⎫-12 D .(-2)×3+2×⎝⎛⎭⎫-12 5.填空:(1)21×⎝⎛⎭⎫-45×⎝⎛⎭⎫-621×(-10) =21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎡⎦⎤⎝⎛⎭⎫-45×( )(利用乘法结合律) =( )×( )= ; (2)⎝⎛⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1计算(-18)÷6的结果是( ) A .-3 B .3 C .-13 D .132.计算(-8)÷⎝⎛⎭⎫-18的结果是( ) A .-64 B .64 C .1 D .-1 3.下列运算错误的是( )A .13÷(-3)=3×(-3) B .-5÷⎝⎛⎭⎫-12=-5×(-2) C .8÷(-2)=-8×12 D .0÷3=04.下列说法不正确的是( ) A .0可以作被除数 B .0可以作除数C .0的相反数是它本身D .两数的商为1,则这两数相等 5.(1)6的倒数是 ;(2)-12的倒数是 .6.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝⎛⎭⎫-123÷⎝⎛⎭⎫-212; (4)⎝⎛⎭⎫-34÷⎝⎛⎭⎫-37÷⎝⎛⎭⎫-116.1.计算(-3)2的结果是( ) A .-6 B .6 C .-9 D .92.下列运算正确的是( ) A .-(-2)2=4 B .-⎝⎛⎭⎫-232=49 C .(-3)4=34 D .(-0.1)2=0.13.把34×34×34×34写成乘方的形式为 ,读作 .4.计算:(1)(-2)3; (2)-452; (3)-⎝⎛⎭⎫-372; (4)⎝⎛⎭⎫-233.10 科学记数法1.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A .1.3×104B .1.3×105C .1.3×106D .1.3×1072.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A .182000千瓦B .182000000千瓦C .18200000千瓦D .1820000千瓦 3.用科学记数法表示下列各数: (1)地球的半径约为6400000m ; (2)赤道的总长度约为40000000m .11 有理数的混合运算1.计算-5-3×4的结果是( ) A .-17 B .-7 C .-8 D .-322.下列各式中,计算结果是负数的是( ) A .(-1)×(-2)×(-3)×0 B .5×(-0.5)÷(-0.21) C .(-5)×|-3.25|×(-0.2) D .-(-3)2+(-2)2 3.计算(-8)×3÷(-2)2的结果是( ) A .-6 B .6 C .-12 D .124.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x 平方乘以2减去5输出5.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝⎛⎭⎫12-23×12+32.6.室温是32℃,小明开空调后,温度下降了6℃,关掉空调后,空气温度每小时回升2℃,求关掉空调2小时后室内的温度.12用计算器进行运算1.用完计算器后,应该按()A.DEL键B.=键C.ON键D.OFF键2.用计算器求(-3)5的按键顺序正确的是()A.(-)()3x■5=B.3x■5()(-)=C.()(-)3x■5=D.()(-)35x■=3.按键顺序1-3x■2÷2×3=对应下面算式()A.(1-3)2÷2×3B.1-32÷2×3C.1-32÷2×3D.(1-3)2÷2×34.用计算器计算7.783+(-0.32)2≈(精确到0.01).第三章整式及其加减1字母表示数1.一辆汽车的速度是v千米/时,行驶t小时所走的路程为千米.2.每台电脑售价x元,降价10%后每台售价为元.3.若买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元4.用字母表示图中阴影部分的面积.2 代数式第1课时 代数式1.下列书写格式正确的是( ) A .x5 B .4m÷n C .x(x +1)34 D .-12ab2.某种品牌的计算机,进价为m 元,加价n 元后作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A .(m +0.8n)元B .0.8n 元C .(m +n +0.8)元D .0.8(m +n)元3.在式子:①m +5;②ab ;③a =1;④0;⑤π;⑥3(m +n);⑦3x >5中,代数式有 个.4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .第2课时 代数式的求值1.当x =1时,代数式4-3x 的值是( ) A .1 B .2 C .3 D .42.当x =3,y =2时,代数式2x -y3的值是( ) A .43B .2C .0D .3 3.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高.已知犯人的身高比其脚印长度a cm 的7倍少3cm .(1)用含a 的代数式表示出犯人的身高为 cm ; (2)若a =24,求犯人的身高.整 式1.下列各式中不是单项式的是( ) A .a 3 B .-15 C .0 D .3a2.单项式-2x 2y 3的系数和次数分别是( )A .-2,3B .-2,2C .-23,3D .-23,23.多项式3x 2-2x -1的各项分别是( ) A .3x 2,2x,1 B .3x 2,-2x,1C .-3x 2,2x ,-1D .3x 2,-2x ,-14.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.5.多项式3x 3y +2x 2y -4xy 2+2y -1是 次 项式,它的最高次项的系数是 .6.下列代数式中哪些是单项式?哪些是多项式? xy 3,-34xy 2z ,a ,x -y ,1x ,3.14,-m ,-m 2+2m -1.7.若关于a ,b 的单项式-58a 2b m 与-117x 3y 4是次数相同的单项式,求m 的值.整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是()A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是()A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和m 23.下列运算中,正确的是()A.3a+2b=5abB.2a3+3a2=5a5C.3a2b-3ba2=0 C.5a2-4a2=14.计算2m2n-3nm2的结果为()A.-1B.-5m2nC.-m2nD.不能合并5.合并同类项:(1)3a-5a+6a;(2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时 去括号1.化简-2(m -n)的结果为( )A .-2m -nB .-2m +nC .2m -2nD .-2m +2n 2.下列去括号错误的是( )A .a -(b +c)=a -b -cB .a +(b -c)=a +b -cC .2(a -b)=2a -bD .-(a -2b)=-a +2b 3.-(2x -y)+(-y +3)去括号后的结果为( ) A .-2x -y -y +3 B .-2x +3 C .2x +3 D .-2x -2y +34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x 2+3xy)-(2x 2+4xy)=-x 2【】,其中空格的地方被钢笔水弄污了,那么空格中一项是( )A .-7xyB .7xyC .-xyD .xy 5.去掉下列各式中的括号:(1)(a +b)-(c +d)= ; (2)(a -b)-(c -d)= ; (3)(a +b)-(-c +d)= ; (4)-[a -(b -c)]= . 6.化简下列各式:(1)3a -(5a -6); (2)(3x 4+2x -3)+(-5x 4+7x +2);(3)(2x -7y)-3(3x -10y); (4)6a 2-4ab -4⎝⎛⎭⎫2a 2+12ab .第3课时 整式的加减1.化简x +y -(x -y)的结果是( ) A .2x +2y B .2y C .2x D .02.已知A =5a -3b ,B =-6a +4b ,则A -B 等于( ) A .-a +b B .11a +b C .11a -7b D .-a -7b3.已知多项式x 3-4x 2+1与关于x 的多项式2x 3+mx 2+2相加后不含x 的二次项,则m 的值是( )A .-4B .4C .12D .-124.若某个长方形的周长为4a ,一边长为(a -b),则另一边长为( ) A .3a +b B .2a +2b C .a +b D .a +3b5.化简:(1)(-x 2+5x +4)+(5x -4+2x 2);(2)-2(3y 2-5x 2)+(-4y 2+7xy).6.先化简,再求值:3a 2-ab +7-(5ab -4a 2+7),其中a =2,b =13.探索与表达规律第1课时 探索数字规律1.观察下列数据:0,3,8,15,24…它们是按一定规律排列的,依照此规律,第201个数据是( )A .40400B .40040C .4040D .4042.一组数23,45,67,89…按一定的规律排列,请你根据排列规律,推测这组数的第10个数应为( )A .1819B .2021C .2223D .24253.已知2+23=22×23,3+38=32×38,4+415=42×415…,若9+n m =92×nm (m ,n 为正整数),则m +n 的值为( )A .86B .88C .89D .904.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a ,b 的值分别为( )A .9,10B .9,91C .10,91D .10,110 5.观察下列各式,完成问题.1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…… (1)仿照上例,计算:1+3+5+7+…+99= ; (2)根据上述规律,请你用自然数n(n ≥1)表示一般规律.第2课时探索图形规律1.如图,第①个图形中一共有1个正方形,第②个图形中一共有3个正方形,第③个图形中一共有5个正方形……则第⑩个图形中正方形的个数是()A.18个B.19个C.20个D.21个2.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒……则第n个图案中有根小棒.第2题图第3题图3.如图,按这种规律堆放圆木,第n堆应有圆木根.4.如图是用棋子摆成的“T”字图案.从图案中可以看出,第1个“T”字图案需要5枚棋子,第2个“T”字图案需要8枚棋子,第3个“T”字图案需要11枚棋子……(1)照此规律,摆成第4个图案需要几枚棋子?(2)摆成第n个图案需要几枚棋子?(3)摆成第2018个图案需要几枚棋子?第四章基本平面图形线段、射线、直线1.给出下列图形,其表示方法不正确的是()2.下列语句正确的是()A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A,B两点,并使直线AB经过C点3.小红家分了一套住房,她想在自己房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定()A.1根B.2根C.3根D.4根4.根据图形填空:点B在直线上,图中有条线段,以点B为端点的射线有条.第4题图第5题图5.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,用数学知识解释其中的道理是.6.已知平面上四点A、B、C、D如图所示.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于点E;(4)连接AC、BD相交于点F.比较线段的长短1.下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫作这两点之间的距离2.如图,已知线段AB=6cm,点C是AB的中点,则AC的长为()A.6cmB.5cmC.4cmD.3cm3.现实生活中为何有人宁愿乱穿马路,也不愿从天桥或斑马线通过?用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫作这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短4.如图,D是AB的中点,E是BC的中点.若AC=8,EC=3,则AD=.5.如图,已知线段AB.(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB;②延长线段BA到D,使AD=AC(不写画法,但要保留画图痕迹);(2)观察(1)中所作的图,直接写出线段BD与线段AC之间的长短关系;(3)若AB=2cm,求线段BD和CD的长度.角1.下列关于角的说法中,正确的是()A.角是由两条射线组成的图形B.角的边越长,角越大C.在角一边的延长线上取一点D.角可以看作由一条射线绕着它的端点旋转而形成的图形2.如图,能用∠1,∠ACB,∠C三种方法表示同一个角的是()3.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″4.如图,能用一个字母表示的角是,用三个大写字母表示∠1为,∠2为.第4题图第5题图第6题图5.如图,点Q位于点O的方向上.6.某钟面上午8时整时针和分针的位置如图所示,则时针和分针所成角的度数是.7.计算:(1)33°52′+21°50′;(2)108°8′-36°56′.角的比较1.如图,将∠1、∠2的顶点和其中一边重合,且∠1的另一边落在∠2的外部,则∠1与∠2的关系是( )A .∠1〉∠2B .∠1〈∠2C .∠1=∠2D .无法确定2.如图,已知∠AOB 、∠COD 都是直角,则∠1与∠2的关系是( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .无法确定第1题图 第2题图 第4题图 第5题图3.射线OC 在∠AOB 的内部,下列四个选项中不能判定OC 是∠AOB 的平分线的是( )A .∠AOB =2∠AOC B .∠AOC =12∠AOB C .∠AOC +∠BOC =∠AOB D .∠AOC =∠BOC4.如图,点O 在直线AB 上,射线OC 平分∠DOB.若∠DOC =35°,则∠AOD 等于( )A .35°B .70°C .110°D .145°5.把一副三角板按照如图所示的位置摆放形成两个角,分别设为∠α、∠β.若∠α=65°,则∠β的度数为 .6.如图,∠AOC =15°,∠BOC =45°,OD 平分∠AOB ,求∠COD 的度数.多边形和圆的初步认识1.下列图形中,多边形有()A.1个B.2个C.3个D.4个2.过某个多边形一个顶点的所有对角线将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形3.边长为1cm的正六边形的周长是cm.4.已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为cm2.5.某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况,求扇形甲、乙、丙圆心角的度数.6.如图,将多边形分割成三角形.(1)图①中可分割出个三角形;(2)图②中可分割出个三角形;(3)图③中可分割出个三角形;由此你能猜测出,n边形可以分割出个三角形.第五章 一元一次方程认识一元一次方程第1课时 一元一次方程1.下列是一元一次方程的是( )A .x 2-x =4B .2x -y =0C .2x =1D .1x=2 2.方程x +3=-1的解是( )A .x =2B .x =-4C .x =4D .x =-23.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是 .4.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x 名学生,则由题意可列方程为 .第2课时 等式的基本性质1.下列变形符合等式的基本性质的是( )A .若2x -3=7,则2x =7-3B .若3x -2=x +1,则3x -x =1-2C .若-2x =5,则x =5+2D .若-13x =1,则x =-3 2.解方程-34x =12时,应在方程两边( ) A .同时乘-34 B .同时乘4 C .同时除以34 D .同时除以-343.利用等式的基本性质解方程:(1)x +1=6; (2)3-x =7; (3)-3x =21.求解一元一次方程第1课时 利用移项解一元一次方程1.下列变形属于移项且正确的是( )A .由3x =5+2得到3x +2=5B .由-x =2x -1得到-1=2x +xC .由5x =15得到x =155D .由1-7x =-6x 得到1=7x -6x 2.解方程-3x +4=x -8时,移项正确的是( )A .-3x -x =-8-4B .-3x -x =-8+4C .-3x +x =-8-4D .-3x +x =-8+43.一元一次方程3x -1=5的解为( )A .x =1B .x =2C .x =3D .x =44.解下列方程:(1)13x +1=12; (2)3x +2=5x -7.5.下面是某位同学的作业,他的解答正确吗?如果不正确,请把正确的步骤写出来. 解方程:2x -1=-x +5.解:移项,得2x -x =1+5,合并同类项,得x =6.1.方程3-(x+2)=1去括号正确的是()A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是()A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10;(2)8y-6(y-2)=0;(3)4x-3(20-x)=-4;(4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个,那么他一共投进了多少个2分球,多少个3分球?1.对于方程5x -13-2=1+2x 2,去分母后得到的方程是( ) A .5x -1-2=1+2x B .5x -1-6=3(1+2x)C .2(5x -1)-6=3(1+2x)D .2(5x -1)-12=3(1+2x)2.方程x 4=x -15的解为( ) A .x =4 B .x =1 C .x =-1 D .x =-43.(1)若式子x -83与14x +5的值相等,则x = ; (2)若x 3+1与2x -73互为相反数,则x = . 4.解方程:(1)3x -52=2x 3; (2)4x +95-3+2x 3=1;(3)15(x +15)=12-13(x -7); (4)2y -13=y +24-1.5.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组,则这个班共有多少名学生?应用一元一次方程——水箱变高了1.内径为120mm 的圆柱形玻璃杯,和内径为300mm 、内高为32mm 的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为( )A .150mmB .200mmC .250mmD .300mm2.用一根长12cm 的铁丝围成一个长方形,使得长方形的宽是长的12,则这个长方形的面积是( )A .4cm 2B .6cm 2C .8cm 2D .12cm 23.将一个底面半径是5cm ,高为10cm 的圆柱体冰淇淋盒改造成一个直径为20cm 的圆柱体.若体积不变,则改造后圆柱体的高为多少?4.把一个三边长分别为3dm,4dm,5dm 的三角形挂衣架,改装成一个正方形挂衣架.求这个正方形挂衣架的面积.应用一元一次方程——打折销售1.如图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是()A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打()A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最低可打几折销售?应用一元一次方程——“希望工程”义演1.已知甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨给两仓库,则应分配给两仓库各多少吨,才能使得甲仓库的储粮是乙仓库的两倍?2.希望中学团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块.每人搬了4次,共搬了1800块,问这些新团员中有多少名男同学?3.在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?应用一元一次方程——追赶小明1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米.设x秒后甲可追上乙,则下列所列方程中正确的是()A.6.5+x=7.5B.7x=6.5x+5C.7x+5=6.5xD.6.5+5x=7.52.小明和爸爸在一条长400米的环形跑道上,小明每秒跑9米,爸爸骑车每秒骑16米,两人同时同地反向而行,经过秒两人首次相遇.3.一轮船往返于A,B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,求轮船在静水中的速度.4.甲、乙两站相距300千米,一列慢车从甲站开往乙站,每小时行40千米,一列快车从乙站开往甲站,每小时行80千米.已知慢车先行1.5小时,快车再开出,则快车开出多少小时后与慢车相遇?第六章数据的收集与整理数据的收集1.下面获取数据的方法不正确的是()A.了解我们班同学的身高用测量方法B.快捷了解历史资料情况用观察方法C.抛硬币看正反面的次数用试验方法D.了解全班同学最喜爱的体育活动用访问方法2.在设计调查问卷时,下面的提问比较恰当的是()A.我认为猫是一种很可爱的动物B.难道你不认为科幻片比武打片更有意思吗C.你给我回答到底喜不喜欢猫D.请问你家有哪些使用电池的电器2普查和抽样调查1.下列调查方式不合适的是()A.了解我市人们保护海洋的意识采取抽样调查的方式B.为了调查一个省的环境污染情况,调查该省的省会城市C.了解观众对《红海行动》这部电影的评价情况,调查座位号为奇数的观众D.了解飞行员视力的达标率采取普查方式2.下列调查的样本具有代表性的是()A.了解全校同学喜欢课程情况,对某班男生进行调查B.了解某小区居民的防火意识,从每幢居民随机抽若干人进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解某城区空气质量,在某个固定位置进行调查3.为了调查一批灯泡的使用寿命,适合采用的调查方式是(填“普查”或“抽样调查”).4.某中学为了解本校2000名学生所需运动服的尺码,在全校范围内随机抽取100名学生进行调查,这次调查的个体是.数据的表示第1课时扇形统计图1.某学生某月有零花钱100元,其支出情况如图所示,则下列说法不正确的是()A.捐赠款所对应的圆心角的度数为240°B.该学生捐赠款为60元C.捐赠款是购书款的2倍D.其他消费占10%2.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并调查了所有学生对该方案的意见.根据赞成、反对、无所谓三种意见的人数之比画出如图所示的扇形统计图,图中α的度数为.3.某地中小学大力提倡“2+2”素质教育,开展几年后取得了重大成果.小明对本学期全班50名同学所选择的活动项目进行了统计,根据收集的数据制作了下表:(1)请完善表格中的数据;(2)根据上述表格中的人数百分比,制作扇形统计图.第2课时频数直方图1.已知一组数据的最大值为46,最小值为27,在绘制频数直方图时,取组距为3,则这组数据应分成()A.5组B.6组C.7组D.8组2.某校测量了初三(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如图所示的频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人B.该班身高最高段的学生数为7人C.该班身高最高段的学生数为20人D.该班身高低于160.5cm的学生数为15人3.阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数如下:3239455560546028564151364446405337474546(1)若对这20个数按组距为8进行分组,请补全频数分布表及频数直方图;(2)通过频数直方图分析此大棚中西红柿的长势.。

北师大版七年级数学上册第四章4.1---4.2同步练习题(含答案)

北师大版七年级数学上册第四章4.1---4.2同步练习题(含答案)

北师大版七年级数学上册第四章《基本平面图形》1 线段、射线、直线一、选择题(共36分)1.下列语句中:①画直线;②直线AB与直线BA是同一条直线,所以射线AB与射线BA也是同一条射线;③延长直线OA;④在同一个图形中,线段AB与线段BA是同一条线段.正确的个数有()A.0B.1C.2D.32.下列说法:(1)线段BA和线段AB是同一条线段;(2)射线AC和射线AD是同一条射线;(3)把射线AB 反向延长可得到直线BA;(4)直线比射线长,射线比线段长.其中说法正确的个数是()A.1B.2C.3D.43.如图,有四个图形和每一个图形相应的一句描述,所有图形都画在同一个平面上.①线段AB与射线MN不相交;②点C在线段AB上;③直线a和直线b不相交;④延长射线AB,则会通过点C,其中正确的语句的个数有()A.0个B.1个C.2个D.3个4.如图,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF,从射线OA开始按逆时针方向依次在射线上写出数字1、2、3、4、5、6、7、,则数字“2019”在射线()A.OA上B.OC上C.OE上D.OF上5.预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是()A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段6.如图所示给出的分别有射线、直线、线段,其中能相交的图形有()A.①B.①③C.②③④D.①②③④7.已知三点M、N、G,画直线MN、画射线MG、连结NG,按照上述语句画图正确的是()A. B. C. D.8.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直9.在线段AB上选取3种点,第1种是将AB三等分的点;第2种是将AB四等分的点;第3种是将AB九等分的点,这些点连同线段AB的端点可组成线段的条数是()A.11B.13C.55D.7810.如图共有线段()条。

北师大版七年级数学上册《2.2有理数的加减运算》同步练习题-带答案

北师大版七年级数学上册《2.2有理数的加减运算》同步练习题-带答案

北师大版七年级数学上册《2.2有理数的加减运算》同步练习题-带答案考试时间:60分钟满分100分班级:________________ 姓名:________________ 考号:________________一、单选题(本大题共8小题,总分24分)1.下列结论中,正确的是()A.有理数减法中,被减数一定比减数大B.减去一个数,等于加上这个数的相反数C.0减去一个数,仍得这个数D.互为相反数的两个数相减等于02.计算﹣2﹣8的结果是()A.﹣6B.﹣10C.10D.63.甲地的海拔高度是5m,乙地比甲地低9m,乙地的海拔高度是()m.A.9B.﹣9C.4D.﹣44.春节期间冰雪旅游大热,杭州的小明同学准备去旅游,考虑温差准备着装时,他查询气温,杭州的气温是19℃,长春的气温是﹣14℃,则此刻两地的温差是()A.33℃B.19℃C.14℃D.5℃5.将式子3﹣10﹣7写成和的形式正确的是()A.3+(﹣10)+(﹣7)B.﹣3+(﹣10)+(﹣7)C.3﹣(+10)﹣(+7)D.3+10+76.已知|a|=8,|b|=6,若|a+b|=a+b,则b﹣a的值为()A.﹣2B.﹣4C.﹣2或﹣4D.﹣2或﹣147.若|m|=5,|n|=4,且|m+n|=|m|﹣|n|,则m﹣n=()A.﹣9或﹣1B.1或9C.9或﹣9D.1或﹣98.对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和,这样的运算称为对这若干个数的“差绝对值运算”,例如,对于1,2,3进行“差绝对值运算”,得到:|1﹣2|+|2﹣3|+|1﹣3|=4.①对﹣2,3,5,9进行“差绝对值运算”的结果是35;②x,−52,5的“差绝对值运算”的最小值是152;③a,b,c的“差绝对值运算”化简结果可能存在的不同表达式一共有8种;以上说法中正确的个数为()A.0个B.1个C.2个D.3个二、填空题(本大题共6小题,总分24分)9.计算:(−5.2)−145=.10.已知:|x|=8,y=﹣5,且x<y,则x﹣y的值为.11.如图是某市连续5天的天气情况,最大的日温差是℃.12.A、B、C三地的海拔高度分别是﹣112米、﹣80米、﹣25米,则最高点比最低点高米.13.某超市出售的一种品牌大米袋上,标有质量为(20±0.2)kg的字样,则从该超市里任意拿出这种品牌的大米两袋,它们的质量最多相差kg.14.若|x|=7,|y|=6,|x+y|=﹣(x+y),则x﹣y的值为.三、解答题(本大题共6小题,总分52分)15.计算:(1)﹣3﹣1﹣13.(2)−(+416)−6−(−0.125).16.已知|a|=3,|b|=5,且a>b,求a﹣b的值.17.请列式计算:(1)求绝对值小于5的所有整数的和;(2)设m为5与﹣12的差,n比6的相反数大5,求m+n的值.18.已知|x|=12,|x﹣y|=5.(1)求x,y的值:(2)当x﹣y<0,求x+y的值.19.(1)若|x+3|+|y﹣5|=0,那么x+y的值是多少?(2)已知|a|=7,|b|=3,|a﹣b|=b﹣a,求a+b的值.20.(1)阅读思考:小唐在学习过程中,发现“数轴上两点间的距离”可以用“表示这两点数的差”来表示.【探索】:如图1,线段AB,BC,CD的长度可表示为:AB=3=4﹣1,BC=5=4﹣(﹣1),CD=3=(﹣1)﹣(﹣4);于是他归纳出这样的结论:如果点A表示的数为a,点B表示的数为b,当b>a时,AB=b﹣a(较大数﹣较小数).(2)尝试应用:①如图2所示,计算:OE=,EF=.②把一条数轴在数m对应的点处对折,使表示1和3两数的点恰好互相重合,则m=;若把数轴在数n对应的点处对折,使表示﹣5和3两数的点恰好互相重合,数n=.(3)问题解决:如图3所示,点P表示数x,点M表示数﹣2,点N表示数2x+8,且MN=4PM,求出点P和点N分别表示的数.参考答案一、单选题(本大题共8小题,总分24分)1.BBDA.5.ADCB.【点评】本题考查了新定义运算,化简绝对值符号,整式的加减运算,掌握绝对值运算,整式的运算是解题的关键.二、填空题(本大题共6小题,总分24分)9.﹣7.10.﹣3.11.10.12.87.13.0.4.14.﹣1或﹣13.三、解答题(本大题共6小题,总分52分)15.解:(1)原式=﹣4﹣13=﹣17;(2)原式=﹣416−6+18 =﹣10−16+18=﹣10−424+324=﹣10124.16.解:∵|a |=3,|b |=5∴a =±3或b =±5∵a >b∴a =3时,b =﹣5a ﹣b =3﹣(﹣5)=3+5=8a =﹣3时,b =﹣5a ﹣b =﹣3﹣(﹣5)=﹣3+5=2综上所述,a ﹣b 的值为8或2.17.解:(1)绝对值小于5的整数有:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4 所以﹣4﹣3﹣2﹣1+0+1+2+3+4=0;(2)由题意得m =5﹣(﹣12)=5+12=17,n =﹣6+5=﹣1所以m +n =17+(﹣1)=16.18.解:(1)∵|x |=12∴x =±12∵|x ﹣y |=5∴x =12,y =7或y =17,或者x =﹣12,y =﹣7或y =﹣17;(2)∵x ﹣y <0∴x =12,y =17或x =﹣12,y =﹣7;∴x +y 的值为:29或﹣19.19.解:(1)∵|x +3|+|y ﹣5|=0∴x =﹣3,y =5∴x +y =﹣3+5=2;(2)∵|a ﹣b |=b ﹣a∴b≥a∵|a|=7,|b|=3∴a=﹣7,b=±3∴a+b=﹣7±3=﹣10或﹣4.20.解:(2)①OE=0﹣(﹣5)=0+5=5,EF=3﹣(﹣5)=3+5=8②由题意得:3﹣m=m﹣1∴m=2把一条数轴在数m对应的点处对折,使表示1和3两数的点恰好互相重合,则m=2由题意得:3﹣n=n﹣(﹣5)∴n=﹣1∴若把数轴在数n对应的点处对折,使表示﹣5和3两数的点恰好互相重合,数n=﹣1故答案为:①5,8②2,﹣1;(3)由题意得:MN=2x+8﹣(﹣2)=2x+10,PM=﹣2﹣x∵MN=4PM∴2x+10=4(﹣2﹣x)解得:x=﹣3∴2x+8=2∴点P表示的数是:﹣3,点N表示的数是。

七年级新北师大版数学同步练习全套

([上册])七年级新北师大版数学同步练习全套(总65页)-本页仅作为预览文档封面,使用时请删除本页-目录(A面)第一章丰富的图形世界 .......................... A3-A10生活中的立体图形...................................... A3-A4展开与折叠............................................ A5-A6截一个几何体.......................................... A7-A8从三个方向看物体的形状............................... A9-A10第二章有理数及其运算 ......................... A11-A29有理数.............................................. A11-A12数轴................................................ A13-A14绝对值.............................................. A15-A16有理数的加法............................................ A17有理数的减法........................................ A18-A19有理数的加减混合运算................................ A20-A22有理数的乘法........................................ A23-A24有理数的除法............................ A2错误!未定义书签。

有理数的乘方............................................ A26科学记数法.............................................. A27有理数的混合运算.................... A2错误!未定义书签。

北师大版初中数学七年级上册《3.1 字母表示数》同步练习卷(含答案解析

北师大新版七年级上学期《3.1 字母表示数》同步练习卷一.选择题(共18小题)1.下列代数式的书写格式正确的是()A.1bc B.a×b×c÷2C.3x•y÷2D.xy2.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“y与1的积”记作y1C.“x的3倍”记作x3D.“2a除以3b的商”记作3.下列式子中,符合代数式书写格式的有()①m×n;②3ab;③;④m+2天;⑤abc3A.2个B.3个C.4个D.5个4.下列各式子中,符合代数式书写要求的是()A.x•5B.4m×n C.x(x+1)D.﹣ab5.下列各式符合代数式书写规范的是()A.a9B.m﹣5元C.D.1x6.代数式a2+b2的意义是()A.a的平方与b的和B.a与b和的平方C.a与b的平方的和D.a的平方与b的平方的和7.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a 实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数8.以下各式不是代数式的是()A.0B.C.D.9.代数式a2﹣的正确解释是()A.a与b的倒数的差的平方B.a的平方与b的差的倒数C.a的平方与b的倒数的差D.a与b的差的平方的倒数10.下列代数式书写符合要求的是()A.a48B.x+y C.1D.a(x+y)11.下列说法正确的是()A.a是代数式,1不是代数式B.表示a、b、2的积的代数式为2abC.代数式的意义是:a与4的差除b的商D.是二项式,它的一次项系数是12.下列各式符合代数式书写规范的是()A.B.a×7C.2m﹣1元D.3x13.下列代数式书写正确的是()A.ab•B.ab C.2ab D.3a×b 14.下列代数式的意义表示错误的是()A.2x+3y表示2x与3y的和B.表示5x除以2y所得的商C.9﹣y表示9减去y的所得的差D.a2+b2表示a与b和的平方15.在2x2,1﹣2x=0,ab,a>0,0,,π中,是代数式的有()A.5个B.4个C.3个D.2个16.代数式3(1﹣x)的意义是()A.1与x的相反数的和的3倍B.1与x的相反数的差的3倍C.1减去x的3倍D.1与x的相反数乘3的积17.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个18.数学的符号语言简练、准确;而文字语言通俗易懂,但有时不够精炼,甚至容易引起歧义,下面4句文字语言没有歧义的是()A.a与b的平方的和B.a,b两数相差8C.a与b的和的平方D.a除以b与c的和二.填空题(共22小题)19.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有(填写序号)20.一个等边三角形的边长为x,一个正方形的边长为y,则代数式3x+4y表示的实际意义是.21.赋予式子“ab”一个实际意义:.22.请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b;(2)(3)它的系数是一个正数,你写出的一个代数式是.是一个4次单项式;23.对于字母x,y表示的数量关系“2x+y”的一个实际问题可以是.24.代数式3x+2y表示的实际意义可叙述为.25.代数式a2﹣b2可以读作.26.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式,下列三个代数式:①a﹣b﹣c;②﹣a﹣b﹣c+2;③ab+bc+ca;④a2b+b2c+c2a,其中是完全对称式的是.27.若等边三角形的边长是a,正方形的边长为b,则3a+4b表示两图形的周长和.请你再举出一个该式表示的实际意义.28.在一项居民住房节能改造工程中,某社区计划用a天完成建筑面积为1000平方米的居民住房节能改造任务,若实际比计划提前b天完成改造任务,则代数式“”表示的意义为.29.代数式a2﹣用文字语言表示为.30.代数式“5﹣4a”用文字语言表示为.31.对单项式“0.6a”可以解释为:一件商品原价为a元,若按原价的6折出售,这件商品现在的售价是0.6a元,请你对“0.6a”再赋予一个含义:.32.一个长方形的长是0.9米,宽是b米,这个长方形的面积是0.9b米.请你再赋予0.9b一个含义.33.代数式可以把实际问题的数量关系用式子的形式表示出来,同时,代数式也可以代表很多实际意义,例如“酸奶每瓶3.5元,3.5a的实际意义可以是买a 瓶酸奶的价钱”,请你给4x+y赋予一个实际意义.34.下列各式:0,,F=ma,m+2>m,2x2﹣3x+11,B≠12,,﹣y,6π,其中代数式的有个.35.给式子“2b”表示的意义用一个实际问题可解释为.36.代数式3a+4b可以表示不同的实际意义,试举实例说明:.37.如果mkg苹果的售价为a元.则代数式表示的实际意义是.38.请举一个例子说明代数式3m+2n的意义:.39.我们知道,用字母表示代数式是有一般意义的.如:a可以表示数量,若每千克苹果的价格为5元,则5a表示.40.代数式5m+2的实际意义可表示为.三.解答题(共10小题)41.已知如图,在数轴上点A,B所对应的数是﹣4,4.对于关于x的代数式N,我们规定:当有理数x在数轴上所对应的点为AB之间(包括点A,B)的任意一点时,代数式N取得所有值的最大值小于等于4,最小值大于等于﹣4,则称代数式N,是线段AB的封闭代数式.例如,对于关于x的代数式|x|,当x=±4时,代数式|x|取得最大值是4;当x=0时,代数式|x|取得最小值是0,所以代数式|x|是线段AB的封闭代数式.问题:(1)关于x代数式|x﹣1|,当有理数x在数轴上所对应的点为AB之间(包括点A,B)的任意一点时,取得的最大值和最小值分别是.所以代数式|x﹣1| (填是或不是)线段AB的封闭代数式.(2)以下关于x的代数式:①;②x2+1;③x2+|x|﹣8;④|x+2|﹣|x﹣1|﹣1.是线段AB的封闭代数式是,并证明(只需要证明是线段AB的封闭代数式的式子,不是的不需证明).(3)关于x的代数式+3是线段AB的封闭代数式,则有理数a的最大值是,最小值是.42.根据你的生活与学习经验,对代数式2(x+y)表示的实际意义作出两种不同的解释.43.根据你的生活与学习经验,对代数式2(x+y)表示的实际意义作出两种不同的解释.44.根据你的生活与学习经验,对代数式3x+2y作出两种解释.45.请你结合生活实际,设计具体情境,解释下列代数式的意义:(1);(2)(1+20%)x.46.用字母表示图中阴影部分的面积.47.请你做评委:在一堂数学活动课上,同在一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识发表了自己的一些感受:小明说:“绝对值不大于4的整数有7个.”小丁说:“若|a|=3,|b|=2,则a+b的值为5或1.”小亮说:“﹣<﹣,因为两个负数比较大小,绝对值大的数反而小.”小彭说:“代数式a2+b2表示的意义是a与b的和的平方”依次判断四位同学的说法是否正确,如不正确,请帮他们修正,写出正确的说法.48.(1)根据生活经验,对代数式3x+2y作出解释.(2)两个有理数的和是负数,那么这两个数一定都是负数,这种说法对吗?如果不对,请举例说明?49.根据代数式50a﹣40b自编一道应用题.50.王刚同学拟了一张招领启事:“今天拾到钱包一个,内有人民币8.5元,请失主到一(1)班认领”.你认为这个启事合理吗?如果不合理,问题在哪里?请你改正过来.北师大新版七年级上学期《3.1 字母表示数》同步练习卷参考答案与试题解析一.选择题(共18小题)1.下列代数式的书写格式正确的是()A.1bc B.a×b×c÷2C.3x•y÷2D.xy【分析】根据代数式的书写要求判断各项即可.【解答】解:A.bc正确的书写格式是bc,故选项错误;B.a×b×c÷2正确的书写格式是abc,故选项错误;C.3x•y÷2正确的书写格式是xy,故选项错误;D.代数式xy书写正确.故选:D.【点评】本题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“y与1的积”记作y1C.“x的3倍”记作x3D.“2a除以3b的商”记作【分析】根据代数式的书写要求逐一分析判断各项.【解答】解:A、“负x的平方”记作(﹣x)2,此选项错误;B、“y与1的积”记作y,此选项错误;C、“x的3倍”记作3x,此选项错误;D、“2a除以3b的商”记作,此选项正确;【点评】此题考查代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.下列式子中,符合代数式书写格式的有()①m×n;②3ab;③;④m+2天;⑤abc3A.2个B.3个C.4个D.5个【分析】根据代数式的书写要求判断各项.【解答】解:①正确的书写格式是mn;②正确的书写格式是ab;③的书写格式是正确的,④正确的书写格式是(m+2)天;⑤的书写格式是正确的.故选:A.【点评】此题考查代数式问题,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.4.下列各式子中,符合代数式书写要求的是()A.x•5B.4m×n C.x(x+1)D.﹣ab【分析】根据代数式的书写要求对各个式子依次进行判断即可解答.【解答】解:A.x•5需要写成5x,故A选项错误;B.4m×n需要写成4mn,故B选项错误;C.x(x+1)需要写成x(x+1),故C选项错误;D.﹣ab符合代数式书写要求;【点评】本题主要考查代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.5.下列各式符合代数式书写规范的是()A.a9B.m﹣5元C.D.1x【分析】按照代数式的书写要求判断即可.【解答】解:A、代数式为9a,不符合题意;B、代数式为(m﹣5)元,不符合题意;C、代数式为,符合题意;D、代数式为x,不符合题意,故选:C.【点评】此题考查了代数式,熟练掌握代数式的书写要求是解本题的关键.6.代数式a2+b2的意义是()A.a的平方与b的和B.a与b和的平方C.a与b的平方的和D.a的平方与b的平方的和【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:代数式a2+b2的意义是a与b两数的平方的和.故选:D.【点评】此题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.7.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a 实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【分析】分别判断每个选项即可得.【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.8.以下各式不是代数式的是()A.0B.C.D.【分析】代数式是指把数或表示数的字母用+、﹣、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.由此可得答案.【解答】解:A、0是单独数字,是代数式;B、是代数式;C、是不等式,不是代数式;D、是数字,是代数式;故选:C.【点评】此类问题主要考查了代数式的定义,只要根据代数式的定义进行判断,就能熟练解决此类问题.9.代数式a2﹣的正确解释是()A.a与b的倒数的差的平方B.a的平方与b的差的倒数C.a的平方与b的倒数的差D.a与b的差的平方的倒数【分析】根据代数式的意义,可得答案.【解答】解:代数式a2﹣表示a的平方与b的倒数的差,故选:C.【点评】本题考查了代数式,理解代数式的意义是解题关键.10.下列代数式书写符合要求的是()A.a48B.x+y C.1D.a(x+y)【分析】根据代数式书写规范逐一判断即可得.【解答】解:A、a48正确书写是48a,此选项错误;B、x+y书写正确,此选项正确;C、1正确书写应该是,此选项错误;D、a(x+y)正确书写是ax+ay,此选项错误;故选:B.【点评】此题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.11.下列说法正确的是()A.a是代数式,1不是代数式B.表示a、b、2的积的代数式为2abC.代数式的意义是:a与4的差除b的商D.是二项式,它的一次项系数是【分析】利用代数式的定义判断即可.【解答】解:A、a是代数式,1也是代数式,不符合题意;B、表示a、b、2的积的代数式为ab,不符合题意;C、代数式的意义是:a与4的差除以b的商,不符合题意;D、是二项式,它的一次项系数为,符合题意,故选:D.【点评】此题考查了代数式,熟练掌握各自的性质是解本题的关键.12.下列各式符合代数式书写规范的是()A.B.a×7C.2m﹣1元D.3x【分析】根据代数式的书写要求判断各项.【解答】解:A、代数式书写规范,故A符合题意;B、数字与字母相乘时,数字要写在字母的前面,故B不符合题意;C、代数式作为一个整体,应该加括号,故C不符合题意;D、带分数要写成假分数的形式,故D不符合题意;故选:A.【点评】本题考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.13.下列代数式书写正确的是()A.ab•B.ab C.2ab D.3a×b【分析】根据代数式的书写要求判断各项.【解答】解:A、正确的书写格式是,错误;B、正确的书写格式是,正确;C、正确的书写格式是,错误;D、正确的书写格式是,错误;故选:B.【点评】此题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.14.下列代数式的意义表示错误的是()A.2x+3y表示2x与3y的和B.表示5x除以2y所得的商C.9﹣y表示9减去y的所得的差D.a2+b2表示a与b和的平方【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:A、2x+3y表示2x与3y的和,说法正确,不符合题意;B、表示5x除以2y所得的商,说法正确,不符合题意;C、9﹣y表示9减去y的所得的差,说法正确,不符合题意;D、a2+b2表示a的平方与b的平方的和,原来的说法错误,符合题意.故选:D.【点评】此题主要考查了代数式的表示方法,题目比较简单.15.在2x2,1﹣2x=0,ab,a>0,0,,π中,是代数式的有()A.5个B.4个C.3个D.2个【分析】代数式是有数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、<、>、≤、≥、≈、≠等符号.【解答】解:∵1﹣2x=0,a>0,含有=和>,所以不是代数式,∴代数式的有2x2,ab,0,,π,共5个.故选:A.【点评】此题主要考查了代数式的定义,掌握代数式的定义是本题的关键,注意含有=、<、>、≤、≥、≈、≠等符号的不是代数式.16.代数式3(1﹣x)的意义是()A.1与x的相反数的和的3倍B.1与x的相反数的差的3倍C.1减去x的3倍D.1与x的相反数乘3的积【分析】本题较为简单,对代数式3(1﹣x)的意义进行分析,弄清括号内部分与括号外的关系即可求出答案.【解答】解:代数式3(1﹣x)表示的是括号内部分的3倍,而括号内部分表示的1与x的差,也可表示1与x的相反数的和.故选:A.【点评】本题考查代数式的意义问题,对代数式进行分析,较为简单.17.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个【分析】根据书写规则,分数不能为带分数,不能出现除号,单位名称前面的代数式不是单项式要加括号,对各项的代数式进行判定,即可求出答案.【解答】解:①1x分数不能为带分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C.【点评】此题考查了代数式的书写.注意代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.18.数学的符号语言简练、准确;而文字语言通俗易懂,但有时不够精炼,甚至容易引起歧义,下面4句文字语言没有歧义的是()A.a与b的平方的和B.a,b两数相差8C.a与b的和的平方D.a除以b与c的和【分析】根据文字语言列代数式分析说明得出正确选项.【解答】解:A、a与b的平方的和,可列代数式为:①a+b2或②a2+b2,所以有分歧;B、a,b两数相差8,可列代数式为:a﹣b=8或b﹣a=8,所以有分歧;C、a与b的和的平方,列代数式为:(a+b)2,没有分歧;D、a除以b与c的和可列代数式为:a÷(b+c)或a÷b+c,所以有分歧;故选:C.【点评】此题考查的知识点是代数式,关键是根据文字语言列出代数式.二.填空题(共22小题)19.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有①②(填写序号)【分析】根据书写规则,分数不能为带分数,对各项的代数式进行判定,即可求出答案.【解答】解:①1x分数不能为带分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c,书写正确;⑤;书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②共2个.故答案为:①②.【点评】此题考查了代数式的书写.注意代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)带分数要写成假分数的形式.20.一个等边三角形的边长为x,一个正方形的边长为y,则代数式3x+4y表示的实际意义是边长为x的等边三角形周长和边长为y的正方形周长的和.【分析】根据图形的周长的即可得到结论.【解答】解:3x+4y表示边长为x的等边三角形周长和边长为y的正方形周长的和.故答案为:边长为x的等边三角形周长和边长为y的正方形周长的和.【点评】本题考查了代数式的意义,正确的理解题意是解题的关键.21.赋予式子“ab”一个实际意义:边长分别为a,b的矩形面积.【分析】根据题意可以写出一个符合题目中代数式的语句,本题的答不唯一,只要符合实际即可.【解答】解:赋予式子“ab”一个实际意义:边长分别为a,b的矩形面积,故答案为:边长分别为a,b的矩形面积.【点评】本题考查代数式,解答本题的关键是明确题意,写出相应的语句.22.请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b;(2)(3)它的系数是一个正数,你写出的一个代数式是2a3b.是一个4次单项式;【分析】根据单项式、单项式次数的定义,结合题意要求书写即可,答案不唯一.【解答】解:根据题意,满足这些条件的代数式可以是2a3b(答案不唯一),故答案为:2a3b【点评】本题考查了单项式的定义,属于基础题,注意按照题目要求书写.23.对于字母x,y表示的数量关系“2x+y”的一个实际问题可以是答案不唯一,如已知钢笔2元,一只铅笔1元,购买x只铅笔和y支钢笔共计(2x+y)元.【分析】结合实际情境作答,答案不唯一.【解答】解:2x+y赋予一个实际意义:如已知钢笔2元,一只铅笔1元,购买x 只铅笔和y支钢笔共计(2x+y)元.故答案为:答案不唯一,如已知钢笔2元,一只铅笔1元,购买x只铅笔和y支钢笔共计(2x+y)元.【点评】此题主要考查了代数式,此类问题应结合实际,根据代数式的特点解答.24.代数式3x+2y表示的实际意义可叙述为一个苹果的质量是x,一个桔子的质量是y,那么3个苹果和2个桔子的质量和是3x+2y(答案不唯一).【分析】结合实际情境作答,答案不唯一,如一个苹果的质量是x,一个桔子的质量是y,那么3个苹果和2个桔子的质量和是3x+2y.【解答】解:如一个苹果的质量是x,一个桔子的质量是y,那么3个苹果和2个桔子的质量和是3x+2y.故答案为:一个苹果的质量是x,一个桔子的质量是y,那么3个苹果和2个桔子的质量和是3x+2y(答案不唯一).【点评】考查了代数式的实际意义,此类问题应结合实际,根据代数式的特点解答.25.代数式a2﹣b2可以读作a的平方与b的平方的差.【分析】根据题目中的式子可以解答本题.【解答】解:代数式a2﹣b2可以读作a的平方与b的平方的差,故答案为:a的平方与b的平方的差.【点评】本题考查代数式,解题的关键是明确代数式的读法.26.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式,下列三个代数式:①a﹣b﹣c;②﹣a﹣b﹣c+2;③ab+bc+ca;④a2b+b2c+c2a,其中是完全对称式的是②③.【分析】若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,据此逐项判断即可.【解答】解:∵把a、b两个字母交换,b﹣a﹣c不一定等于a﹣b﹣c,a2b+b2c+c2a 不一定等于a2b+b2c+c2a,∴①④不符合题意.∵若将代数式中的任意两个字母交换,代数式不变,∴②③符合题意.故答案为:②③.【点评】此题主要考查了完全对称式的含义和应用,要熟练掌握,解答此题的关键是要明确:若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.27.若等边三角形的边长是a,正方形的边长为b,则3a+4b表示两图形的周长和.请你再举出一个该式表示的实际意义三角形和正方形周长的和.【分析】根据图形的周长的即可得到结论.【解答】解:3a+4b表示三角形和正方形周长的和.故答案为:三角形和正方形周长的和.【点评】本题考查了代数式的意义,正确的理解题意是解题的关键.28.在一项居民住房节能改造工程中,某社区计划用a天完成建筑面积为1000平方米的居民住房节能改造任务,若实际比计划提前b天完成改造任务,则代数式“”表示的意义为实际每天完成的改造任务.【分析】根据计划完成建筑面积为1000平方米的居民住房节能改造任务需要a 天,实际提前b天,可知实际完成需要(a﹣b)天,从而可以得到代数式“”表示的意义.【解答】解:∵计划完成建筑面积为1000平方米的居民住房节能改造任务需要a天,实际提前b天,∴实际完成需要(a﹣b)天,∴代数式“”表示的意义是实际每天完成的改造任务,故答案为:实际每天完成的改造任务.【点评】本题考查代数式,解题的关键是明确代数式在原题中表示的实际含义.29.代数式a2﹣用文字语言表示为a的平方与b的倒数的差.【分析】分别解释a2,的意义,再表示差即可.【解答】解:a2 表示为a的平方,可表示为b的倒数,∴代数式可表示为a的平方与b的倒数的差,故答案为:a的平方与b的倒数的差.【点评】本题考查代数式的意义,易错点是根据最后的运算顺序得到相应的解释.30.代数式“5﹣4a”用文字语言表示为5减去a的4倍的差.【分析】4a表示a的4倍,即5﹣4a表示5减去a的4倍的差.【解答】解:代数式“5﹣4a”用文字语言表示为5减去a的4倍的差.故答案为:5减去a的4倍的差.【点评】本题考查了代数式,培养了学生的语言表达能力,关键是理解代数式的意义.。

北师大版七年级数学上册第6章同步测试题练(含答案)

北师版七年级上册第六章6.1数据的收集一.选择题(共10小题,3*10=30)1.收集数据的方法是( )A.查资料B.做试验C.做调查D.以上三者都是2. 要调查某校学生学习负担是否过重,下列方法最恰当的是( )A.查阅文献资料B.对学生问卷调查C.上网查询D.对校领导问卷调查3.老师说:“请大家选举一位同学,现在开始投票.”你认为老师在收集数据过程当中最大的失误是( )A.没有确定调查对象B.没有规定调查方法C.没有明确调查问题D.没有展开调查4.某学校课外活动小组为了解同学们喜爱的电影类型,设计了如下的调查问卷(不完整):调查问卷月日你平时最喜欢的一种电影类型是()(单选)A.B.C.D.其他准备在“①国产片,②科幻片,③动作片,④喜剧片,⑤亿元大片”中选取三个作为该问题的备选答案,选取合理的是( )A.①②③B.①③⑤C.②③④D.②④⑤5.学校召开运动会,30名学生要统一购买运动鞋,需要的数据是( )A.每个学生鞋的码数B.一部分学生鞋的码数C.每个学生的身高D.每个学生喜欢的牌子6.班委会决定组织一次娱乐活动,活动内容从讲故事和唱歌中选择一项,为了决定是讲故事还是唱歌,班委会要进行民间调查,下列说法错误的是( )A.调查的问题是:选择讲故事还是唱歌B.调查的范围是:全班同学C.调查的方式是:查找资料D.这次调查需要收集的数据是:全班同学选择讲故事和唱歌的人数7.下列各项调查适合用查阅资料收集数据的是( )A.某班学生最爱唱的歌曲B.某班选取班长C.2018年世界杯排名情况D.某班学生的到校情况8. 某展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为( )A.9:00~10:00B.10:00~11:00C.14:00~15:00D.15:00~16:009.下列统计活动中不宜用问卷调查的方式收集数据的是( )A.七年级同学家中电脑的数量B.星期六早晨同学们起床的时间C.各种手机在使用时所产生的辐射D.学校足球队员的年龄和身高10.如图是某校七年级学生到校方式的条形图,下列说法错误的是( )A.步行人数占七年级总人数的60%B.步行、骑自行车、坐公共汽车人数的比为2∶3∶5C.坐公共汽车的人数占七年级总人数的50%D.这所学校七年级共有300人二.填空题(共8小题,3*8=24)11.动物园中有熊猫、孔雀、大象、梅花鹿四种可爱的动物,为了解本班同学喜欢哪种动物的人最多,则调查的对象是____________________.12.小莹收集到她所在居民楼里的孩子的年龄数据如下:3,5,6,2,8,8,4,6,9,7,2,1,5,2,4.小莹获得这组数据的方法是____________.13. 下表是某市田径运动会上参加男子跳高的10名运动员的成绩:(1)表格中成绩为1.80米的人数为________;(2)成绩最高的运动员的人数占的百分比为________.14. 在推荐班干部候选人的投票中,总票数为50,得票数领先的三位同学的得票情况是:正(1)依据得票,_____当班干部合适;(2)小刚的得票数为________,得票数占总票数的百分比为______.15. 小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A型血的有20人,则O型血的有________人.16. 为了了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,从而得到统计图(如图6-1-2),观察该图可知,共抽查了______株黄瓜.17. 某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则的________年级合格率最高.“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按A,B,C,D 四个等级进行评分,然后根据统计结果绘制了如图两幅不完整的统计图,那么此次抽取的作品中等级为B的作品数为_________.三.解答题(共7小题,46分)19. (6分)解决下面的问题,需要哪些数据?用什么方式收集这些数据?(1)了解小红所在班级全体同学的视力情况;(2)了解我国人口的增长情况;(3)了解小明所在班级全体同学每天到校所需要的时间;(4)了解小华所在城市几家商场某品牌彩电的零售价.20. (6分)) 在数学、外语、语文3门学科中,某校七年级开展了同学们最喜欢学习哪门学科的调查(七年级共有200人).(1)调查的问题是什么?(2)调查的对象是谁?(3)在被调查的200名学生中,有40人最喜欢学语文,60人最喜欢学外语,80人最喜欢学数学,其余的人选择其他,求最喜欢学数学这门学科的学生占学生总数的比例;21. (6分) 茗茗家在2018年整年中用于水费的支出如表:(1)第三季度比第二季度多花水费多少元?(2)茗茗家在2018年整年中用于水费的支出共计多少元?(3)茗茗家在2018年平均每月用于水费的支出是多少元?22. (6分)某班50名学生右眼视力的检查结果如下表:视力在1.0以上(包括1.0)的为正常,则视力正常的人数占全班人数的百分之多少?该班学生视力情况是“好”、“一般”还是“差”?23. (6分)李强靠勤工捡学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):(1)到这个周末,李强有多少节余?(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?24. (8分)周末商场搞促销活动,其中一顾客想购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示:如果你购买这三件物品,最少花钱多少元?25. (8分)镇政府引导农民对生产的某种土特产进行加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:春节期间,这三种不同包装的土特产都销售了12000千克,那么本次销售中,这三种包装的土特产获得利润最大的是哪一种?参考答案1-5DBCCA 6-10CCBCA 11.本班的每一个同学 12.调查 13. 3,10% 14. 小颖;16,32% 15. 10 16. 60 17 七18.某校组织了主题为 18. 4819. 解:(1)每个同学的视力,测试; (2)我国几次人口普查的数据,查阅资料; (3)每个同学每天到校所需要的时间,问卷调查; (4)每家商场该品牌彩电的价格,实地调查. 20. 解:(1)七年级同学最喜欢学习哪门学科 (2)七年级同学(3)最喜欢数学的学生占学生总数的比例为80÷200×100%=40% 21. 解:第三季度比第二季度多支出:220-150=70元; 总支出为:170+150+220+160=700元; 平均支出为:700÷4=175元.22. 解:视力在1.0以上(包括1.0)的为正常,则视力正常的有8+10+6=24人, 视力正常的人数占全班人数的2450×100%=48%,因为正常人数不到50%,所以该班学生视力情况一般.23. 解:(1)由题意可得:150+180+160+250+240-100-140-130-80-100-140-150=140元; (2)由题意得:140÷7×30=600元; (3)根据题意得;84÷7×30=3600元.24. 解:因为买鞋不可以使用购物券,所以先花280元买一双鞋,同时可获得200元购物券,然后花220元和200元购物券买一件衣服,同时可获得200元购物券,再用买衣服获得的200元购物券与100元现金买一套化妆品,这样共花掉:280+220+100=600元.25.解:甲的售价为12000÷0.4×(4.8+0.5)=159000元,乙的售价为12000÷0.3×(3.6+0.4)=160000元,丙的售价为12000÷0.2×(2.5+0.3)=168000元,又每千克的成本价一样,则这三种包装的土特产获得利润最大的是丙.6.1数据的收集1.要调查你校学生学业负担是否过重,选用下列哪种方法最恰当()A.查阅文献资料B.对学生问卷调查C.上网查询D.对校领导问卷调查2某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策3.下面获取数据的方法不正确的是()A.我们班同学的身高用测量方法B.快捷了解历史资料情况用观察方法C.抛硬币看正反面的次数用实验方法D.全班同学最喜爱的体育活动用访问方法4.班长对全班同学说:“请同学们投票,选举一位同学”,你认为班长在收集数据过程中的失误是()A.没有明确调查问题B.没有规定调查方法C.没有确定对象D.没有展开调查5.PM2.5指数是测控空气污染程度的一个重要指数.在一年中最可靠的一种观测方法是()A.随机选择5天进行观测B.选择某个月进行连续观测C.选择在春节7天期间连续观测D.每个月都随机选中5天进行观测6.在设计调查问卷时,下面的提问比较恰当的是()A.我认为猫是一种很可爱的动物B.难道你不认为科幻片比武打片更有意思C.你给我回答到底喜不喜欢猫呢D.请问你家有哪些使用电池的电器7.)设计调查问卷时要注意()①问题应尽量简明;②不要提问被调查者不愿意回答的问题;③提问不能涉及提问者的个人观点;④提供的选择答案要尽6.3频数直方图同步测试题一、选择题1.某校开设了艺术、体育、劳技、书法四门拓展性课程,要求每一位学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有( )A.12名 B.13名 C.15名 D.50名2.在频数分布表中,各小组的频数之和( )A.小于数据总个数 B.等于数据总个数C.大于数据总个数 D.不能确定3.为了绘制一批数据的频数直方图,首先要算出这批数据的变化范围,数据的变化范围是指数据的( )A.最大值B.最小值C.最大值与最小值的差D.个数4.绘制频数直方图时,计算出最大值与最小值的差为25 cm,若取组距为4 cm,则最好分( ) A.4组 B.5组 C.6组 D.7组5.已知样本有30个数据,在样本的频数直方图中各小长方形的高的比依次为2∶4∶3∶1,则第二小组的频数为( )A.4 B.12 C.9 D.86.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是( )A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时7.某校为了了解七年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数直方图(每组含前一个边界值,不含后一个边界值),请根据图示计算仰卧起坐次数在15~20次之间的频数是( )A.3 B.5 C.10 D.128.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数直方图,由图可知,下列结论正确的是( )A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%9.宜昌中学开展“阳光体育活动”,七年级(1)班全体同学分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师统计了该班参加这三项活动的人数,并绘制了如图所示的条形统计图和扇形统计图.根据这两个统计图,可以知道该班参加乒乓球活动的人数是( )A.50 B.25 C.15 D.10二、填空题10.如表是某校八年级(8)班共50位同学身高情况的频数分布表,则表中的组距是_____cm,身高最大值与最小值的差至多是_____cm.11.八年级(1)班全体学生参加了学校举办的安全知识竞赛,如图是该班学生竞赛成绩的频数直方图(满分为100分,成绩均为整数).若将成绩不低于90分的评为优秀,则该班这次成绩达到优秀的人数占全班人数的百分比是_____.12.某校七年级(1)班为了了解同学们一天零花钱的消费情况,对本班同学开展了调查,将同学一周的零花钱以2元为组距,绘制如图的频数直方图,已知从左到右各组的频数之比为2∶3∶4∶2∶1.(1)若该班有48人,则零花钱用得最多的是第_____组,有_____人;(2)零花钱在8元以上的共有_____人.三、解答题13.如图是某市某校教职工年龄(取正整数)的频数直方图(每组包括最小值,不包括最大值),根据图中提供的信息解答下列问题:(1)该校教职工共有多少人?(2)不小于25岁但小于40岁的教职工人数占教职工总人数的百分比是多少?(3)如果35岁的教职工有4人,那么年龄在35岁以上的教职工有几人?14.某市农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗作为样本,量得它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:(2)计算出这块试验田里穗长在5.5≤x<7范围内的谷穗所占的百分比.15.为了了解某地区新生儿体重状况,某医院随机调取了该地区60名新生儿出生体重,结果如下:(单位:克)3 850 3 900 3 300 3 500 3 315 3 800 2 550 3 8004 150 2 500 2 700 2 850 3 800 3 500 2 900 2 8503 300 3 6504 000 3 300 2 800 2 150 3 700 3 4653 680 2 900 3 050 3 850 3 610 3 800 3 280 3 1003 000 2 800 3 5004 050 3 300 3 450 3 100 3 4004 360 3 300 2 750 3 250 2 350 3 520 3 850 2 8503 450 3 800 3 500 3 100 1 900 3 200 3 400 3 4003 400 3 120 3 600 2 900将数据适当分组,并绘制相应的频数直方图,从图中反映出该地区新生儿体重状况怎样?思考以下问题:(1)你认为分组先确定组数还是先确定每组的范围?(2)每组的范围大小都一样吗?(3)你能试着总结绘制频数分布直方图的步骤吗?16.阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 46频数 2(2)通过频数直方图试分析此大棚中西红柿的长势.17.某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下表补充完整:(2)补全频数直方图;(3)根据频数直方图,分析数据的分布情况.18.随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样试验:即在同一条件下,被抽样的该型号汽车,在耗油1 L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5) 请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数直方图;(3)在进行该试验的汽车中,有多少辆在耗油1 L的情况下可以行驶13 km以上?参考答案一、选择题1.某校开设了艺术、体育、劳技、书法四门拓展性课程,要求每一位学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有(A)A.12名 B.13名 C.15名 D.50名2.在频数分布表中,各小组的频数之和(B)A.小于数据总个数 B.等于数据总个数C.大于数据总个数 D.不能确定3.为了绘制一批数据的频数直方图,首先要算出这批数据的变化范围,数据的变化范围是指数据的(C)A.最大值B.最小值C.最大值与最小值的差D.个数4.绘制频数直方图时,计算出最大值与最小值的差为25 cm,若取组距为4 cm,则最好分(D)A.4组 B.5组 C.6组 D.7组5.已知样本有30个数据,在样本的频数直方图中各小长方形的高的比依次为2∶4∶3∶1,则第二小组的频数为(B)A.4 B.12 C.9 D.86.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是(B)A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时7.某校为了了解七年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数直方图(每组含前一个边界值,不含后一个边界值),请根据图示计算仰卧起坐次数在15~20次之间的频数是(A)A.3 B.5 C.10 D.128.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数直方图,由图可知,下列结论正确的是(C)A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%9.宜昌中学开展“阳光体育活动”,七年级(1)班全体同学分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师统计了该班参加这三项活动的人数,并绘制了如图所示的条形统计图和扇形统计图.根据这两个统计图,可以知道该班参加乒乓球活动的人数是(C)A.50 B.25 C.15 D.10二、填空题10.如表是某校八年级(8)班共50位同学身高情况的频数分布表,则表中的组距是7cm,身高最大值与最小值的差至多是28cm.11.八年级(1)班全体学生参加了学校举办的安全知识竞赛,如图是该班学生竞赛成绩的频数直方图(满分为100分,成绩均为整数).若将成绩不低于90分的评为优秀,则该班这次成绩达到优秀的人数占全班人数的百分比是30%.12.某校七年级(1)班为了了解同学们一天零花钱的消费情况,对本班同学开展了调查,将同学一周的零花钱以2元为组距,绘制如图的频数直方图,已知从左到右各组的频数之比为2∶3∶4∶2∶1.(1)若该班有48人,则零花钱用得最多的是第3组,有16人;(2)零花钱在8元以上的共有12人.三、解答题13.如图是某市某校教职工年龄(取正整数)的频数直方图(每组包括最小值,不包括最大值),根据图中提供的信息解答下列问题:(1)该校教职工共有多少人?(2)不小于25岁但小于40岁的教职工人数占教职工总人数的百分比是多少?(3)如果35岁的教职工有4人,那么年龄在35岁以上的教职工有几人?解:(1)8+12+10+8+6+3+2+1=50(人),所以该校教职工共有50人.(2)不小于25岁但小于40岁的教职工人数为12+10+8=30(人),所以不小于25岁但小于40的教职工人数占教职工总人数的百分比是3050×100%=60%.(3)年龄在35岁以上的教职工有(8-4)+6+3+2+1=16(人).14.某市农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗(2)计算出这块试验田里穗长在5.5≤x <7范围内的谷穗所占的百分比. 解:(1)如图所示:(2)这块试验田里穗长在5.5≤x <7范围内的谷穗所占百分比为(12+13+10)÷50=70%. 15.为了了解某地区新生儿体重状况,某医院随机调取了该地区60名新生儿出生体重,结果如下:(单位:克)3 850 3 900 3 300 3 500 3 315 3 800 2 550 3 8004 150 2 500 2 700 2 850 3 800 3 500 2 900 2 850 3 300 3 650 4 000 3 300 2 800 2 150 3 700 3 465 3 680 2 900 3 050 3 850 3 610 3 800 3 280 3 100 3 000 2 800 3 500 4 050 3 300 3 450 3 100 3 400 4 360 3 300 2 750 3 250 2 350 3 520 3 850 2 850 3 450 3 800 3 500 3 100 1 900 3 200 3 400 3 400 3 400 3 120 3 600 2 900将数据适当分组,并绘制相应的频数直方图,从图中反映出该地区新生儿体重状况怎样? 思考以下问题:(1)你认为分组先确定组数还是先确定每组的范围? (2)每组的范围大小都一样吗?(3)你能试着总结绘制频数分布直方图的步骤吗?解:(1)确定所给数据的最大值和最小值:上述数据中最小的是1 900,最大的是4 160. (2)将数据适当分组:最大值和最小值相差4 160-1 900=2 260,考虑以250为组距(每组两个端点之间的距离叫组距),2 260÷250=9.04,可以考虑分成10组.从图中可以看出该地区新生儿体重在3 250~3 500克的人数最多.16.阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 46频数 2(2)通过频数直方图试分析此大棚中西红柿的长势.解:(1)填入:5;7;4;2,补全频数直方图如下:(2)①此大棚的西红柿长势普遍较好,最少都有28个;②西红柿个数最集中的株数在第三组,共有7株;③西红柿的个数分布合理,中间多,两端少.17.某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下表补充完整:(2)补全频数直方图;(3)根据频数直方图,分析数据的分布情况.解:(1)(2)如图.(3)由频数直方图知,17≤x<22时天数最多,有10天.18.随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样试验:即在同一条件下,被抽样的该型号汽车,在耗油1 L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5) 请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数直方图;(3)在进行该试验的汽车中,有多少辆在耗油1 L的情况下可以行驶13 km以上?解:(1)进行该试验的车辆数为9÷30%=30(辆).(2)B:20%×30=6(辆),D:30-2-6-9-4=9(辆).补全频数直方图如图.(3)在耗油1 L的情况下可以行驶13 km以上的车辆数为9+9+4=22(辆).6.4统计图的选择同步测试题一、选择题1.要反映某市一天内气温的变化情况宜采用( )A.条形统计图B.扇形统计图C.折线统计图D.不能确定2.下表是某一地区在一年中不同季节对同一商品的需求情况统计(单位:吨):若你是工商局的统计员,要为商家提供关于这商品的直观统计图,则应选择( ) A.条形统计图B.折线统计图C.扇形统计图D.前三种都可以3.已知甲、乙两班男、女生人数的扇形统计图如图,则下列说法正确的是( )A.甲班男生比乙班男生多 B.乙班女生比甲班女生多C.乙班女生与乙班男生一样多 D.甲、乙两班人数一样多4.为了反映我市10月1日~7日这一周每天的最高气温的变化情况,最好选择用( ) A.条形统计图 B.扇形统计图C.频数直方图 D.折线统计图5.为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是( )A.条形统计图 B.频数直方图C.折线统计图 D.扇形统计图6.对七年级某班学生进行调查,发现有16人最喜欢打乒乓球,有12人最喜欢打排球,有22人最喜欢踢足球,为了清楚表示爱好各种球类活动的具体人数,应该制作的统计图是( ) A.条形统计图 B.扇形统计图C.折线统计图 D.频数直方图7.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )A.甲超市的利润逐月减少 B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同 D.乙超市在9月份的利润必超过甲超市8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( )9.如图是某省2015~2019年粮食产量及其增长速度的统计图,下列说法不正确的是( )2015~2019年粮食产量及其增长速度A.这5年中,该省粮食产量先增后减 B.后4年中,该省粮食产量逐年增加C.这5年中,2016年该省粮食产量年增长率最大 D.后4年中,2019年该省粮食产量年增长率最小10.在一次社会活动中,四名同学分别就同一种商品的价格变化情况,给了如下四幅图,为了更直观、清楚地体现该商品的价格增长势头,你认为比较理想的是( )A B C D二、填空题11.如图是某市2016~2019年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是_____年,私人汽车拥有量年增长率最大的是_____年.私人汽车拥有量条形统计图私人汽车拥有量年增长率折线统计图12.甲、乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2015~2019年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).甲公司乙公司三、解答题13.如图,一则广告上绘制了下面的统计图,并称“乙品牌牛奶每天销售量是甲品牌牛奶每天销售量的3倍”.请分析这则广告信息正确吗?如果不正确,请说明理由.14.下表中列出了2019年三家牛奶生产厂家的利润额:小明设计了如下统计图:(1)在统计图中,最多和最少的两者给你的直观感觉是什么?(2)直观感觉与实际相符合吗?(3)要避免此统计图给人的错觉,应该怎么改动?15.某一周内(周一到周日)每天的最高气温分别为15 ℃,17 ℃,18 ℃,21 ℃,14 ℃,16 ℃,18 ℃.要反映这一周的最高气温的变化情况,宜采用什么统计图来表示?并绘制出你认为合适的统计图.16.某上市公司最近5年的利润情况如下表:该公司在都市报上分别由甲、乙两个股评师发布了折线统计图,而另一股评师丙又在另一份报纸上发布了统计图,如图丙.(1)在这三个图中,哪个更令人觉得公司的效益上升快?(2)仔细比较三个图,它们所表示的数据相同吗?(3)为什么有不同的感觉?17.小明家开了一家皮装专卖店,2019年一年各月份的销售情况如下表所示:根据上表,回答下列问题:。

七年级数学上册第四章基本平面图形本章复习同步练习含解析新版北师大版word格式

第四章 基本平面图形本章复习1.若平面内有点A ,B ,C ,过其中任意两点画直线,则最多可以画的条数是( A ) A .3条 B .4条 C .5条 D .6条 2.如图,共有线段( D )A .3条B .4条C .5条D .6条3.观察下列图形,第一个图,2条直线相交最多有1个交点;第二个图,3条直线相交最多有3个交点;第三个图,4条直线相交最多有6个交点;…;像这样,则20条直线相交最多交点的个数是( B )A .171B .190C .210D .3804.如图,已知C 为线段AB 的中点,D 在线段CB 上.若DA =6,DB =4,则CD =__1__.5.如图,C ,D 是线段AB 上的两点,已知AC ∶CD ∶DB =1∶2∶3,MN 分别是AC ,BD 的中点,且AB =36 cm ,求线段MN 的长.解:∵AC ∶CD ∶DB =1∶2∶3,∴设AC =x cm ,则CD =2x cm ,DB =3x cm. ∵AB =36 cm ,∴x +2x +3x =36,解得x =6. ∵M ,N 分别是AC ,BD 的中点, ∴CM =12AC =12x ,DN =12BD =32x ,∴MN =CM +CD +DN =12x +2x +32x =4x =4×6=24(cm).6.如图,线段AB =10 cm ,C 是AB 的中点.(1)求线段BC 的长;(2)若点D 在直线AB 上,DB =2.5 cm ,求线段CD 的长.解:(1)因为C 是AB 的中点,所以BC =12AB =5 cm.(2)①当点D 在线段BC 上时, CD =BC -DB =5-2.5=2.5(cm). ②当点D 在线段CB 的延长线上时, CD =BC +DB =5+2.5=7.5(cm).综上可知,线段CD 的长为2.5 cm 或7.5 cm.7.如图,已知线段AB ,按下列要求完成画图和计算: (1)延长线段AB 到点C ,使BC =2AB ,取AC 中点D ; (2)在(1)的条件下,如果AB =4,求线段BD 的长度.解:(1)如答图:,答图)(2)∵BC =2AB ,且AB =4,∴BC =8, ∴AC =AB +BC =8+4=12. ∵D 为AC 中点,(已知)∴AD =12AC =6,(线段中点的定义)∴BD =AD -AB =6-4=2. 8.下列计算正确的是( C ) A .2-3=1B .a 2+2a 2=3a 4C .34.5°=34°30′D .-|-3|=39.在下列时间段内时钟的时针和分针会出现重合的是( C ) A .5:20~5:26 B .5:26~5:27 C .5:27~5:28 D .5:28~5:2910.若∠A =20°18′,∠B =20°15′30″,∠C =20.25°,则( A ) A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠A >∠C >∠B D .∠C >∠A >∠B11.如图,已知∠COB =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,则∠AOB =( C )A .40°B .60°C .120°D .135°,第11题图),第12题图)12.如图,点O 在直线AB 上,射线OC 平分∠DO B .若∠DOC =35°,则∠AOD 等于( C ) A .35° B .70° C .110° D .145°13.如图,OC 是∠AOB 的平分线.如果∠AOB =130°,∠BOD =25°,那么∠COD =__40°__.,第13题图),第14题图)14.如图,将一副直角三角板叠在一起,使直角顶点重合于点O ,若∠AOB =155°,则∠COD =__25°__,∠BOC =__65°__.15.如图1,OC 平分∠AOB ,如图2,把∠AOB 沿OC 对折成∠COB (OA 与OB 重合),从O 点引一条射线OE ,使∠BOE =12∠EOC ,再沿OE 把角剪开.若剪开后得到的3个角中最大的一个角为76°,则∠AOB =__114__°.,图1) ,图2)16.如图,两直线AB ,CD 相交于点O ,已知OE 平分∠BOD ,且∠AOC ∶∠AOD =3∶7. (1)求∠DOE 的度数;(2)若OF ⊥OE ,求∠COF 的度数.解:(1)∵∠AOC ∶∠AOD =3∶7,∴∠AOC =180°×37+3=54°,∴∠BOD =54°. ∵OE 平分∠BOD ,∴∠DOE =54°÷2=27°. (2)∵OF ⊥OE ,∠DOE =27°, ∴∠DOF =63°,∴∠COF =180°-63°=117°.17.已知:OE 是∠AOB 的角平分线,点C 为∠AOE 内一点,且∠BOC =2∠AOC ,∠AOB =120°.(1)请补全图形(用直尺和量角器); (2)求∠EOC 的度数.,),答图)解:(1)如答图所示.(2)∵∠BOC =2∠AOC ,∠AOB =120°, ∴∠BOC =80°. ∵OE 平分∠AOB , ∴∠BOE =12∠AOB =60°,∴∠EOC =∠BOC -∠BOE =80°-60°=20°. 18.乐乐对几何中角平分线等兴趣浓厚,请你和乐乐一起探究下面问题吧!已知∠AOB =100°,射线OE ,OF 分别是∠AOC 和∠COB 的角平分线.(1)如图1,若射线OC 在∠AOB 的内部,且∠AOC =30°,求∠EOF 的度数;(2)如图2,若射线OC 在∠AOB 的内部绕点O 旋转,则∠EOF 的度数为__50°__; (3)若射线OC 在∠AOB 的外部绕点O 旋转(旋转中∠AOC ,∠BOC 均指小于180°的角),其余条件不变.借助图3探究∠EOF 的大小,直接写出∠EOF 的度数.(不写探究过程),图1),图2) ,图3)解:(1)∵∠AOB =100°,∠AOC =30°, ∴∠BOC =∠AOB -∠AOC =70°.∵OE ,OF 分别是∠AOC 和∠COB 的角平分线,∴∠EOC =12∠AOC =15°,∠FOC =12∠BOC =35°,∴∠EOF =∠EOC +∠FOC =15°+35°=50°.【解析】(2)∵OE ,OF 分别是∠AOC 和∠COB 的角平分线, ∴∠EOC =12∠AOC ,∠FOC =12∠BOC ,∴∠EOF =∠EOC +∠FOC =12∠AOB =12×100°=50°.解:(3)①射线OE ,OF 只有1个在∠AOB 外面,如答图1,,答图1) ,答图2)∠EOF =∠FOC -∠COE =12∠BOC -12∠AOC =12(∠BOC -∠AOC )=12∠AOB =12×100°=50°.②射线OE ,OF 中,2个都在∠AOB 外面,如答图2,∠EOF =∠EOC +∠COF =12∠AOC +12∠BOC =12(∠AOC +∠BOC )=12(360°-∠AOB )=130°.故∠EOF 的度数是50°或130°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学上册同步练习目录2017年秋北师大七年级上《1.1生活中的立体图形》同步练习含答案2017年秋北师大七年级上《1.2展开与折叠》同步练习含答案解析2017年秋北师大七年级上《1.4从三个方向看物体的形状》同步练习含答案解析2017年秋北师大七年级上《2.1有理数》同步练习含答案解析2017年秋北师大七年级上《2.2数轴》同步练习含答案解析2017年秋北师大七年级上《2.3绝对值》同步练习含答案解析2017年秋北师大七年级上《2.4有理数的加法》同步练习含答案解析2017年秋北师大七年级上《2.5有理数的减法》同步练习含答案解析2017年秋北师大七年级上《2.6有理数的加减混合运算》同步练习含答案解析2017年秋北师大七年级上《2.7有理数的乘法》同步练习含答案解析2017年秋北师大七年级上《2.8有理数的除法》同步练习含答案解析2017年秋北师大七年级上《2.9有理数的乘方》同步练习含答案解析2017年秋北师大七年级上《2.10科学记数法》同步练习含答案解析2017年秋北师大七年级上《2.11有理数的混合运算》同步练习含答案解析2017年秋北师大七年级上《3.1字母表示数》同步练习含答案解析2017年秋北师大七年级上《3.2代数式》同步练习含答案解析2017年秋北师大七年级上《3.3整式》同步练习含答案解析2017年秋北师大七年级上《3.4整式的加减》同步练习含答案解析2017年秋北师大七年级上《3.5探索与表达规律》同步练习含答案解析2017年秋北师大七年级上《4.1线段、射线、直线》同步练习含答案解析2017年秋北师大七年级上《4.2比较线段的长短》同步练习含答案解析2017年秋北师大七年级上《4.3角》同步练习含答案解析2017年秋北师大七年级上《4.4角的比较》同步练习含答案解析2017年秋北师大七年级上《4.5多边形和圆的初步认识》同步练习含答案解析2017年秋北师大七年级上《5.1认识一元一次方程》同步练习含答案解析2017年秋北师大七年级上《5.2求解一元一次方程》同步练习含答案解析2017年秋北师大七年级上《5.3应用一元一次方程——水箱变高了》同步练习含答案解析2017年秋北师大七年级上《5.4应用一元一次方程——打折销售》同步练习含答案解析2017年秋北师大七年级上《5.5应用一元一次方程——希望工程义演》同步练习含答案解析2017年秋北师大七年级上《5.6应用一元一次方程——能追上小明吗》同步练习含答案解析1生活中的立体图基础巩固1.(题型二)如图1-1-1,属于棱柱的有( )图1-1-1A.2个 B.3个 C.4个 D.5个2.(知识点3)雨滴从空中落下、流星从空中划过,这些现象都给我们以_____的形象;汽车的雨刷摆动、将教室前的投影幕展开,这些现象给我们以_____的形象;硬币在桌面上快速旋转、向玻璃杯中注水水面的上升,这些现象给我们以______的形象.3.(题型一)将下列物体的名称与相应的几何体用线连接起来.螺丝帽塔尖字典足球蜡烛魔方长方体正方体圆锥球圆柱棱柱4.(题型三)如图1-1-2的几何体,分别由哪个平面图形绕某条直线旋转一周得到?请画出相应的平面图形.图1-1-2能力提升5.(题型四)观察下列多面体,把下表补充完整,并回答问题.(1)根据上表中的规律推断,十四棱柱共有___个面,共有___个顶点,共有____条棱.(2)若某个棱柱由30个面构成,则这个棱柱为____棱柱.(3)若一个棱柱的底面多边形的边数为n,则它有____个侧面,共有___个面,共有____个顶点,共有_____条棱.(4)观察表中的结果,你能发现a,b,c之间有什么关系吗?请写出关系式.答案1.B解析:正方体、长方体、三棱柱是棱柱,共3个.故选B.2.点动成线线动成面面动成体解析:观察现象,我们可以从中发现它们运动的形象.3.解:4.解:如图D1-1-1.图D1-1-1能力提升5. 解:填表如下:(1)16 28 42.(2)二十八.(3)n n+2 2n3n.(4)a+c-b=2.2展开与折叠基础巩固1.(知识点1)下列选项能折叠成正方体的是()2.(知识点1)将图1-2-1的表面带有图案的正方体沿某些棱展开后,得到的图形是()图1-2-13.(题型四)图1-2-2是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体包装盒的容积是(包装材料厚度不计)()图1-2-2A.40×40×70 B.70×70×80C.80×80×80 D.40×70×804.(题型三)若过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图1-2-3的几何体,则其表面展开图正确的为()图1-2-35.(题型一)若要使图1-2-4中的平面展开图折叠成正方体后,相对面上两个数之和为6,则x=___,y=____.图1-2-4能力提升6.(题型二)已知下列各图形都由5个大小相同的正方形组成,则其中沿正方形的边不能折成无盖小方盒的是()7.(题型四)如图1-2-5,李明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,王华看来看去总觉得所拼图形似乎存在问题.图1-2-5(1)请你帮李明分析一下拼图是否存在问题.若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2 cm,长方形的长为3 cm,宽为2 cm,请直接写出修正后所折叠而成的长方体的容积为_____ cm3.答案基础巩固1.D解析:根据正方体表面展开图的特点可知选D.2.C解析:此题只要想象出其空间立体图形与平面展开图的对应关系,就容易得出三个表面带有图案的图形的位置特征.故选C.3.D解析:先根据所给的图形折成长方体,再根据长方体的容积公式即可得出长方体包装盒的容积为40×70×80.故选D.4.B解析:选项A,C,D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点相符合.故选B.5. 53 解析:这是一个正方体的表面展开图,共有六个面,其中面“1”与面“x”相对,面“3”与面“y”相对,则1+x=6,3+y=6,解得x=5,y=3.能力提升6.B解析:因为选项A,D各添加一个小正方形后,均符合“一四一”型;选项C添加一个小正方形后符合“一三二”型或“二二二”型,而选项B无论怎样添加,都不符合正方体表面展开图的特征.故选B.7.解:(1)拼图存在问题,如图D1-2-1.图D1-2-1(2)12.折叠而成的长方体的容积为3×2×2=12(cm3).4 从三个方向看物体的形状基础巩固1.(题型一)图1-4-1是由6个相同的小正方体搭成的几何体,那么从上面看这个几何体得到的图形是()图1-4-12.(知识点1)如图1-4-2(1)是放置的一个水管三叉接头,若从正面看这个接头时,看到的图形如图1-4-2(2),则从上面看这个接头时,看到的图形是()图1-4-23.(题型二)由若干个相同的小正方体组合而成的一个几何体从不同方向看到的图形如图1-4-3,则组成这个几何体的小正方体的个数是()图1-4-3A.3 B.4 C.5 D.64.(知识点1)从正面、上面、左面看一个球时,看到的图形都是______.如果一个几何体从正面、上面、左面看时,看到的图形都是圆,那么这个几何体可能是______.5.(题型一)图1-4-4是一个工件的示意图,请你画出从正面、左面、上面看这个工件时所得到的图形.能力提升6.(题型三)把一个圆锥和一个正方体放在水平桌面上,当分别从正面和左面看这两个几何体时,看到的图形如图1-4-5,请问,当你从上面看这两个几何体时,看到的图形是什么?把你看到的图形画出来.图1-4-57.(题型四)某学校设计了如图1-4-6的一个雕塑,取名“阶梯”,现在工人师傅打算用油漆喷刷所有的暴露面.经测量,已知每个小正方体的棱长为0.5 m,请你帮助工人师傅算一下,需喷刷油漆的总面积是多少?图1-4-6答案基础巩固1.A解析:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形,第三层左边有1个正方形.故选A.2.A解析:根据接头的实物图和从正面看到的图形可知,从上面看这个接头时,得到的图形为一个圆和一个长方形相接在一起,且圆在左边,长方形在右边.故选A.3.C 解析:综合三个方向看到的图形,我们可以得出,这个几何体的底层有3+1=4(个)小正方体,第二层有1个小正方体,因此搭成这个几何体所用的小正方体的个数是4+1=5.故选C.4.圆球5.解:从正面、左面、上面看这个工件时所得到的图形如图D1-4-1.图D1-4-1能力提升6.解:从上面看这两个几何体时所看到的图形如图D1-4-2.图D1-4-27.解:从三个方向看物体得到的形状图如图D1-4-3,则从正面与从左面看到的形状图的面积都是0.5×0.5×6=1.5(m2),从上面看到的形状图的面积是0.5×0.5×5=1.25(m2).图D1-4-3因为暴露的面是从前、后、左、右、上看到的面,从左面看到的形状图和从右面看到的形状图的面积是一样的,从前面看到的形状图和从后面看到的形状图的面积是一样的,所以需喷刷油漆的总面积为1.5×4+1.25=7.25(m2).第二章有理数及其运算1 有理数基础巩固1.(题型一)[广东广州中考]中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示()A.支出20元 B.收入20元C.支出80元 D.收入80元2.(题型二)下列说法错误的是()A.负整数和负分数统称为负有理数B.正整数、0、负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数3.(知识点3)在-3.5,227,0,π2,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)中,有理数的个数为()A.1 B.2 C.3 D.44.(题型一)下列选项,具有相反意义的量是()A.增加20个与减少30个B.6个老师和7个学生C.走了100米和跑了100米D.向东行30米和向北行30米5.(题型一)吐鲁番盆地低于海平面155 m,记作-155 m,福州鼓山绝顶峰高于海平面919 m,记作_____m.6.(题型二)在有理数中,是整数而不是正数的是,是负数而不是分数的是______ .7.(知识点2)某栏目有一竞猜游戏:两人搭档,一人用语言描述,一人回答,要求描述者不能说出答案中的字或数.如果现在给的数是0,那么你给搭档描述的是_______.8.(题型二)把有理数-3,2 017,0,37,-237填入它所属的集合内(如图2-1-1).图2-1-1能力提升9.(题型一)一名足球守门员练习折返跑,从守门员守门的位置出发,向前记作正数,返回记作负数,他的记录(单位:m)如下:+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了守门的位置?(2)守门员离开守门的位置最远是多少?10.(题型三)将一串有理数按下列规律排列,解答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2 018个数是正数还是负数?排在对应于A,B,C,D中的什么位置?-1 4→-5 8→-9 A→B↓↑↓↑↓↑↓2→-3 6 -7 10 …C→D7222 答案 基础巩固1.C 解析:若收入为正,则支出为负,所以-80元表示支出80元.故选C.2.C 解析:负整数和负分数统称为负有理数,故A 正确,不符合题意;整数分为正整数、负整数和0,故B 正确,不符合题意;正有理数、负有理数和0组成全体有理数,故C 错误,符合题意;3.14是小数,也是分数,故D 正确,不符合题意.故选C.3.C 解析:有理数有-3.5,,0,共3个.虽然是分数形式,但π是一个无限不循环小数,不是有理数,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)虽然有规律,但是不存在循环节,故也是无限不循环小数,不是有理数.所以有理数一共有3个.故选C. 4.A 解析:增加20个与减少30个是具有相反意义的量.故选A. 5.+919 解析:若低于海平面记作负数,则高于海平面应记作正数,所以高于海平面919 m 记作+919 m.6.负整数和0负整数7.既不是正数也不是负数的数(答案不唯一) 8.如图D2-1-1.图D2-1-1能力提升9.解:(1)守门员回到了守门的位置.守门员的运动情况为:前进5 m ,后退3 m ,前进10 m ,后退8 m ,后退6 m ,前进12 m ,后退10 m ,共前进了27 m ,后退了27 m.因为前进的总路程与后退的总路程相等,所以守门员回到了守门的位置.(2)几次运动后,守门员的位置相对于最初的位置分别为:前5 m ,前2 m ,前12 m ,前4 m ,后2 m ,前10 m ,0 m ,所以守门员离开守门的位置最远是12 m. 10.解:(1)在A 处的数是正数. (2)负数排在B 和D 的位置.(3)第2 018个数是正数,排在对应于C 的位置.第二章有理数及其运算2 数轴基础巩固1.(题型一)在数轴上表示-2,0,6.3,15的点中,在原点右边的点有()A. 0个B. 1个C. 2个D. 3个2.(题型三)在数轴上表示-3和2 017的点之间的距离是()A.2 017 B.2 014C.2 020 D.-2 0203.(题型二)写出两个比-4.2大的负整数:_____.4.(题型四)如图2-2-1,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是;数轴上到原点的距离等于2的点所表示的数是______.图2-2-15.(1)(题型一)把数-4.4, 5,-1.5,3,2.2,0.5,4.1,-3在数轴上表示出来;(2)(题型一)指出如图2-2-2的数轴上A,B,C,D,O各点分别表示什么数.图2-2-2(3)(题型二)用“>”连接下列各数:32,-5,0,3.6,-3,-12,-112.能力提升6.(题型五)李林准备利用星期天休息时间到老板、经理、处长和科长的家登门拜访,王敏告诉他:“老板的家在工厂的正东方向,距离工厂8 000 m;经理的家在老板家的正西方向,距离老板家1 000 m;处长的家在经理家的正东方向,距离经理家5 000 m;科长的家在处长家的正东方向,距离处长家3 000 m.”(1)利用数轴确定四家的位置.(2)从工厂出发,走哪条路线才能使往返路程最短?7.(题型六)点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位长度,再向右移动2个单位长度;从第一次移动后的位置开始,第二次先向左移动3个单位长度,再向右移动4个单位长度;从第二次移动后的位置开始,第三次先向左移动5个单位长度,再向右移动6个单位长度;……依此规律,解答下列各题.(1)第一次移动后这个点在数轴上表示的数为____;(2)第二次移动后这个点在数轴上表示的数为____;(3)第五次移动后这个点在数轴上表示的数为____;(4)第n次移动后这个点在数轴上表示的数为____;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.答案基础巩固1.C解析:在原点右边的点所对应的数是6.3,15,共2个.故选C.2.C解析:从数轴上可以看出,表示-3的点到原点的距离为3个单位长度,表示2 017的点到原点的距离为2 017个单位长度,且两点分布在原点两侧,所以距离为2 020.故选C.3.-4,-3(答案不唯一)4. 2 - 2和25.解:(1)各数在数轴上的位置如图D2-2-1.图D2-2-1(2)点A表示的数为-2.5,点B表示的数为-0.5,点O表示的数为0,点C表示的数为2,点D表示的数为2.5.(3)将各数用数轴上的点表示,如图D2-2-2.图D2-2-2根据“在数轴上右边的点表示的数总比左边的点表示的数大”可得3.6>32>0>-12>-112>-3>-5.能力提升6.解:(1)规定一个单位长度代表1 000 m,向东为正方向,如图D2-2-3.图D2-2-3(2)李林从工厂出发,按照路线:经理家老板家处长家科长家,然后返回工厂,这样往返路程最短.(答案不唯一)7.解:(1)3.(2)4.(3)7.(4)n+2.(5)由(4)可知,m+2=56,解得m=54.第二章有理数及其运算3 绝对值基础巩固1.(题型一)|-2|的相反数是()A.-2 B.2 C.- 3 D.32.(知识点2)若|x|=-x,则x一定是()A.负数B.负数或零C.零D.正数3.(题型三)将有理数-|0.67|,-(-0.68),23,|-0.67|,0.67·,0.66用“<”连接起来为 .4.(题型三)把-3.5,|-2|,-1.5,|0|,|-3.5|在数轴上表示出来,并按从小到大的顺序排列出来.5.(题型一)化简下列各式,并解答问题:①-(-2);②+(-1/8);③-\[-(-4)\];④-\[-(+3.5)\];⑤-{-\[-(-5)\]};⑥-{-\[-(+5)\]}.问:(1)当+5前面有2 018个负号时,化简后结果是多少?(2)当-5前面有2 019个负号时,化简后的结果是多少?你能总结出什么规律?能力提升6.(题型四)出租车司机李伟一天下午的营运全是在南北走向的光明大街上进行的,假定向南为正,向北为负,他这天下午的行车记录(单位:km)如下:+15,-3,+14,-11,+10,+4,-26.(1)李伟在送第几位乘客时行驶的路程最远?最远有多远?(2)若该出租车的耗油量为0.1 L/km,则这天下午该出租车共耗油多少升?7.(题型五)认真阅读下面的材料,解答有关问题:材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5-3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5-(-3)|,所以|5+3|表示5,-3在数轴上对应的两点之间的距离;|5|=|5-0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,如果点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离可以表示为|a-b|.(1)如果点A,B,C在数轴上分别表示有理数x,-2,1,那么点A到点B的距离与点A到点C的距离之和可表示为什么?(用含绝对值的式子表示)(2)利用数轴探究:①找出满足|x-3|+|x+1|=6的x的所有值;②设|x-3|+|x+1|=p,当x取不小于-1且不大于3的数时,p的值是不变的,而且是p的最小值,这个最小值是;当x在范围内取值时,|x|+|x-2|取得最小值,最小值是.答案基础巩固1.A解析:|-2|=2,所以|-2|的相反数是-2.故选A.2.B解析:根据绝对值的定义,可知x一定是负数或零.故选B.3. -|0.67|<0.66<23<|-0.67|<0.67•<-(-0.68)解析:因为-|0.67|=-0.67,|-0.67|=0.67,-(-0.68)=0.68,23=0.6•,所以-|0.67|<0.66<23<|-0.67|<0.67•<-(-0.68).4.解:将各数在数轴上表示如图D2-3-1.图D2-3-1按从小到大的顺序排列出来为:-3.5<-1.5<|0|<|-2|<|-3.5|.5.解:①-(-2)=2;②+-81=-81; ③-[-(-4)]=-4;④-[-(+3.5)]=3.5; ⑤-{-[-(-5)]}=5;⑥-{-[-(+5)]}=-5.(1)当+5前面有2 018个负号时,化简后的结果是+5. (2)当-5前面有2 019个负号时,化简后的结果是+5.总结规律:一个数的前面有奇数个负号,化简后的结果等于它的相反数,有偶数个负号,化简后的结果等于它本身. 能力提升6.解:(1)小李在送最后一名乘客时行驶的路程最远,是 26 km. (2)总耗油量为0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L ). 即这天下午该出租车共耗油8.3 L.7.解:(1)点A 到点B 的距离与点A 到点C 的距离之和可表示为|x +2|+|x -1|. (2)①满足|x -3|+|x +1|=6的x 的所有值是-2,4.② 4不小于0且不大于22.第二章 有理数及其运算4 有理数的加法基础巩固1.(题型一)有理数-5与20的和与它们的绝对值之和分别为( ) A.15,15 B.25,15 C.25,25 D.15,252.(题型二)李老师的存储卡中有5 500元,取出1 800元,又存入1 500元,又取出2 200元,这时存储卡中的钱为( ) A.11 000元 B.0元 C.3 000元 D.2 500元3.(题型一)若m ,n 分别表示一个有理数,且m ,n 互为相反数,则|m +(-2)+n |= .4.(考点一)计算下列各题:(1) 354215+-+-++-+-9+7777()(4)()(); (2) 15115++-+0.125+-82(4.5)(). 5.(题型二)某检修小组乘汽车沿南北走向的公路检修输电线路,约定向南为正,向北为负,某天从M 地出发到收工时所走路程依次为(单位:km ):+10,-4,+2,-5,-2,+8,+5. (1)该检修小组收工时在M 地什么方向,距M 地多远?(2)若该汽车在行驶过程中,每千米耗油0.09升,则该汽车从M 地出发到收工时共耗油多少升? 能力提升6.(题型三)如果两个数互为相反数,那么这两个数的和为0.例如,若x 和y 互为相反数,则必有x +y =0.(1)已知|a |+a =0,求a 的取值范围.(2)已知|a -1|+(a -1)=0,求a 的取值范围. 7.(考点一)阅读下面解题过程: 计算: 解:原式== =0+ = 上面的计算,是先把带分数拆分为整数部分和小数部分后再计算,可使运算简便,这种简便运算的方法叫作拆项法.请你仿照上面的方法计算:521-2018+-+4035+-1632()(2017)().5231-5+9)17(3)6342-++-(52(5)()(9)()6331(17)(3)().42⎡⎤⎡⎤-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤+++-+-⎢⎥⎣⎦[](5)(9)(3)175213(-+-+-+6324-+-+-+⎡⎤+⎢⎥⎣⎦)()()1-14()1-1.4答案 基础巩固1.D 解析:(-5)+20=15,|-5|+|20|=5+20=25.故选D.2.C 解析:根据题意,得5 500+(-1 800)+1 500+(-2 200)=3 000(元),故此时存储卡还有3 000元.故选C.3. 2 解析:因为m ,n 互为相反数,所以m +n =0,则|m +(-2)+n |= |(m +n )+(-2)|=|0+(-2)|=2.4.解:(1)15+(-73)+(-4)+75+(-74)+(-9)+72 =(75+72)+[(-73)+(-74)] + [15+(-4)+(-9)]=1+(-1)+2 =2.(2)10+815+(-4.5)+0.125+(-21) =10+815+(-4.5)+81+(-0.5)=10+(815+81)+[(-4.5)+(-0.5)]=10+2+(-5) =7.5.解:(1)(+10)+(-4)+(+2)+(-5)+(-2)+(+8)+(+5) =10-4+2-5-2+8+5 =14.答:该检修小组收工时在M 地的南边,距M 地14 km.(2)|+10|+|-4|+|+2|+|-5|+|-2|+|+8|+|+5|=36(km ),36×0.09=3.24(L ). 答:汽车从M 地出发到收工时共耗油3.24 L. 能力提升6.解:(1)因为|a |≥0,|a |+a =0,所以a ≤0.(2)因为|a -1|≥0,|a -1|+(a -1)=0,所以a -1≤0.解得a ≤1.7.解:原式=[(-2 018)+(-65)]+[(- 2 017)+(-32)]+4 035+[(-1)+(-21)] =[(-2 018)+(-2 017)+4 035+(-1)]+[(-65)+(-32)+(-21)]=(-1)+(-2)=-3.第二章有理数及其运算5 有理数的减法基础巩固1.(题型一)有理数a,b在数轴上的对应点的位置如图2-5-1,则()A.a+b<0 B.a+b>0 C.a-b=0 D.a-b<图2-5-12.(题型一)李明的练习册上有这样一道题:计算|(-3)+▉|,其中“▉”是被墨水污染而看不到的一个数,他翻看了后边的答案得知该题的计算结果为6,那么“▉”表示的数应该是 .3.(考点一)计算:(1)-2-(+10);(2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15);(4)232-3--2--1-+1.75 343()()()().4.(题型二)已知某种植物成活的主要条件是该地四季的温差不得超过20 ℃.若不考虑其他因素,在下表的四个地区中,哪个地区适合大面积的栽培这种植物?请说明理由.地区夏季最高温/℃冬季最低温/℃A地区41 -5 B地区38 20 C地区27 -17 D地区-2 -42能力提升5.(题型一)若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,求a-b-(-c)的值.6.(题型一)已知M,N都为数轴上的点,当M,N分别表示下列各数时:①+3和+6;②-3和+6;③3和-6;④-3和-6.(1)请你分别求点M,N之间的距离.(2)根据(1)的求解过程,你能从中得出求数轴上任意两点间的距离的规律吗?试试看.答案 基础巩固1.B 解析:由数轴,得a >0,b <0,且|a |>|b |,所以a +b >0,a -b >0.故选B.2.-3或9 解析:因为|(-3)+▉|=6,所以(-3)+▉=6或(-3)+▉=-6. 当(-3)+▉=6时,▉=6-(-3)=6+(+3)=9;当(-3)+▉=-6时,▉=-6-(-3)=(-6)+(+3)=-3. 3.解:(1)-2-(+10)=-2+(-10)=-12. (2)0-(-3.6)=0+3.6=3.6.(3)(-30)-(-6)-(+6)-(-15)=(-30)+(+6)+(-6)+(+15)=-30+0+15=-15.(4)(-332)-(-243)-(-132)-(+1.75) =-332+243+132+(-143)=(-332+132)+ [(+243)+(-143)]=-2+1 =-1.4.解:B 地区.理由如下:A 地区的四季温差是41-(-5)=46(℃);B 地区的四季温差是38-20=18(℃);C 地区的四季温差是27-(-17)=44(℃);D 地区的四季温差是-2-(-42)=40(℃). 因为B 地区的四季温差不超过20 ℃,所以B 地区适合大面积的栽培这种植物. 能力提升5.解:因为|a |=3,所以a =3或a =-3. 因为|b |=10,所以b =10或b =-10. 因为|c |=5,所以c =5或c =-5. 又因为a ,b 异号,b ,c 同号,所以a=-3,b=10,c=5或a=3,b=-10,c=-5.当a=-3,b=10,c=5时,a-b-(-c)=-3-10-(-5)=-8 ;当a=3,b=-10,c=-5时,a-b-(-c)=3-(-10)- 5=8.所以a-b-(-c)的值为8或-8.6.解:把-6,-3,+3,+6分别用数轴上的点表示出来,如图D2-5-1.图D2-5-1(1)①点M,N之间的距离为|6|-|3|=6-3=3.②点M,N之间的距离为|6|+|-3|=6+3=9.③点M,N之间的距离为|-6|+|3|=6+3=9.④点M,N之间的距离为|-6|-|-3|=6-3=3.(2)能.在(1)中,①可以写成|6|-|3|=|6-3|=3;②可以写成|6|+|-3|=|6-(-3)|=9;③可以写成|-6|+|3|=|-6-3|=9;④可以写成|-6|-|-3|=|-6-(-3)|=3,所以点M,N之间的距离为这两个点所表示的数的差的绝对值.故求数轴上任意两点间的距离可以转化为求这两点在数轴上所表示的数的差的绝对值.第二章 有理数及其运算 6有理数的加减混合运算基础巩固1.(题型一)不改变原式的值,将6-(+3)-(-7)+(-2)写成省略加号的和的形式是( ) A.-6-3+7-2 B.6-3-7-2 C.6-3+7-2 D.6+3-7-22.(题型二)某天股票B 的开盘价为10元,上午11:00下跌了1.8元,下午收盘时上涨了1元,则该股票这天的收盘价为( )A .-0.8元B .12.8元C .9.2元D .7.2元 3.(题型三)已知|a +2|+|b -1|=0,则(a +b )-(b -a )-a =______. 4.(题型一)计算:(1) (-23)-(-38)-(+12)+(+7);(2)16-(+2.8)+(-65)+1.8; (3)-0.5-(-341)+2.75-(+521);(4)|+3118|-|-1127|-|+1119|+|-59|.5.(题型二)为了宣传节约用水的意义,李丽记录了金地庄园小区6月份1~6日每天的用水量,并根据记录结果制成折线统计图,如图2-6-1.请你求出该小区6天的平均用水量是多少吨.图2-6-1能力提升6.(题型一)数学活动课上,王老师给同学们出了一道题,规定一种新运算“☆”,对于任意有理数a 和b ,a ☆b =a -b +1,请你根据新运算,计算[2☆(-3)]☆(-2)的值.7.(题型四)(1)有1,2,3,…,11,12共12个数,请在每两个数之间添上“+”或“-”,使它们的和为0;(2)若有1,2,3,…,2 015,2 016共2 016个数字,请在每两个数之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2 016,2 017共2 017个数的每两个数之间添上“+”或“-”,使它们的和为0.若能,请说明添加的方法;若不能,请说明理由.答案1.C 解析:原式=6+(-3)+(+7)+(-2)=6-3+7-2.故选C.2.C 解析:由题意可得,该股票这天的收盘价为10-1.8+1=9.2(元).故选C.3. -2 解析:因为|a +2|+|b -1|=0,所以a +2=0,b -1=0,即a =-2,b =1,则原式=a +b -b +a -a =a =-2.4.解:(1)原式=-23+38-12+7=(-23-12)+(38+7) =-35+45 =10. (2)原式=61-2.8-65+1.8=(61-65)+(-2.8+1.8)=-32 -1=-132. (3)原式=-0.5+3.25+2.75-5.5=(-0.5-5.5)+(3.25+2.75)=-6+6=0. (4)原式=3118-1027-1119+59=3118-1119-(—1027-59)=2-109=1101.5.解:若选3日的用水量为标准,则这6天的用水量分别为-2吨,+2吨,0吨,+5吨,-4吨,-1吨.所以这6天的平均用水量为[(-2)+(+2)+0+(+5)+(-4)+(-1)]÷6+32=(-2+2+0+5-4-1)÷6+32=32(吨). 答:该小区6天的平均用水量是32吨. 能力提升6.解:根据新运算法则,得[2☆(-3)]☆(-2)=[2-(-3)+1]☆(-2)=6☆(-2)=6-(-2)+1=6+2+1=9. 7.解:(1)答案不唯一,如1+12-2-11+3+10-4-9+5+8-6-7=0.(2)答案不唯一,如1+2 016-2-2 015+3+2 014-4-2 013+…+1 007+1 010-1 008-1 009=0. (3)不能.理由如下: 因为(1)与(2)是偶数个数,它们的第一个数与最后一个数的和,第二个数与倒数第二个数的和,……中间位置两个数的和都分别相等,在适当的位置添加“+”或“-”其和可以为0,而1,2,3,…,2 016,2 017共2 017个数,中间的数2 009是无法抵消的,所以根据(1)(2)的规律,不能在1,2,3,…,2 016,2 017共2 017个数的每两个数之间添上“+”或“-”,使它们的和为0.第二章 有理数及其运算7有理数的乘法基础巩固1.(知识点1)从-4,5,-3,2中任取两个数相乘,所得积最大的是( ) A.-20 B.12C.10D.-82.(知识点1、题型一)下列计算正确的是( )A .(-5)×(-4)×(-2)×(-2)=5×4×2×2=80B .(-12)×(31-41-1)=-4+3+1=0C .(-9)×5×(-4)×0=9×5×4=180D .(-2)×5-2×(-1)-(-2)×2=(-2)×(5+1-2)=-8 3.(知识点2)如果□×(-52)=1,那么“□”内应填的数是( ) A.25B.52C.-52D.-254.(题型二)绝对值小于4的所有整数的积是____.5.(题型二)有理数a ,b ,c ,d 在数轴上对应的点的位置如图2-7-1,则abc ____0,abcd ____0.(填“>”或“<”)图2-7-16.(题型二)若|a |=5,b =-2,且ab >0,则a +b =_____.7.(题型一)用简便方法计算:(1)(-231-321+12524)×(-76); (2)(-5)×(-372)+(-7)×(-372)+(-12)×372.8.(题型二)在数轴上,点A 到原点的距离为3,点B 到原点的距离为5,如果点A 表示的有理数为a ,点B 表示的有理数为b ,求a 与b 的乘积. 能力提升9.(题型三)某数学小组的10位同学站成一列玩报数游戏,规则:从前面第一位同学开始,每位同学依次报自己序号的倒数的2倍加1,第1位同学报(12+1),第2位同学报(22+1),第3位同学报(23+1),……这样得到的10个数的积为______.10.(题型一)阅读下面材料:(1+21)×(1-31)=23×32=1, (1+21)×(1+41)×(1-31)×(1-51)=23×45×32×54 =23×32×45×54=1×1=1.根据以上信息,求出下式的结果.(1+21)×(1+41)×(1+61)×…×(1+201)×(1-31)×(1-51)×(1-71)×(1-91)×…×(1-211).答案 基础巩固1.B 解析:(-4)×5=-20,(-4)×(-3)=12,(-4)×2=-8,5×(-3)=-15,5×2=10,-3×2=-6.故选B.2.A 解析:A.(-5)×(-4)×(-2)×(-2)=5×4×2×2=80,故正确;B.(-12)×(31-41-1)=-4+3+12=11,故错误;C.(-9)×5×(-4)×0=0,故错误;D.-2×5-2×(-1)-(-2)×2=-2×(5-1-2)=-4,故错误.故选A.3.D 解析:互为倒数的两个数的积为1,反之,如果两个数的积为1,那么这两个数互为倒数.所以“□”内应填的数为-25.故选D. 4. 0 解析:绝对值小于4的整数有3,2,1,0,-1,-2,-3,因为因数中有一个数为0,所以它们的积为0.5.>> 解析: 观察数轴可知,a <0,b <0,c >0,d >0,故abc >0,abcd >0.6. -7 解析:因为|a |=5,所以a =5或a =-5.又因为ab >0,b =-2,所以a =-5,所以a +b =(-5)+(-2)=-7.7.解:(1)原式=(-37-27+2549)×(-76) =(-37)×(-76)+(-27)×(-76)+2549×(-76)=2+3-2542=3258.(2)原式=5×372+7×372-12×372=372×(5+7-12)=372×0=0.8.解:由题意知,a =3或a =-3,b =5或b =-5.当点A 与点B 位于原点的同侧时,a ,b 的符号相同,则ab =3×5=15或ab =(-3)×(-5)=15; 当点A 与点B 位于原点的异侧时,a ,b 的符号相反,则ab =3×(-5)=-15或ab =(-3)×5=-15.综上所述,a 与b 的乘积为15或-15.。

相关文档
最新文档