紫外-可见分光光度法

合集下载

紫外可见分光光度法

紫外可见分光光度法

光子能量与它的频率成正比,与波长成 反比,与光强度无关。光的波长越短
(频率越高),其能量越大。
单色光: 同一波长的光称为单色光; 复合光: 不同波长的光组成的光称为复合光; 可见光: 凡是被肉眼感受到的光称为可见光; 波长范围为400-780nm
复合光
单色光
物质颜色的产生
固体
反射蓝色光 吸收黄色光
互补色
液体
透过紫色光 吸收绿色光
二、 物质对光的选择性吸收
M + h 基态 E0 (△E) M* 激发态 E1
E1
激发态
E2
E = E1 - E0 = h =h c/λ λ=hc/ E
物质对光选择性吸收
E0
基态
E
例题
某分子中两个电子能级之间的能级差为1eV, 若要电子在两个能级之间发生跃迁,需要
是指分子中的一些带有非成键电子对的基团本身在紫外-可 见光区不产生吸收,但是当它与生色团连接后,增强生色团的 生色能力,使生色团的吸收带向长波移动,且吸收强度增大。 助色团为含有未共用电子对的杂原子基团:-OH、-Cl、-Br
C.红移与蓝移
有机化合物的吸收谱带常
常因引入取代基或改变溶剂使
最大吸收波长λmax和吸收强度 发生变化:
π→π*跃迁的λmax为170nm 。
(4)n→π*跃迁:分子中孤对电子和π键同 时存在时发生n→π* 跃迁。丙酮n→π* 跃迁的λmax为275nm。
(5)电荷迁移跃迁:分子本身具有电子给予
体和电子接受部分,外来辐射照射,电子从
具有给予体特性的部分转移到具有电子接受
体特性的部分所发生的跃迁。其谱带较宽,
思考
1、庚烷、环己烷等烷烃在200-400nm内有无吸收?

紫外-可见分光光度法

紫外-可见分光光度法

2.2.2 波长扫描:分别将两个比色皿装上空 白溶液和样品溶液,放入比色槽中,拉动 拉杆使光路孔对准空白溶液,按[Start/Stop] 键进行谱图扫描(如想终止扫描再次按 [Start/Stop]键),待仪器自动进行基线校正, 提示拉入样品自动测试,测试完毕后有扫 描图谱出现,下方有相应的数据处理选项 ①Process ②Baseline(重新进行基线校正) ③Print。
朗伯-比尔定律是紫外-可见分光光度法的理 论基础。
Alg1lgI0 ECL TI
式中,A为吸光度,T为透光率,I0、I分别为入射光
和透过光的强度;E为吸光系数,当c用物质的量浓 度表示,L用厘米表示,用ε代替E,称为摩尔吸光 系数,单位为(L·mol-1·cm-1);当c用百分浓度 (g/100mL),L用厘米表示时,用E1cm1%表示E,称 为比吸光系数。它们的关系如下:
4 要点与注意事项
4.1 开机前将样品室内的干燥剂取出, 仪器自检过程中禁止打开样品室盖。
4.2 比色皿内溶液以皿高的2/3~4/5为 宜,不可过满以防液体溢出腐蚀仪器。 测定时应保持比色皿清洁,池壁上液 滴应用滤纸擦干,切勿用手捏透光面。 测定紫外波长时,需选用石英比色皿。
2. 使用 仪器自检结束后(7个自检项目均出现
OK字样),按[MAIN MENU]键(主 菜单),屏幕显示如下5个功能项: 1. Phtometry(定量运算);2. Wavelength Scan(波长扫描模式);3. Time Scan (时间曲线扫描);4. System(系统校 正);5. Data display(光度直接测量 模式)。根据需要测量的实验项目按相
§3. 紫外-可见分光光度计
主要部件的性能与作用 基本结构:

紫外-可见分光光度法测定

紫外-可见分光光度法测定

紫外-可见分光光度法测定1. 引言1.1 引言紫外-可见分光光度法是一种常用的分析化学方法,通常用于测定物质的浓度或测定物质的吸光度。

该方法利用紫外-可见光谱仪测量样品对紫外和可见光的吸收情况,从而推断样品中所含物质的浓度或结构。

在化学分析实验中,紫外-可见分光光度法具有灵敏度高、准确性高和简便易行的优点,因此被广泛应用于药物分析、环境监测、食品检测等领域。

本实验旨在通过该方法测定样品中目标物质的浓度,并探讨影响测定结果的因素。

通过对仪器原理、操作步骤、实验结果、数据分析和影响因素的详细讨论,我们将深入了解紫外-可见分光光度法的原理和应用,并为今后在相关领域的研究提供参考和借鉴。

希望本实验能够为我们提供更多关于分光光度法的实际操作经验,提升我们的实验技能和分析能力。

1.2 背景介绍紫外-可见分光光度法是一种广泛应用于化学分析领域的分析方法,通过测定物质在紫外-可见光区域的吸收特性,从而确定物质的浓度或者进行定性分析。

紫外-可见分光光度法具有操作简单、灵敏度高、选择性强的特点,被广泛应用于环境监测、食品安全检测、药品质量控制等领域。

随着科学技术的不断发展,紫外-可见分光光度法在实验室分析中扮演着越来越重要的角色。

通过测定物质在特定波长范围内的光吸收情况,我们可以获得关于物质性质的重要信息,如浓度、溶解度、稳定性等。

掌握紫外-可见分光光度法的原理和操作方法,对于提高实验准确性和效率具有重要意义。

在本文中,我们将介绍紫外-可见分光光度法的仪器原理、操作步骤、实验结果、数据分析和影响因素,希望能够为读者提供一份系统全面的紫外-可见分光光度法测定指南。

通过总结和展望,我们也希望能够进一步探讨该方法在化学分析领域的应用前景。

1.3 研究目的紫外-可见分光光度法是一种常用的分析化学技术,可以用于测定物质的吸光度,从而推断物质的浓度。

本实验的研究目的主要分为以下几点:1. 研究紫外-可见分光光度法在测定物质浓度方面的应用。

紫外可见分光光度法

紫外可见分光光度法
ΔT =1%, 溶液浓度相对误差Δc/c 与其透光度T 的关系曲线如右图。
由图可见ΔT =1%, T 在20%~ 65%之间时, 浓度相对误差较小, 此为 最佳读数范围。
所以要求选择适宜的吸光度范围 (0.2-0.7), 以使测量结果的误差最 小。
2024/10/5
措施: (a)控制溶液的浓度;(b) 选择不同厚度的比色
2024/10/5
2
溶液颜色与光吸收的关系
当一束太阳光照射某一溶液时, 太阳光中某一颜色的光 被吸收, 其互补色光透过溶液, 刺激人的眼睛, 使人感觉到它 的颜色。
实例:
1)高锰酸钾吸收绿光显紫 红色;
2)重铬酸钾吸收蓝光显黄 色;
3)邻菲罗啉铁溶液吸收蓝 绿光显红色。
2024/10/5
可见光波长及其互补光
(如国产710型,730型); 3.双波长双光束分光光度计
(如国产WFZ800-5型)
2024/10/5
20
紫外可见分光光度的使用
2024/10/5
21
2024/10/5
22
721分光光度计操作步骤
➢ 1.预热仪器。为使测定稳定, 将电源开关打开, 使仪器预热20min, 为了防止光电管疲劳, 不要连续光照。预热仪器和不测定时应将比 色皿暗箱盖打开, 使光路切断。
ε: 摩尔吸收系数,单位L·mol -1·cm-1。(讲解78页 例题)
摩尔吸收系数越大表明该物质的吸光能力越强,用光度法测
定该物质的灵敏度越高。
ε > 105: 超高灵敏;
ε = (6~10)×104 : 高灵敏;
ε < 2×104
: 不灵敏。
2024/10/5
10
吸光度的加和性

紫外-可见分光光度法

紫外-可见分光光度法

紫外-可见分光光度法1 简述紫外-可见分光光度法是在190-800nm波长范围内测定物质的吸光度,用于鉴别、杂质检查和含量测定的方法。

定量分析通常选择物质的最大吸收波长处测出吸光度,然后用对照品或吸收系数求算出被测物质的含量,多用于制剂的含量测定;对已知物质定性可用吸收峰波长或吸光度比值作为鉴别方法;若该物质本身在紫外光区无吸收,而其杂质在紫外光区有相当强度的吸收,或杂质的吸收峰处该物质无吸收,则可用本法作杂质检查。

物质对紫外辐射的吸收是由于分子中原子的外层电子跃迁所产生,因此,紫外吸收主要决定于分子的电子结构,故紫外光谱又称电子光谱。

有机化合物分子结构中如含有共轭体系、芳香环等发色基团,均可在紫外区(200〜400nm)或可见光区(400〜850nm)产生吸收。

通常使用的紫外-可见分光光度计的工作波长范围为190~900nm。

紫外吸收光谱为物质对紫外区辐射的能量吸收图。

朗伯-比尔(Lambert-Beer)定律为光的吸收定律,它是紫外-可见分光光度法定量分析的依据,其数学表达式为:A=log -1=ECL式中A为吸光度;T为透光率;E为吸收系数;C为溶液浓度;L为光路长度。

如溶液的浓度(C)为1%(g/ml),光路长度(L)为lcm,相应的吸光度即为吸收系数以E1%表示。

如溶液的浓度(C)为摩尔浓度(mol/L),光路长度为lcm 1cm时,则相应有吸收系数为摩尔吸收系数,以表示。

2仪器紫外-可见分光光度计主要由光源、单色器、样品室、检测器、记录仪、显示系统和数据处理系统等部分组成。

为了满足紫外-可见光区全波长范围的测定,仪器备有二种光源,即氘灯和碘钨灯,前者用于紫外区,后者用于可见光区。

单色器通常由进光狭缝、出光狭缝、平行光装置、色散元件,聚焦透镜或反射镜等组成。

色散元件有棱镜和光栅二种,棱镜多用天然石英或熔融硅石制成,对200〜400nm波长光的色散能力很强,对600nm以上波长的光色散能力较差,棱镜色散所得的光谱为非匀排光谱。

紫外可见分光光度法

紫外可见分光光度法
E— 吸光系数(absorptivity)
T与A的关系
T 100% 50% 25% 10% 1.0% 0.1% 0.01% 0.001% 0%
A 0 0.301 0.602 1.00 2.0 3.0 4.0
5.0
上述说明: T值为0%至100%内的任何值。 A值可以取任意的正数值。
入射光强度 I0
等 条件一定时, E 仅与吸收物质本身的性质有关, 与待测物浓度无关; (3)同一吸收物质在不同波长下的E 值是不同的。在最大 吸收波长λmax处的摩尔吸收系数E max表明了该 吸收物质最大限度的吸光能力,也反映了光度法 测定该物质可能达到的最大灵敏度。
(4)可作为定性鉴定的参数;
(5)物质的吸光能力的度量
? EK2带
B带 R带
苯乙酮的紫外吸收光谱
四、影响吸收带的因素
• 位阻影响 • 跨环效应
共轭系统共平面性↓→共轭效应↓ → max ↓(短移), ↓
• 溶剂效应 溶剂极性↑→ K带长移,R带短移
• pH影响
max 210.5nm,270nm
235nm,287nm
位阻影响
顺式
反式
二苯乙烯顺反异构体 的紫外吸收光谱
最大处对应的波长称为最大吸收波长λmax。 吸收曲线的形状、λmax及吸收强度等与分子 的结构密切相关。
在吸收曲线上,最大吸收峰所对应的是最大吸收波长 (λmax),为不同化合物的特征波长。吸收曲线的形状是物 质定性的主要依据,在定量分析中可提供测定波长,一般以灵 敏度较大的λmax为测定波长。
峰与峰之间的部位叫谷,该处对应波长为最小吸收波长。 在图谱短波端只呈现强吸收但不成峰的部分称为末端吸收 (end absorption)。

紫外可见分光光度法

紫外可见分光光度法
案例导入
在夏天参加户外活动时,假如天气晴朗,就应该注 意保护皮肤,不然,暴露在火辣辣太阳之下旳皮肤, 数小时后就会出现红肿、瘙痒、发烧、刺痛症状,数 后来出现蜕皮现象,这表白太阳光中有一种光线能伤 害生物细胞。科学家研究证明,这种光线是紫外线。
根据可见光、紫外光与物质分子旳相互作用建立了 紫外-可见分光光度法,
仪器简朴
操作简便
价格低廉
测定迅速
第一节 概述
课堂活动
1.紫外-可见光旳波长范围是
A.200~400nm
B.400~760nm
C.200~760nm
D.360~800nm
2.下列论述错误旳是
A.光旳能量与其波长成反比
B.有色溶液越浓,对光旳吸收也越强烈
C.物质对光旳吸收有选择性 D.光旳能量与其频率成反比
第一节 概述
一、物质对光旳选择性吸收
单色光: 单一波长旳光束 复合光: 具有多种波长旳光束 电磁波谱: 以波长大小顺序排列旳电磁波谱图
波长 10pm 300pm 200nm 400nm 800nm 500mm 1cm 1m
光谱 射线 X射线 紫外光 可见光 红外光 微波 无线电波
措施 光谱法
分光光度法 光谱法
第三节 紫外-可见分光光度计
二、紫外-可见分光光度计旳光学性能
1.测光方式 3.狭缝或光谱带宽 5.波长精确度 7.波长反复性 9.光度反复性
2.波长范围 4.杂散光 6.吸光度范围 8.测光精确度 10.辨别率
第三节 紫外-可见分光光度计
三、紫外-可见分光光度计旳类型 1.可见分光光度计 721型
0.7范围内。若吸光度读数不在此范围,可 采用哪些措施进行调整?
第四节 分析条件旳选择

紫外可见光分光光度法

紫外可见光分光光度法

紫外-可见分光光度法是在190~800nm波长范围内测定物质的吸光度,用于鉴别、杂质检查和定量测定的方法。

当光穿过被测物质溶液时,物质对光的吸收程度随光的波长不同而变化。

因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被测物质的吸收光谱。

从吸收光谱中,可以确定最大吸收波长λmax和最小吸收波长λmin。

物质的吸收光谱具有与其结构相关的特征性。

因此,可以通过特定波长范围内样品的光谱与对照光谱或对照品光谱的比较,或通过确定最大吸收波长,或通过测量两个特定波长处的吸收比值而鉴别物质。

用于定量时,在最大吸收波长处测量一定浓度样品溶液的吸光度,并与一定浓度的对照溶液的吸光度进行比较或采用吸收系数法求算出样品溶液的浓度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据待测物质(原子或分子)发射或吸收的电磁辐 射,以及待测物质与电磁辐射的相互作用而建立起 来的定性、定量和结构分析方法,统称为光学分析 法。 利用光谱进行定性、定量和结构分析的方法称为光 谱分析法,简称光谱法。
第一节 概述
紫外-可见分光光度法:研究物质在紫外-可见光区(200~760 nm)分子吸收光谱的光谱分析法 波长范围: 紫外区 200-400nm 可见光区 400-760nm
准确度高
精密度好
选择性好
易于普及
应用广泛
仪器简单
操作简便
价格低廉
测定快速
第一节 概述
课堂活动
1.紫外-可见光的波长范围是
A.200~400nm
C.200~760nm 2.下列叙述错误的是
B.400~760nm
D.360~800nm
A.光的能量与其波长成反比 B.有色溶液越浓,对光的吸收也越强烈
C.物质对光的吸收有选择性
光的吸收定律
A=- lg T=lg(I0/It) =kcl A:吸光度 T:透光率,T=It/I0
l:液层厚度(光程长度) c:溶液的浓度
k:吸光系数
1.Lamber-Beer定律的适用条件(前提) 入射光为单色光 溶液是稀溶液
A=-lg T= k l c
吸收光谱法的基本定律, 是定量测定的依据 A与c为简单的正比关系; T与c是指数关系 A具加合性 设共存物为a、b、c, 则:A= ka l ca + kb l cb + kc l cc
点滴积累 1 .光的本质是电磁波;物质对光的吸收具有 选择性。 2.吸光度与透光率的关系是 : 3 .吸收曲线是溶液在一定条件下的吸光度随 入射光波长变化而变化的曲线。
二、 Lambert-Beer定律
适用范围:可见光、紫外光 和红外光;均匀无散射的溶 液、固体和气体。
朗伯(Lambert)定律:A=K1L 比耳(Beer)定律:A =K2 c 单色光 I0 l I0=It+Ia It
(二)单波长双光束分光光度计
光束分裂器 光源
单色器
比 值
吸收池
检测器
显示


双光束分光光度计是自动比较了透过参比溶液 和样品溶液的光的强度,它不受光源(电源) 变化的影响。 双光束分光光度计还能进行波长扫描,并自动 记录下各波长下的吸光度,很快就可得到试液 的吸收光谱。所以能用于定性分析。
国产710型、 730型、 740型、日立UV-340型、U4100等属于这种类型。
二、吸光系数
1、物理意义:指吸光物质在单位浓度及单位厚度时的吸光度 2、不同物质对同一波长的单色光,有不同的吸光系数, k↑, 物质对光的吸收能力↑。吸光物质在一定波长和溶剂条件下的 特征常数,是定性和定量的依据。 3、表示方法:k值及单位与c和l采用的单位有关
εmax表明了该吸收物质最大限度的吸光能力,它的大小反映了 光度法测定某物质可能达到的灵敏度。
或 0.70=-lgT
lgT=-0.70,T=0.20
第一节 概述
三、吸收光谱曲线 概念:以波长λ为横坐标,吸光度A为纵坐标所描 绘的曲线,称为吸收光谱曲线,简称吸收光谱。
特点:在相同条件下,同一物质的不同浓度的溶 液,其吸收光谱曲线相似,且λmax相同。这是定 性分析的基础。
UV-Vis吸收光谱的常见术语 吸收峰→max
和光二极管阵列检测器。
(五)信号显示系统: 将信号以适当方式显示或记录。 常用的显示器有直读检流计、微安表、电位计、数 字电压表、记录仪、示波器及数据处理机等。很多 型号的分光光度计装配有微处理机,既可对分光光 度计进行操作控制,又可进行数据处理。
二、分光光度计的类型: (一)单波长单光束分光光度计:
A E
1% 1cm
c L
M ε E1% 1cm 10
吸光系数的大小,取决于物质(溶质、溶剂)
本性、温度和光的波长。
1)物质不同,吸光系数不同,是物质的特征常数;
2)溶剂不同,同一物质吸光系数不同,故常在描述
吸光系数时需指明某溶剂;
3)光的波长不同,吸光系数不同。
例: 某化合物的浓度为4.2×10-3g/L,用2.0cm的吸收 池在470nm下测得的透光率为30.0%,该化合物的 分子量为250,求其在470nm处的摩尔吸光系数和 百分吸光系数。 A = -lgT=-lg0.300=0.523 A 1% E 解: ∵ 1cm c l c = 4.2×10-3g/L
特征值→定性依据
谷→min
肩峰→sh 末端吸收:吸收光谱曲线波长最短 的一段,吸光度相当大,但不成 峰的部分。 强带:吸光度大于104的吸收峰 弱带:吸光度小于103的吸收峰
第一节 概述
A
max=515
480
520
560nm

吸收光谱曲线示意图
第一节 概述
四、紫外-可见分光光度的特点
特点
灵敏度高
3、吸收池(比色皿或比色杯):
用于盛放溶液并提供一定吸光厚度的器皿。它由透 明的光学玻璃或石英材料组成。玻璃吸收池只能用 于可见光区,而石英吸收池在紫外和可见光区都可 使用。光径一般在0.1-10cm,最常用的吸收池吸光 厚度为1cm。高浓度常选光径较小的,低浓度选光 径较大的。
(四)检测器:利用光电效应,将光强度转换成 电流讯号。(光信号→电信号) 光检测器:光电池、光电管、光电倍增管
l
第二节 紫外-可见分光光度法的基本原理
点滴积累 1.光的吸收定律表明了吸光度与液层厚度 和浓度之间的关系,它是吸收光谱法定量分析 的依据。
2.吸光系数的表示方法有多种,随待测溶 液浓度的不同标度而不同。 3.偏离光的吸收定律的因素主要有化学因 素和光学因素。
第三节 紫外-可见分光光度计
一、紫外-可见分光光度计的主要部件:
一、物质对光的选择性吸收
1 .电磁辐射(电磁波,光) :以巨大速度通过空间,不需 要任何物质作为传播媒介的粒子流。 电磁辐射的性质:具有波、粒二象性 波动性: ,
粒子性:
c
1
E h h
c
注: ,E

第一节 概述
单色光: 单一波长的光束 复色光: 含有多种波长的光束 电磁波谱: 以波长大小顺序排列的电磁波谱图
复合光
光的互补
绿 黄 绿黄 橙
青 蓝
蓝 紫 紫 红 红
物质的颜色与光的关系
复合光
光谱示意 完全吸收 表观现象示意
完全透过
吸收黄色光
第一节 概述
二、透光率与吸光度
I0=Ia + It + Ir
I0=Ia + It
第一节 概述
透射光强度It与入射光强度I0的比值称为透光率或透光度T 透光率的负对数为吸光度A
0.575
光源
单色器 吸收池
检测器
显示
• 只有一条光路,通过变换参比池和样品池的位臵,使它们 分别臵于光路来进行测定 国产751型、752型、721型、722型、UV-1100型、英国SP500型,伯克曼DU-8型
这类分光光度计的特点是:一般用钨 灯或氢灯作光源,结构简单,价格便宜。 主要适用于定量分析,而不适用于作定性 分析。另外,结果受电源的波动影响较大。
案例导入
在夏天参加户外活动时,如果天气晴朗,就应该注 意保护皮肤,否则,暴露在火辣辣太阳之下的皮肤, 数小时后就会出现红肿、瘙痒、发热、刺痛症状,数 日后出现蜕皮现象,这表明太阳光中有一种光线能伤 害生物细胞。科学家研究证实,这种光线是紫外线。 根据可见光、紫外光与物质分子的相互作用建立了 紫外-可见分光光度法。
对策:选择比较好的单色器
入射波长选定在待测物质的最大吸收波长处
(2)杂散光:单色光中混有一些不在谱带宽度范围内、 与所需的波长不符的光,称为杂散光
(3)散射和反射光 吸收质点的散射(胶体、乳浊液或悬浊液) 吸收池内外界面的反射 测得的吸光度偏高 (4)非平行光 对策: 用参比溶液(空白溶液) 对比补偿
E
1% 1cm
0.523 623 4 4.2 10 2.0
= 4.2×10-4g/100ml
l =2.0cm
M 1% 250 ε E1cm 623 1.56 10 4 10 10
第二节 紫的量浓度浓度为c,在一定条件下用 1cm比色杯测得吸光度为A,则摩尔吸光系数应为:
A.cA
B.cM
C.A/C
D.C/A
五、偏离Lambert-Beer定律的因素
(一)化学因素 A=ε l c
吸光物质溶液的浓度
稀溶液
吸光性物质的化学变化 溶剂的影响
(二)光学因素
(1)非单色光
l
严格地讲,吸收定律只适用于单色光。单色光指具 有单一波长的光,但实际上不能得到纯粹的单色光, 而是波长范围较窄的复合光。对于同一物质对不同 波长的光的吸收程度不同,所以导致对光的吸收定 律的偏离。
第七章 紫外-可见分光光度法
◆学习目标⊙
◆知识要求⊙
◆能力要求⊙
◆知识要求
1.掌握光的吸收定律概念、表达式及条件,吸光系数和 吸收光谱的意义,常用定量分析方法的原理和应用。 2.熟悉紫外-可见分光光度计的基本结构、吸光度测量 条件的选择、偏离光的吸收定律的主要因素。 3.了解光谱分析法的分类、紫外- 可见吸收光谱的产生 机制、定性分析的依据和方法。
D.光的能量与其频率成反比
第一节 概述
课堂活动
3.紫外-可见分光光度法属于 A.原子发射光谱法 C.分子发射光谱法 B.原子吸收光谱法 D.分子吸收光谱法
4 .分子吸收可见 - 紫外光后,可发生哪种类型的 ()分子能级跃迁
A.转动能级跃迁 C.电子能级跃迁 B.振动能级跃迁 D.以上都能发生
相关文档
最新文档