高效液相色谱法概述

高效液相色谱法概述
高效液相色谱法概述

高效液相色谱法概述

摘要:本文概述了高效液相色谱的产生、发展,分类、应用、存在问题及发展前景。

关键词:高翔液相色谱、分类、应用

高效液相色谱(high performance liquid chromatography,HPLC) 是利用高压输液泵驱使流动相通过装填固定相的色谱柱,按照固液相之间的分配机制对混合物进行分离的方法。

一、高效液相色谱的产生及发展

在过去三十多年里, HPLC 已经成为一项在化学科学中最有优势的仪器分析方法之一, 1994年, HPLC 的市场销售量是14亿美元, 就是一个较好的证据。现在, HPLC 几乎能够分析所有的有机、高分子及生物试样。、

1941年, 马丁( Matin) 和辛格( Synge) 用一根装满硅胶微粒的色谱柱, 成功地完成了乙酰化氨基酸混合物的分离, 建立了液液分配色谱方法, 他们也因此获得了1952年诺贝尔化学奖。从此开启了色谱技术的发展,紧接其后的塔板理论、速率理论的建立,使得色谱技术和理论得到了迅速的发展。

HPLC 的第一个雏形是由斯坦因( Stein) 和莫尔( Moo re) 于1958年发展起来的氨基酸分析仪( AAA) , 这种仪器能够进行自动分离和蛋白质水解产物的分析, 由于这种研究的重要性, 别的研究者也被吸引来进行这一方面的重要课题的研究, 最终直接促成了HPLC 方法的建立。在此期间, 哈密顿( Hamiton) 在柱效率和选择性方面的成就而使得他的工作特别有价值。在六十年代早期的相关进展是莫尔( Moo re) 发展起来的凝胶渗透色谱( GPC) 。不久以后, 华特斯(Waters) 有限公司制造了商业GPC 仪, 这种仪器经过微小的改进之后可用于HPLC 分离。在1968~1971年间, 推出了第一台普遍适用的HPLC 商用系统。1971年以后, 对映体( 手性异构体) 和大生物分子如蛋白质的HPLC 分离逐步建立起

来。到了八十年代中期, HPLC 分析技术很明显成了一种成熟的技术, 激动人心的新发展日益减少, 许多领先研究者纷纷转向相关领域的研究, 如超临界流体色谱法( SFC) 毛细管电泳( LZE) 、制备色谱法( PC) 等等。

在仪器方面, 近年来, 毛细管液相色谱的理论塔板数已大大提高, 电化学和激光诱导荧光法已获得很大发展, 对紫外可见光谱的快速扫描检测, 使液相色谱能提供的信息量大幅度增加, 为化学计量学中的许多手段, 如模式识别等提供了重要的应用领域。

二、高效液相色谱的分类

高效液相色谱法按照分离机制可分为以下4 种:

1、液-液分配色谱法(liquid-liquid chromatography)

LLC 根据流动相和固定相的极性不同又可分为,①正向LLC:流动相极性<固定相极性,极性小的组分先流出色谱柱,适合极性物质分离。②反向LLC:流动相极性>固定相极性,极性大的组分先流出色谱柱,适合非极性物质分离。理论上应不相溶的固定相和流动相,实际上仍有少量微量固定相溶解,并且机械冲击作用也会导致固定相流失,从而使柱的分离效率和选择性降低, 目前主要采用化学键合固定相(即通过固定相的有机基团与载体(硅胶)表面的游离羟基发生化学反应,从而使固定相与载体键合起来)来克服这一问题。

2、液-固吸附色谱法(liquid-solid adsorption chromatogramphy)

在吸附色谱中,组分分子和流动相分子对吸附剂(固定相)表面产生竞争性吸附,利用组分和固定相吸附力的不同而分离。

3、离子交换色谱法(ion exchange chromatography)

离子交换剂上可解离的离子与流动相中组分离子进行可逆的离子交换,利用试样中不同组分与离子交换剂具有不同的亲和力而将它们分离的方法。

4、空间排阻色谱法(凝胶色谱法)

试样中分子量大小不同的组分进入凝胶柱时,组分分子渗入微孔的程度不同,大分子直接从间隙中越过,首先出柱,分子越小,进入微孔越深,保留值越大,溶剂分子通常最小,最后流出。主要用来分离高分子化合物,如蛋白质、多糖等。

三、高效液相色谱的应用

HPLC 已成为应用最为广泛和有效的分离分析手段,应用非常广泛,目前,HPLC 在医药、生化、天然产物主要成分的分析、食品分析、环境分析等方面都有广泛的用途

1、医药方面

广泛用于药物的分离、分析、定量等。

1)药物合成的分离精制在药物合成反应中,作为人工合成药物的精制手段,用于除去少量杂质,特别是那些异构体的分离。值得提出的是,药物中R-型和S-

型的光学异构体具有不同的生理作用。为了研究药物的作用机制,需要拆分

光学异构体(即对映体),这是很困难的工作,而高效液相色谱在这方面显示了独特的长处。利用不同类型的手性固定相与对映体能生成稳定性不同的非对映异构体,从而达到分离目的。

2)天然产物的分离分析天然产物的组分非常复杂,例如中草药等,用高效液相色谱法进行分离分析,具有简单快速的特点。

2、生命科学中的应用

其在生化领域的应用主要集中于两个方面:①低分子量物质,如氨基酸、有机酸、有机胺、类固醇等的分离和测定。②高分子量物质,如多肽、核糖核酸、蛋白质和酶(各种胰岛素、激素、细胞色素、干扰素等)的纯化、分离和测定。过去对这些生物大分子的分离主要依赖于等速电泳、经典离子交换色谱等技术,但都有一定的局限性,远远不能满足生物化学研究的需要。因为在生化领域中经

常要求从复杂的混合物基质,如培养基、发酵液、体液、组织中对感兴趣的物质进行有效而又特异的分离,通常要求检测限达ng 级或pg级,或pmol,fmol,并要求重复性好、快速、自动检测;制备分离、回收率高且不失活。在这些方面,HPLC 具有明显的优势。

3、食品方面

高效液相色谱法已经被广泛应用于下面二个领域:①食品营养成分分析:蛋白质、氨基酸、糖类、色素、维生素、香料、有机酸(邻苯二甲酸、柠檬酸、苹果酸等)、有机胺、矿物质等;②食品添加剂分析:甜味剂、防腐剂、着色剂(合成色素如柠檬黄、苋菜红、靛蓝、胭脂红、日落黄、亮蓝等)、抗氧化剂等;③食品污染物分析:霉菌毒素(黄曲霉毒素、黄杆菌毒素、大肠杆菌毒素等)、微量元素、多环芳烃等。

4、环境方面

在对大气中污染物的成分分析,废水、废汽和汽车尾气中有害组分的分析中,高效液相色谱法发挥着很大的作用。

5、农业方面

在农业的发展中,高效液相色谱也发挥着很大的作用。它主要用来对各种农作物中营养成分进行分析,特别是对多糖、脂肪酸、蛋白质等分析都是极为有效的方法。

四、高效液相色谱法存在的问题

1、涡流扩散(Eddy diffusion)

流动相碰到较大的固体颗粒,就像流水碰到石头一样产生涡流。如果柱装填得不均匀,有的部分松散或有细沟,则流动相的速度就快;有的部位结块或装直紧密则流速就慢,多条流路有快有慢,就使区带变宽。因此,固相载体的颗粒要小而均匀,装柱要松紧均一,这样涡流扩散小,柱效率高。

2、分子扩散(Molecular diffusion)

分子扩散就是物质分子由浓度高的区域向浓度低的区域运动,也称纵向分子扩散。要减少分子扩散就要采用小而均匀的固相颗粒装柱。同时在操作时,如果流速太慢,被分离物质停留时间长,则扩散严重。

3、质量转移(Mass transfer)

被分离物质要在流动相与固定相中平衡,这样才能形成较窄的区带。在液相色谱中,溶质分子要在两个液相之间进行分配,或在固相上被吸附和解吸附均需要一定的时间。当流速快时,转移速度慢,来不及达到平衡流动相就向前移,产生物质的非平衡移动,使区带变宽。

4、流动相流速

当流速太低时,分子扩散严重。如将理论塔板高度对流速作图,理论塔板高度随流速增加而急速下降,当达到最低值时,流速再加大则质量转移起主要作用,理论塔板高度又加大。在高效液相色谱中,流速稍快影响不大,但在凝胶过滤色谱中,因为物质要渗透到凝胶内部,所以质量转移影响大,

流速加大会降低柱效率。

5、固定相颗粒大小

固定相颗粒越小柱效率越高,对流动相流动的阻力越大,需要加大压力才能使它流动。

五、结语

高效液相色谱法虽存在上述不足之处,但由于分析速度快、分离效率高、检测灵敏度高、检测自动化、适用范围广、组分易回收、样品处理较简单等优点,从而在医药、食品、生化、环境分析等领域还是有着广泛的应用前景。

参考文献

[1] 丁明玉,陈培榕,罗国安.食品中有机酸的高效液相色谱分析法[J].色

谱,1997,15(3):212-215.

[2] 李军,雍炜,李刚,等.食品中苏丹色素的液相色谱分析方法[J].食品工业科技,2005,26(11):157-160

[3] 吕娟涛7 杨伟丽7 潘秋燕高效液相色谱法在药学研究中的应用与进展卫生职业教育2005,23(22):91-92

[4]贾晓渊. 生物化工原理[J]. 华西药学杂志,2000,14(2) :123.

[5]杨长龙. 超临界流体色谱在生物工程中应用的新进展[J]. 分析科学学报,2005,15(4) :32.

高效液相色谱在药物分析中的应用研究进展_张良晓

高效液相色谱在药物分析中的应用研究进展 张良晓 (中国地质大学(武汉)材料科学与化学工程学院,武汉 430074) 摘 要 本文综述高效液相色谱法作为药物分析的常规方法,药物动力学研究,药物含量测定等药物分析上的应用研究进展,并对应用研究的方向进行了预测。 关键词 高效液相色谱;药物分析;应用研究;进展 高效液相色谱法(H igh -Perfo r m ance L iqu id Ch rom a tog rap hy ,H PL C )是以液体作为流动相,并采用颗粒极细的高效固定相的柱色谱分离技术。高效液相色谱对样品的适用性广,不受分析对象挥发性和热稳定性的限制,因而弥补了气相色谱法的不足。在目前已知的有机化合物中,可用气相色谱分析的约占20%,而80%则需用高效液相色谱来分析。液相色谱根据分离机理的不同可分为液液分配色谱、液固吸附色谱、离子交换色谱和排斥色谱(或凝 胶渗透色谱)[1] 。高效液相色谱已经广泛应用于药物的含量测定、组成分析、质量控制等方面[2]。 近年来高效液相色谱法在药物分析中占主要地位。据美国药典22版载,H PL C 在含量测定方法中位居第一。其特点是分析速度快、分离效率高、检测灵敏度高、检测自动化、适用范围广、组分易回收、样 品处理较简单[3] 。本文在按在药物分析中的作用从以下几个方面综述了高效液相色谱法在药物分析的研究进展。 1 高效液相色谱作为常规分析方法在药物分析中的应用 高效液相色谱法作为药物分析中的最主要的分析方法,常被作为常规分析和检验方法。近年来在这 个方面的研究比较多,刘树业.等[4] 为时刻监控治疗肝癌时的抗癌药物剂量即血中的药物浓度,提高疗效,减少副作用,采用紫外-H PL C 法对血中和组织中的阿霉素浓度进行分析.用U V -240紫外分光光度计,B ECK M AN 332型高效液相色谱仪,采用反向色谱法.秦.等[5]针对近几年国际奥委会医学委员会公布的禁用表中新增药物及一系列利尿剂的相关化合物进行了研究,比较了不同的提取方法及回收率,研究了几种药物的排泄情况;建立了同时分析13种利尿剂的高效液相色谱测定方法,检出限小于5ng 。左雄军.等[6]用0.02m o l L 的三羟甲基胺基甲烷(用磷酸调pH 值至7)和甲醇(含2%乙酸和0.25%庚烷磺酸钠)作流动相进行梯度洗脱,建立了脂性油膏药物中黄芩甙含量的反相高效液相色谱分析方法,本法分析速度快,重现性好,黄芩甙的平均回收率为103.7%。张晓青.等[7]采用反相离子对高效液相色谱法研究了唑来膦酸及其有关化合物的色 子河沉积物中重金属污染[J ].北京大学学报,2000, 36(4):525-530. [3] 王贵.胶州湾李村河口沉积物重金属及稀土元素演化 模式与环境记录[D ].长春:吉林大学图书馆,2003.[4] 廉雪琼.广西近岸海域沉积物中重金属污染评价[J ]. 海洋环境科学,2002,21(3):39~42. [5] 李任伟.沉积物污染和沉积环境学[J ].地球科学进展, 1998,13(4):398~40 [6] 柳林,许世远,陈振楼,余佳.上海滨岸潮滩表层沉积物 中重金属的空间分布与环境质量评价[J ].上海地质,2000,(1):1-5. [7] 腾彦国,庹先国,倪师军,张成江.应用地质累积指数评 价沉积物中重金属污染[J ].环境科学与技术,2002, 25(2):7-9. [8] 刘文新,栾兆坤,汤鸿霄.乐安江沉积物中重金属污染 的潜在生态风险评价[J ].生态学报,1999,19(2):206-211. [9] 刘芳文,颜文,王文质,古森昌,陈忠.珠江口沉积物重 金属污染及其潜在生态危害评价[J ].海洋环境科学,2002,21(3):34-38. [10] 许金生,冯泳兰,袁亚莉,邓健,陈文.大源渡库区表层 沉积物中重金属污染状况[J ].环境化学,2002,21(1):100-102. 第一作者简介:王贵(1961-),男,汉族,内蒙古包头市人,教授,主要从事环境地球化学研究工作。 The a ssess m en t of heavy m eta l pollution for the sed i m en ts of J i aozhou Bay W A N G Gu i ,YA O D e (Chem istry D epartm en t ,B ao tou T eacher’s Co llege ,B ao tou ,Inner M ongo lia 014030) (Co llege of Resource and Environm ental Engineering ,Shandong U niversity of Techno logy ,Zibo ,Shandong 255091)Abstract :Po ten tial eco logical risk (R I )and Geoaccum u lati on index (Igeo )w ere ap lied fo r heavy m etal po llu ti on assess m en t in J iaozhou B ay .T he resu lts show ed that the m iddle level po llu ti on s w ere ex isted in J iaozhou B ay .T he Igeo indexes w ere from 1to 4and R I values w ere m o stly betw een 100 ~300.A h igher R I value of abou t 600w as app eared in the sedi m en ts of H ai po R iver estuary ,w h ich show ed a com p aratively heavier po llu ti on ex ist there .T he con sequence of po ten tial eco logical risk fo r heavy m etals w as Cd >Pb >Cu >A s >Zn . Key words :J iaozhou B ay ;sedi m en t ;heavy m etal ;po llu ti on ass ;ess m en t 收稿日期:2005年6月28日 3  2005年第7期 内蒙古石油化工

高效液相色谱法简介

高效液相色谱法简介 “色谱”一词是由俄国科学家斯威特提出的。色谱法是基于补充物质在相对运动物的两相之间分布时,物理或物理化学性质的微小的差异而使混合物相互分离的一类分离或分析方法。发展与上世纪初,飞速发展于五十年代,有超过30位科学家家因为它而获得诺贝尔奖,其有自己的理论和研究方法,同时也有众多的应用领域。 色谱法常见的方法有:柱色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。 柱色谱:柱色谱法是最原始的色谱方法,这种方法将固定相注入下端塞有棉花或滤纸的玻璃管中,将被样品饱和的固定相粉末摊铺在玻璃管顶端,以流动相洗脱。常见的洗脱方式有两种,一种是自上而下依靠溶剂本身的重力洗脱,一种是自下而上依靠毛细作用洗脱。收集分离后的纯净组分也有两种不同的方法,一种方法是在柱尾直接接受流出的溶液,另一种方法是烘干固定相后用机械方法分开各个色带,以合适的溶剂浸泡固定相提取组分分子。柱色谱法被广泛应用于混合物的分离,包括对有机合成产物、天然提取物以及生物大分子的分离。 薄层色谱:薄层色谱法是应用非常广泛的色谱方法,这种色谱方法将固定相图布在金属或玻璃薄板上形成薄层,用毛细管、钢笔或者其他工具将样品点染于薄板一端,之后将点样端浸入流动相中,依靠毛细作用令流动相溶剂沿薄板上行展开样品。薄层色谱法成本低廉操作简单,被用于对样品的粗测、对有机合成反应进程的检测等用途。

气相色谱:GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。气相色谱被广泛应用于小分子量复杂组分物质的定量分析。 高效液相色谱:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9-107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。高效液相色谱(HPLC)是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效

高效液相色谱法测定甲硝唑的含量

实验二高效液相色谱法测定甲硝唑的含 量 一、实验目的 1.熟悉高效液相色谱仪主要结构组成及功能。 2.了解反相色谱法的原理、优点和应用。 3.了解流动相的选择依据及配制方法。 4.掌握高效液相色谱法进行定性和定量分析的基本方法。 二、实验原理 高效液相色谱法是采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱进行分离测定的色谱方法。注入的供试品,由流动相带入柱内,各成分在柱内被分离,并依次进入检测器,由数据处理系统记录色谱信号。本实验以甲硝唑为测定对象,以反相HPLC来分离检测未知样中甲硝唑的含量。以甲硝唑标准系列溶液的色谱峰面积对其浓度进行线性回归,再根据样品中甲硝唑的峰面积,由线性方程计算其浓度。 三、实验内容 (一)实验仪器与材料 1.实验仪器:高效液相色谱仪、精密天平、50mL烧杯、玻璃棒、称量纸、10mL容量瓶、50mL 容量瓶、注射器、洗瓶。 2.实验材料:甲硝唑原料、蒸馏水、HCl(0.1mol/L)、乙腈、三氟乙酸、超纯水。 (二)实验内容 1、色谱操作条件的制定: 色谱柱:C18柱(250×4.6mm,5μm); 流动相:乙腈:0.02%三氟乙酸水溶液(20:80) 流速:1mL/min 检测波长:277nm 柱温:35℃ 进样量:20μL 2、标准溶液配制 精密称取在105℃条件下干燥至恒重的甲硝唑对照品10mg,置于50mL容量瓶中,用0.1mol/L的HCl溶液溶解并定容至刻度,即得浓度为0.2mg/mL的甲硝唑标准储备液,备用。 3、标准曲线的建立 (1)精密量取甲硝唑标准储备液分别为0.3mL、0.5 mL、0.7 mL、0.9 mL、1.1 mL置于10 mL的容量瓶中,然后用0.1mol/L的HCl溶液定容至刻度,得到浓度梯度为6μg/mL、10μg/mL、14μg/mL、18μg/mL和22μg/mL的标准溶液,分别过0.22μm的微孔滤膜过滤,滤

高效液相色谱法在药物分析中的研究进展

高效液相色谱法在药物分析中的研究进展 摘要:高效液相色谱法作为药物分析的常规方法应用广泛,本文对其在药物含量测定及药代动力学研究上的应用进行综述。 关键词:高效液相色谱法;药物分析;研究;进展 高效液相色谱法(High Performance Liquid Chromatogra phy,HPLC)是一项柱色谱分离技术,因分析速度快、分离效率高、检测灵敏度高、检测自动化、适用范围广、组分易回收、样品处理较简单等特点已广泛应用于各种药物及其制剂的分析测定。随着与质谱、核磁共振波谱等的联用技术的发展,HPLC的应用将愈加广泛[1]。 一、高效液相色谱法作为药物分析的常规方法在药物分析中的应用 高效液相色谱法作为药物分析中的最主要的分析方法,常被作为常规分析和检验方法[2]。近年来这个方面的研究较多,陈英红等通过对人参糖肽注射液中多糖1-苯基-3-甲基-5-吡唑啉酮柱前衍生化,采用高效液相色谱法进行组成糖分析,建立了人参糖肽注射液特征图谱。该方法操作简便,分离度高,重复性及稳定性良好,可有效控制人参糖肽注射液的质量,同时可作为酸性杂多糖的测定方法。陈金泉等建立

抗艾滋病药物更昔洛韦、阿昔洛韦、喷昔洛韦和伐昔洛韦的HPLC快速检测方法。采用同一色谱体系实现对四种药物的分析,该检测方法快速、简便,准确。这些研究充分利用了高效液相色谱操作简单,灵敏度高,回收率高的特点。 二、高效液相色谱在药物分析测定中的研究进展 高效液相色谱法是一种集分离和测定为一体的分析方法,其作为药物分析中药物鉴别、杂质检查及含量测定的重要方法。 (一)在鉴别中的应用。HPLC用于药物鉴别时,一般规定按供试品含量测定项下的高效液相色谱条件进行实验。要求供试品和对照品色谱峰的保留时间一致。在HPLC法中,保留时间与组分的结构和性质有关,是定性的参数。如头抱拉定、头孢噻酚钠等头孢类药物以及地西泮注射液、曲安奈德注射液等多种药物均采用HPLC法进行鉴别。 (二)在有关物质检查中的应用。目前药品的有关物质的检查方法主要有薄层色谱法(TLC)、高效液相色谱法(HPLC)、气相色谱法(GC)、紫外分光光度法(UV)及容量分析法等多种。近年来随着仪器分析技术的发展,HPLC 分离效果佳分离速度快的特点使其成为最主要的检测有关 物质的方法。 (三)在药物(含中药)成分含量测定上的应用。在药物分析中,高效液相色谱由于其专一性,灵敏度高,快速简

高效液相色谱方法的验证

高效液相色谱方法的验证 ?方法验证的目的 ?方法验证的内容 ?方法验证的项目及测定方法

方法验证的目的 目的:证明采用的方法适合相应检测的要求。 方法验证是实验室针对特定方法的研究过程,通过设计方案,有步骤、系统地收集、处理实验数据,最终形成文件,以证明所用试验方法准确、灵敏、专属并重现。同一分析方法用于不同的检测项目会有不同的验证要求。

方法验证的内容 ?准确度 ?精密度 ?专属性 ?检测限 ?定量限 ?线性和范围 ?耐用性

准确度 定义:方法测定结果与真实值或参考值的接近程度。一般用回收率%表示。 1. 主成分含量测定 原料药:对照品或方法比对 2. 制剂、中药:标准加样回收 杂质定量 测定:加样回收(n 3 9) 杂质对照品 方法比对 回收率 C-A %=′ B 100% 杂质与主成分的相对含量 A:试验供试品中被测成分的量 (通常为含量测定量的50%) B: 试验供试品中加入的对照品的量 (通常为±20%) C:试验测定值

精密度 定义:在规定测试条件下,同一个均匀供试品,经多次取样测定所得结果之间的接近程度。一般用偏差,相对偏差和相对标准偏差 1. 重复性(n 9) 3 2. 中间精密度 3. 重复性 测定:HPLC方法的精密度测试,应从样品制备开始,设计3个浓度, 分别平行制备3份,以测定含量计算相对标准偏差;或同一样品平行制备6份供试品,分别进样,以峰面积计算相对标准偏差。 同一份供试品连续进样6次,计算得到的相对标准偏差只能表征进样精密度,不能作为方法精密度。

专属性 定义:在其它成分可能存在下,方法能正确测定出被测物的特性。 1. 鉴别反应 2. 含量测定 杂质测定 测定: 限量检查 空白制剂,模拟复方 加速破坏试样测试 DAD峰纯度检查

高效液相色谱法测定氨基酸

脑蛋白水解物溶液氨基酸含量分析方法研究方案 1、仪器与试药 1.1 仪器 1525型高效液相色谱仪(美国Waters公司);Waters1525型泵,Waters2487型检测器,Waters5CH 型柱温箱,WatersBREEZE数据处理软件,水浴恒温器(精度±0.1℃),旋涡器,微量移液器,衍生专用管;CP225D型分析天平(德国);4umNora-Pak TM C18(3.9mm×150mm,5μm)色谱柱(美国) 1.2 药品与试剂 16种氨基酸(门冬氨酸、丝氨酸、谷氨酸、甘氨酸、组氨酸、精氨酸、苏氨酸、丙氨酸、脯氨酸、缬氨酸、甲硫氨酸、赖氨酸、异亮氨酸、亮氨酸、苯丙氨酸、色氨酸)由中国药品生物制品检定所提供。 脑蛋白水解物注射液,云南盟生药业有限公司生产,规格10ml/支。批号:2013、2013、2013. 乙腈(HPLC级);EDTA(分析纯);磷酸(分析纯);二乙胺(分析纯);三水合乙酸钠(分析纯)。2、方法与结果 2.1色谱条件流动相A为AccQTag醋酸—磷酸盐缓冲液;由AccQTagEluent A浓缩制备AccQTag洗脱液,用前稀释10倍(或按以下方法配制:称19.04g三水合乙酸钠,加1000ml纯化水,搅拌,溶解,用50%H3PO4将pH调至5.2,加入1ml 1mg/ml的EDTA溶液,加入2.37ml二乙胺,用50%H3PO4滴定至pH4.95,用水溶性过滤器过滤,超声,脱气,备用。);流动相B为60% HPLC级乙腈,按梯度表梯度洗脱;流速1.0ml/min;检测波长为254nm;进样量5μl;柱温38℃。

时间 (min) 流速 (ml/min) % A % B 曲线 起始 1.0 100 0 * 0.5 1.0 98 2 6 15.0 1.0 93 7 6 19.0 1.0 90 10 6 32.0 1.0 65 35 6 33.0 1.0 65 35 6 34.0 1.0 0 100 6 37.0 1.0 0 100 6 38.0 1.0 100 0 6 42.0 1.0 100 0 6 2.2对照品溶液、供试品溶液的制备分别精密称取16种氨基酸标准品,用纯化水配制成浓度如下表 所示的混合溶液。 名称浓度(mg/ml)名称浓度(mg/ml)名称浓度(mg/ml)门冬氨酸 4.80 苏氨酸 1.20 异亮氨酸 1.10 丝氨酸 2.60 丙氨酸 2.50 亮氨酸 2.70 谷氨酸 6.20 脯氨酸 2.00 苯丙氨酸 1.20 甘氨酸 2.40 缬氨酸 1.60 色氨酸0.40 组氨酸0.90 甲硫氨酸 1.00 精氨酸 1.20 赖氨酸 3.45 取上述溶液0.1ml,加纯化水0.9ml,旋涡器混匀,作为对照品溶液;取脑蛋白水解物注射液,加水稀释成含总氮为1mg/ml的溶液,取0.1ml,加纯化水0.9ml,旋涡器混匀,作为供试品溶液。 衍生剂配制将水浴锅设置55℃,加热,待温度稳定, 取AccQFluor衍生剂2A,轻轻弹击,确保AccQFluor 衍生剂2A粉末全落在瓶底,吸取AccQFluor衍生稀释剂2B 1ml并放掉,清洗移液器管,再吸取AccQFluor 衍生稀释剂2B 1ml,加入AccQFluor衍生剂2A的瓶中,振荡10秒钟,在恒温水浴锅中溶解,保持10分钟。于干燥器中室温保存一周,于干燥器中4℃保存二周。 2.3测定方法分别取20ul对照品溶液和供试品溶液加入衍生专用管底部,加入60uLAccQFluor硼酸

高效液相色谱法在中药指纹图谱中的应用现状及分析(一)

高效液相色谱法在中药指纹图谱中的应用现状及分析(一) 【关键词】高效液相色谱法 摘要:综述了高效液相色谱(HPLC)法指纹图谱在中药质量控制方面的应用,并通过供试品的制备、标准品的选择、结果分析方法来阐述中药指纹图谱的应用现状,指出高效液相色谱法应用于中药指纹图谱中现有不足之处和未来的发展方向。 关键词:高效液相色谱;中药指纹图谱ApplicationandAnalysisofFingerprintinTraditionalChineseMedicinebyHPLC Abstract:ThispapersummarizedtheapplicationoffingerprintoftraditionalChinesemedicinebyHPLCto thequalitycontrol.ItalsoreviewedtheactualityoffingerprintintraditionalChinesemedicinethroughth epreparationforsample,thechoiceforstandardsample,andthemethodofresultanalysis.Thenpointed outthemainproblemsatpresentandtheprospectivefutureinapplicationoffingerprintoftraditionalChi nesemedicinebyHPLC. Keywords:HPLC;FingerprintofTraditionalChinesemedicine 当前,中药指纹图谱技术在国内外已成为一种发展趋势。首先是美国食品与药品管理局(FDA)允许草药保健品申报资料可以提供色谱指纹图。世界卫生组织(WHO)在1996年草药评价指导原则中也规定:如果草药的活性成分不明,可以提供指纹图谱以证明产品质量的一致。欧共体也将指纹图谱监控技术应用于植物药质量控制〔1〕。我国自200008国家药品监督管理局颁发《中药注射剂指纹图谱研究的技术要求(暂行)》(国药管注〔2000〕348号)以来,中药指纹图谱的研究成为中药研究的热点。国家药品监督管理局要求到2002年末,所有申报的中药注射剂均应有相关的指纹图谱资料,包括中药原料、提取物、产品3种图谱,3种图谱的峰形必须有较大的相关性,否则不予受理〔2〕。 1中药指纹图谱 中药指纹图谱是一种综合的、宏观的和可量化的鉴别手段,用以对中药材和中成药进行鉴别真伪,评价原料药材、半成品和成品质量的均一性和稳定性。其基本属性是“整体性”和“模糊性”。“整体性”是指完整地比较色谱的特征“面貌”;“模糊性”强调的是对照品与待测样品指纹图谱的相似性〔3〕。指纹图谱一般包含两层含义:1.必须反映出该药材(或成药)有别于其他任何物质;2.对于中药材,指纹特征还能反应出产地和采收期不同而造成的差异;对于中成药,则能反映出同一产品不同批次间的质量差异,差异越小说明药材(或成药)的稳定性越好〔4〕。 2HPLC用于中药指纹图谱的情况 文献分布表明,对中药指纹图谱的研究始于1993年,从1993~1999年共发表11篇〔5〕,指纹图谱的研究基本处于未开发状态。而从2000年开始,研究中药指纹图谱的文献呈直线上升趋势,尤以近2年发展最快,与指纹图谱相关的文献报道就有上百篇,其中又以高效液相色谱法研究的指纹图谱居多,高效液相色谱以其应用的广泛性,检测的精确性成为控制中药质量最主要的检测方法。至今已有50种中药材,21种中成药运用HPLC法测定其指纹图谱并发表。 据文献统计,目前已对下列中药材运用HPLC进行了指纹图谱研究:枸杞、柴胡、新疆雪莲、夏天无、延胡索、白芍、白鲜皮、板蓝根、补骨脂、黄芩、赤芍、川东獐牙菜、川芎、刺五加、大黄、丹参、当归、地黄、茯苓、麻黄、甘草、葛根、马甲、红车轴草、红花、厚朴、怀牛膝、鸡血藤、金银花、绿衣枳实、密花石斛、牛膝、秦艽、人参、西洋参、忍冬、山银花、山楂、芍药、水蔓菁、乌拉尔甘草、五味子、石斛、仙茅、旋覆花、淫羊藿、三七、泽泻、栀子、西红花。中成药中采用HPLC进行指纹图谱研究的有:咳必安胶囊、灯盏花素注射液、白屈菜注射液、板蓝根颗粒、补肾方、川芎制剂、丹参注射液、丹参葡萄糖注射液、复方丹参片、参麦注射液、红花注射液、红景天注射剂、黄连解毒汤、脉络宁注射液、人参

(推荐)高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

通则0512高效液相色谱法

高效液相色谱法: 系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测, 由积分仪或数据处理系统记录和处理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。 色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。 超高液相色谱仪:是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、 高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱: 以键和非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱: 用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶 和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反向色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。

色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。 (2)检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器, 其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器, 其响应值不仅与被测物质的量有关,还与其结构有关; 蒸发光散射检测器和示差折光检测器为通用型检测器, 对所有物质均有响应,结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一 定范围内呈线性关系, 但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。 紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求; 采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。 蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 (3)流动相

高效液相色谱(HPLC)法测定邻苯二甲酸酯

高效液相色谱(HPLC )法测定邻苯二甲酸酯 一、实验目的: 1. 了解高效液相色谱仪原理; 2. 学习高效液相色谱仪的基本操作方法; 3. 利用高效液相色谱仪测定邻苯二甲酸酯、邻苯二乙酸酯、邻苯二丁酸酯的峰图和含量。 二、实验原理: ① 高效液相色谱法(High Performance Liquid Chromatography \ HPLC )是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。高效液相色谱法有“四高一广”的特点:高压、高速、高效、高灵敏度和应用范围广。该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。 在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。反之,则称为正相色谱分离系统。反相色谱系统所使用的流动相成本较低,应用也更为广泛。 定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R )的计算公式为: R = 2[t (R2)-t (R1)] /1.7*(W 1+W 2) //式中 t (R2)为相邻两峰中后一峰的保留时间;t (R1)为相邻两峰中前一峰的保留时间; W 1 及W 2为此相邻两峰的半峰宽。 除另外有规定外,分离度应大于1.5。 ② 本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE ,常被用作塑料增塑剂。它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。 但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。同时也有一定的致癌作用。 如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC 分离检测。 三.仪器与试剂 1、仪器 Agilent 1100高效液相色谱仪,50ul 微量注射器。 2、试剂 甲醇(色谱专用) ,高纯水,样品。 出峰次序 样品组成 1 邻苯二甲酸二甲酯(DMP ) 2 邻苯二甲酸二乙酯(DEP) 3 邻苯二甲酸二丁酯(DBP)

实用高效液相色谱法的建立破解版

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 色谱分离与在线检测技术已经成为当今分析化学的一门重要学科,而因其衍生出的相关产品也日益丰富。对色谱工作者来说,在面对具体方法开发中如何获得适当的分离度则成为关注的焦点。本文仅从网络上的资源收集简要介绍反相液相色谱法的建立思路。 一、 基本术语基本术语 读者可跳过本部分内容,直接阅读实例讲解部分 在评价色谱分离的品质时,通常用以下相关术语来反映色谱特征(如图1.): 图1. 典型色谱图 1. 保留因子(k): t t t k R ?= (1) 用于反映化合物的色谱保留性质,跟化合物性质有密切关系。如图1,设t R1 =3.65min, t 0 =1.20min, 则峰1的保留因子为:(3.65-1.20)/1.20=2.04 2. 拖尾因子(T f )

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 a b a f W W W T 2+= (2) 图2. 典型拖尾峰 在理想情况下,色谱峰为高斯型对称峰,其拖尾因子为1.0,但在实际情况中,由于化合物的二次保留等其他因素,色谱峰大多会呈现一定程度的拖尾。如图2中,该色谱峰的拖尾因子可计算得:{(41.5-37.0)+(37.0-35.0)}/{2*(37.0-35.0)}=1.63. 3. 理论塔板数(N )

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 图3. 峰高与峰宽的关系 2(16W t N R = (3) 或 2( 54.55 .0W t N R = (4) 注意:在上式中W 为图3中的W b ,为基线峰宽(4σ),W 0.5 为峰高一半处的峰宽W h (2.335σ), 并非峰宽的一半(2σ)。 设图1中峰1的基线峰宽为0.25min, 则塔板数为:16*(3.65/0.25)^2=3410 4. 分离因子(α) 10 212t t t t k k R R ??= =α (5) 又称两个色谱峰的相对保留值。只有当α>1时,两个色谱峰才有分离的可能性。 设在图1中峰2的保留时间为6.50min, 则分离因子为: (6.50-1.20)/(3.65-1.20)=2.16

高效液相色谱仪的综述

题目:高效液相色谱仪的综述 院 部 生命科学院 学科门类 生物仪器分析 专 业 生物技术一班 学 号 1111431017 姓 名 王伟康 指导教师 陈金武 2014年6月15日 装 订 线

摘要 目前,高效液相色谱(HPLC)法由于对复杂样品中的分析物具有极高的分离效率而成为最有效的分离方法。将具有高灵敏度的化学发光分析法和具有高分离效率的高效液相色谱分离法相结合已引起了国内外分析化学家的极大兴趣。本文简单概述了高效液相色谱化学发光的特点、发展史、检测原理、化学发光反应体系以及发展前景。 关键词:高效液相色谱仪发展历史原理应用 ABSTRACT At present, high performance liquid chromatography (HPLC) and become the most effective method for separating the separation efficiency of the analysis method of complex samples with high. Luminescence analysis method and high performance liquid with high separation efficiency of chemical with high sensitivity of chromatographic separation method has aroused great interest of chemists at home and abroad. This paper briefly introduces the characteristics, chemiluminescence HPLC detection principle, development history, chemiluminescence reaction system and the development prospects. Key words:High performance liquid chromatography;Development history;Principle;Application

高效液相色谱法测定有机化合物的含量

实验四高效液相色谱法测定有机化合物的含量 [目的要求] 1、了解仪器各部分的构造及功能。 2、掌握样品、流动相的处理,仪器维护等基本知识。 3、学会简单样品的分析操作过程。 [基本原理] 高效液相色谱仪液体作为流动相,并采用颗粒极细的高效固定相的主色谱分离技术,在基本理论方面与气相色谱没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质差别。与气相色谱相比,高效液相色谱对样品的适用性强,不受分析对象挥发性和热稳定性的限制,可以弥补气相色谱法的不足。 液相色谱根据固定向的性质可分为吸附色谱、键合相色谱、离子交换色谱和大小排阻色谱。其中反相键合相色谱应用最广,键合相色谱法是将类似于气相色谱中固定液的液体通过化学反应键合到硅胶表面,从而形成固定相。若采用极性键合相、非极性流动相,则称为正相色谱;采用非极性键合相,极性流动相,则称为反相色谱。这种分离的保留值大小,主要决定于组分分子与键合固定液分子间作用力的大小。 反相键合相色谱采用醇-水或腈-水体系作为流动相,纯水廉价易得,紫外吸收小,在纯水中添加各种物质可改变流动相选择性。使用最广泛的反相键合相是十八烷基键合相,即让十八烷基(C18H37―)键合到硅胶表面,这也就是我们通常所说的碳十八柱。 [仪器试剂] 高效液相色谱仪(包括储液器、高压泵、自动进样器、色谱柱、柱温箱、检测器、工作站)、过滤装置 待测样品(浓度约100 ppm)、甲醇、二次水 [实验步骤] 1、仪器使用前的准备工作 (1)样品与流动相的处理 配好的溶液需要用0.45 μm的一次性过滤膜过滤。纯有机相或含一定比便例有机相的就要用有机系的滤膜,水相或缓冲盐的就要用水系滤膜。 水、甲醇等过滤后即可使用;水放置一天以上需重新过滤或换新鲜的水。含稳定剂的流动相需经过特殊处理,或使用色谱纯的流动相。 (2)更换泵头里清洗瓶中的清洗液 流动相不同,清洗液也不同,如果流动相为甲醇-水体系,可以用50%的甲醇;如果流动相含有电解质,通常用95%去离子水甚至高纯水。 如果仪器经常使用建议每周更换两次,如果仪器很少使用则每次使用前必须更换。(3)更换托盘里洗针瓶中的洗液 洗液一般为:50%的甲醇。

最新高效液相色谱法测定维生素C

高效液相色谱法测定维生素C的含量 【摘要】高效液相色谱法已经成为解决生命科学、医药学发展中各种难题的重要手段,在实验室中也广泛应用于物质的定性定量分析。本实验中利用高效液相色谱法对维生素C进行定量分析,所采用的定量分析方法为外标法,通过做出标准溶液浓度与峰面积的标准曲线进而对样品中的维生素C进行定量检测。 【关键词】高效液相色谱法、维生素C、含量 1、引言 维生素 C(Vitamin C, Vc)又叫抗坏血酸,是一种水溶性维生素。Vc 在体内参与多种反应,如氧化还原过程,在生物氧化和还原作用以及细胞呼吸中起重要作用。人体内缺乏 Vc 时容易导致坏血病。同时,由于 Vc 是一种水溶性的强有力抗氧化剂并参与胶原蛋白的合成,它同时还具有防癌、预防动脉硬化、治疗贫血、抗氧化和提高人体免疫力等功效。Vc 在蔬果中普遍存在,尤其是柑桔类水果中含量较高。樱桃、番石榴、辣椒、猕猴桃等水果中 Vc 含量在 50-300 mg/100 g。 溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于 60 年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressure Liquid Chromatography,HPLC)。HPLC 系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部件。有的仪器还有梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代 HPLC 仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型 HPLC 仪还备有自动馏分收集装置。 2、HPLC测定维生素C的含量 2.1、仪器试剂 2.1.1、仪器 高效液相色谱仪(Agilent1260),色谱柱:C18 柱 (250 mm×4.6 mm, I.D.5 μm);平头进样器。 2.1.2、试剂 乙腈(色谱纯),冰乙酸,维生素 C,磷酸二氢钾等均为分析纯,实验用水为超纯水。

高效液相色谱法综述

高效液相色谱法 前言: 高效液相色谱法适用的范围很广,是非常重要的分析方法之一,它在医药学及生命科学中成为一种主要的分离检测手段。与分离方法的迅速发展的同时,检测技术的不断进步也是高效液相色谱技术得到广泛应用的原因之一。近年来高效液相色谱检测技术从最常用的紫外可见分光光度检测器和差示折光检测器开始,已经发展了诸如能够实时定性和定量的二极管阵列紫外可见分光光度检测器,能够快速扫描和光谱分辨率更高的色散型紫外可见分光光度检测器以及适用于生物化学的电化学检测器等。各种联用检测手段如与质谱联用的热喷雾和粒子束接口等已日趋成熟,与傅里叶变换红外光谱和拉曼光谱的联用技术亦在发展中。各种检测器的灵敏度、线性范围、稳定性和重现性等主要指标日益提高。许多新的检测手段已为科技工作者所熟悉和使用。目前比较引人注目和发展较快的为手性化合物的直接检测和通用型质量检测技术。 分离原理 在互不相溶的两相——流动相和固定相的体系中,当两相作相对运动时,第三组分(即溶质或吸附质)连续不断地在两相之间进行分配,这种分配过程即为色谱过程。由于流动相、固定相以及溶质混合物性质的不同,在色谱过程中溶质混合物中的各组分表现出不同的色谱行为,从而使各组分彼此相互分离,这就是色谱分析法的实质。也就是说,当一种不与被分析物质发生化学反应的被称为载气的永久性气体(例如H2、N2、He、 Ar 、CO2等)携带样品中各组分通过装有固定相的色谱柱时,由于试样分子与固定相分子间发生吸附、溶解、结合或离子交换,使试样分子随载气在两相之间反复多次分配,使那些分配系数只有微小差别的组分发生很大的分离效果,从而使不同组分得到完全分离,例如一个试样中含A、B二个组分,已知B组分在固定相中的分配系数大于A,即K B > K A,如图1-1所示。

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC 主要内容包括: 1.高效液相色谱法(HPLC)的概述 2. 高效液相色谱基础知识介绍(1——13楼) 3. 高压液相色谱HPLC发展概况、特点与分类 4. 液相色谱的适用性 5.应用 高效液相色谱法(HPLC)的概述 以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。 由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有5 0种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。 高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。 目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。C18(ODS)为最常使用的化学键合相。 根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相

的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。 在中药制剂分析中,大多采用反相键合相色谱法。 系统组成: (一)高压输液系统 由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。 1.贮液罐 由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。2.流动相 流动相常用甲醇-水或乙腈-水为底剂的溶剂系统。 流动相在使用前必须脱气,否则很易在系统的低压部分逸出气泡,气泡的出现不仅影响柱分离效率,还会影响检测器的灵敏度甚至不能正常工作。脱气的方法有加热回流法、抽真空脱气法、超声脱气法和在线真空脱气法等。 3.高压输液泵 是高效液相色谱仪的关键部件之一,用以完成流动相的输送任务。对泵的要求是:耐腐蚀、耐高压、无脉冲、输出流量范围宽、流速恒定,且泵体易于清洗和维修。高压输液泵可分为恒压泵和恒流泵两类,常使用恒流泵(其压力随系统阻力改变而流量不变)。 (二)进样系统 常用六通阀进样器进样,进样量由定量环确定。操作时先将进样器手柄置于采样位置(L OAD),此时进样口只与定量环接通,处于常压状态,用微量注射器(体积应大于定量环体积)注入样品溶液,样品停留在定量环中。然后转动手柄至进样位置(INJECT),使定量环接入输液管路,样品由高压流动相带入色谱柱中。 (三)色谱柱 由柱管和填充剂组成。柱管多用不锈钢制成。柱内填充剂有硅胶和化学键合固定相。在化学键合固定相中有十八烷基硅烷键合硅胶(又称ODS柱或C18柱)、辛烷基硅烷键合硅

相关文档
最新文档