工程材料及其性能指标
工程材料力学性能

工程材料力学性能引言工程材料的力学性能是指材料在受力作用下的力学行为和性质。
工程材料力学性能的研究对于工程设计、材料选择和结构安全等方面具有重要意义。
本文将对工程材料的力学性能进行详细阐述。
工程材料的力学性能指标弹性模量弹性模量是衡量材料抵抗变形的能力的一个重要指标。
它是在材料受压缩或拉伸力作用下,材料内部原子和分子之间的相对位移产生时所产生的应力与应变之比。
弹性模量越大,材料的刚度就越大,抵抗变形的能力越强。
屈服强度屈服强度是指材料在受力作用下开始变形的临界点。
当应力达到一定值时,材料开始发生塑性变形,无法恢复到原来的形状。
屈服强度常用于材料的强度设计和材料性能的比较。
抗拉强度抗拉强度是指材料在受拉力作用下的最大承载能力。
抗拉强度可以反映材料的抵抗拉断能力,是工程结构的安全性能的重要指标。
断裂韧性是指材料在断裂前能吸收的总能量。
它是衡量材料抵抗断裂能力的重要指标。
材料的断裂韧性越高,代表其在受外力作用下具有较好的耐久性和抗冲击性。
硬度硬度是指材料的抵抗划痕、穿刺和压入等形变的能力。
硬度可以反映材料的抗划痕和抗磨损能力。
常用的硬度测试方法包括洛氏硬度、布氏硬度和维氏硬度等。
蠕变性能蠕变性能是指材料在常温和高温下长期受持续载荷作用时的变形行为。
材料的蠕变性能对于结构的稳定性和耐久性具有重要影响。
工程材料力学性能的实验测试方法为了评估材料的力学性能,常常需要进行实验测试。
以下是几种常见的工程材料力学性能测试方法:拉伸测试拉伸测试是评估材料抗拉性能的常用方法。
通过施加恒定的拉力,测量材料的应变和应力,从而得到材料的拉伸强度、屈服强度和延伸率等力学性能参数。
压缩测试是评估材料抗压性能的常用方法。
通过施加恒定的压力,测量材料的应变和应力,从而得到材料的压缩强度和压缩模量等力学性能参数。
弯曲测试弯曲测试是评估材料耐弯曲性能的常用方法。
通过施加力矩,使材料发生弯曲变形,测量材料的应变和应力,从而得到材料的弯曲强度和弯曲模量等力学性能参数。
工程材料力学性能

工程材料力学性能1. 引言工程材料力学性能是指材料在外力作用下的力学行为和性能特征。
能够准确评估材料的力学性能对于工程设计和材料选择具有重要意义。
本文将介绍一些常见的工程材料力学性能参数及其测试方法。
2. 抗拉强度抗拉强度是衡量材料抗拉能力的指标,通常用Mpa(兆帕)表示。
该值表示材料能够承受的最大拉伸力。
一般情况下,抗拉强度越高,材料的抗拉性能越好。
抗拉强度的测试可以通过拉伸试验来完成。
在拉伸试验中,标准试样会受到均匀的拉力,直到发生材料破裂。
通过测量试样的最大载荷和横截面积,可以计算出抗拉强度。
3. 弹性模量弹性模量是衡量材料刚性和变形能力的指标,通常用Gpa (千兆帕)表示。
弹性模量越大,材料的刚性越好,变形能力越小,即材料在外力作用下不容易发生变形。
弹性模量的测试可以通过弹性试验来完成。
在弹性试验中,标准试样会受到一定的载荷,然后释放。
通过测量载荷-变形关系的斜率,即应力-应变的比值,可以计算出弹性模量。
4. 屈服强度屈服强度是材料在拉伸过程中突破弹性极限后的抗拉能力,通常用Mpa表示。
屈服强度代表了材料的韧性和延展性。
材料的屈服强度越高,其抗变形性能越好。
屈服强度的测试可以通过拉伸试验或压缩试验来完成。
在拉伸试验中,标准试样会受到逐渐增加的拉力,直到发生塑性变形。
通过测量试样的屈服点和横截面积,可以计算出屈服强度。
5. 硬度硬度是衡量材料抗外界划痕和压痕能力的指标。
常见的硬度测试方法包括布氏硬度(HB)、维氏硬度(HV)、洛氏硬度(HRC)等。
硬度测试方法根据材料的硬度特性进行选择。
例如,布氏硬度适用于较软的金属材料,而维氏硬度适用于硬度较高的金属材料。
硬度的测试结果通常以单位压力下形成的压痕直径或者硬度值表示。
6. 断裂韧性断裂韧性是衡量材料抵抗破裂扩展的能力以及吸收塑性能力的指标。
常用的断裂韧性测试包括冲击试验和拉伸试验。
冲击试验通常用于低温下材料的断裂韧性测试。
在冲击试验中,冲击试样受到快速施加的冲击载荷,通过测量试样的断裂能量和断口形貌,可以评估材料的断裂韧性。
工程材料名词解释

工程材料名词解释一、性能㈠使用性能1、力学性能⑴刚度:材料抵抗弹性变形的能力。
指标为弹性模量:⑵强度:材料抵抗变形和破坏的能力。
指标:抗拉强度σ b—材料断裂前承受的最大应力。
屈服强度σ s—材料产生微量塑性变形时的应力。
条件屈服强度σ 0.2—残余塑变为0.2%时的应力。
疲劳强度σ -1—无数次交变应力作用下不发生破坏的最大应力。
⑶塑性:材料断裂前承受最大塑性变形的能力。
指标为⑷硬度:材料抵抗局部塑性变形的能力。
指标为HB、HRC。
⑸冲击韧性:材料抵抗冲击破坏的能力。
指标为αk.材料的使用温度应在冷脆转变温度以上。
⑹断裂韧性:材料抵抗内部裂纹扩展的能力。
指标为K1C。
2、化学性能⑴耐蚀性:材料在介质中抵抗腐蚀的能力。
⑵抗氧化性:材料在高温下抵抗氧化作用的能力。
3、耐磨性:材料抵抗磨损的能力。
㈡工艺性能1、铸造性能:液态金属的流动性、填充性、收缩率、偏析倾向。
2、锻造性能:成型性与变形抗力。
3、切削性能:对刀具的磨损、断屑能力及导热性。
4、焊接性能:产生焊接缺陷的倾向。
5、热处理性能:淬透性、耐回火性、二次硬化、回火脆性。
二、晶体结构㈠纯金属的晶体结构1、理想金属⑴晶体:原子呈规则排列的固体。
晶格:表示原子排列规律的空间格架。
晶胞:晶格中代表原子排列规律的最小几何单元.⑵三种常见纯金属的晶体结构⑶立方晶系的晶面指数和晶向指数①晶面指数:晶面三坐标截距值倒数取整加()②晶向指数:晶向上任一点坐标值取整加[ ]立方晶系常见的晶面和晶向⑷晶面族与晶向族指数不同但原子排列完全相同的晶面或晶向。
⑸密排面和密排方向——同滑移面与滑移方向在立方晶系中,指数相同的晶面与晶向相互垂直。
2、实际金属⑴多晶体结构:由多晶粒组成的晶体结构。
晶粒:组成金属的方位不同、外形不规则的小晶体.晶界:晶粒之间的交界面。
⑵晶体缺陷—晶格不完整的部位①点缺陷空位:晶格中的空结点。
间隙原子:挤进晶格间隙中的原子。
置换原子:取代原来原子位置的外来原子。
建筑材料选用的主要技术指标及其评价

建筑材料选用的主要技术指标及其评价在建筑工程中,建筑材料的选用是至关重要的环节。
正确选择合适的建筑材料不仅关系到建筑物的质量和安全性,还会对工程的成本、工期和可持续性产生深远影响。
而要做出明智的选择,就必须了解建筑材料的主要技术指标,并能够对其进行准确的评价。
一、建筑材料的分类建筑材料种类繁多,大致可以分为结构材料、装饰材料和功能材料三大类。
结构材料主要用于承担建筑物的荷载,如钢材、混凝土、木材等。
装饰材料用于美化建筑物的外观和内部环境,如涂料、壁纸、瓷砖等。
功能材料则具有特定的功能,如保温材料、防水材料、隔音材料等。
二、主要技术指标1、物理性能指标(1)密度:材料在绝对密实状态下单位体积的质量。
密度的大小直接影响材料的自重和运输成本。
(2)孔隙率:材料内部孔隙体积占总体积的比例。
孔隙率会影响材料的强度、吸水性和保温性能等。
(3)吸水性:材料在水中吸收水分的能力。
吸水性强的材料在潮湿环境中容易导致性能下降。
(4)耐水性:材料在长期浸泡在水中而不破坏的性质。
这对于经常接触水的建筑部位至关重要。
2、力学性能指标(1)强度:材料抵抗外力破坏的能力,包括抗压强度、抗拉强度、抗弯强度等。
强度是衡量材料质量的重要指标。
(2)弹性模量:材料在受力时产生的弹性变形程度。
弹性模量越大,材料越不容易发生变形。
(3)韧性:材料在冲击或振动荷载作用下吸收能量而不破坏的能力。
韧性好的材料能够提高建筑物的抗震性能。
3、化学性能指标(1)耐腐蚀性:材料抵抗化学介质侵蚀的能力。
在一些特殊环境中,如化工厂附近,材料的耐腐蚀性尤为重要。
(2)耐久性:材料在长期使用过程中保持其性能稳定的能力。
耐久性好的材料能够延长建筑物的使用寿命。
4、热工性能指标(1)导热系数:材料传递热量的能力。
导热系数小的材料具有良好的保温隔热性能。
(2)比热容:单位质量的材料温度升高 1 摄氏度所吸收的热量。
比热容大的材料能够在一定程度上调节室内温度。
5、防火性能指标(1)燃烧性能:材料燃烧的难易程度和火焰传播速度。
常用建筑材料质量技术指标

常用建筑材料质量技术指标1. 引言建筑材料是建筑工程中至关重要的组成部分。
为了保证建筑工程的质量和安全,需要对常用建筑材料的质量进行严格监控和评估。
本文将介绍常用建筑材料的质量技术指标,包括水泥、钢筋、砖块和玻璃等。
2. 水泥的质量技术指标水泥是建筑中常用的材料之一,在混凝土制作中起到粘合作用。
水泥的质量直接影响到混凝土的强度和耐久性。
以下是水泥常用的质量技术指标:•灼烧失重:水泥在高温下灼烧后的重量损失,一般不应超过5%。
•压缩强度:水泥的抗压能力,根据具体的使用需求,有不同的强度等级要求。
•凝结时间:水泥凝结成坚硬体的时间,应符合规定的时间范围。
•细度:水泥的颗粒大小,一般要求细度不小于300平方厘米/克。
3. 钢筋的质量技术指标钢筋是混凝土结构中常用的增强材料,用于增加混凝土的抗拉强度。
以下是钢筋常用的质量技术指标:•强度:钢筋的抗拉力,一般根据具体的使用需求,有不同的强度等级要求。
•锚固性:钢筋与混凝土的粘结能力,要求牢固可靠。
•弯曲性:钢筋在施工过程中的弯曲性能,应能够满足变形要求。
•锈蚀性:钢筋的耐腐蚀性,要求能够长期保持稳定性。
4. 砖块的质量技术指标砖块是建筑中常用的墙体材料,用于搭建建筑结构。
以下是砖块常用的质量技术指标:•抗压强度:砖块的抗压能力,根据具体的使用需求,有不同的强度等级要求。
•吸水率:砖块吸水的能力,要求合理,以防止墙体渗水。
•尺寸误差:砖块的大小和形状误差,应符合规定的标准范围。
•导热系数:砖块导热能力的指标,决定了墙体的保温性能。
5. 玻璃的质量技术指标玻璃是建筑中常用的建材,用于窗户和隔断等。
以下是玻璃常用的质量技术指标:•视觉质量:玻璃的透明度和平整度,应无显著瑕疵。
•抗冲击性:玻璃的耐冲击能力,要求能够承受一定的冲击力。
•导热系数:玻璃导热能力的指标,决定了玻璃隔热性能。
•抗紫外线:玻璃的抗紫外线能力,以保护室内物品免受紫外线损害。
结论常用建筑材料的质量技术指标对于保证建筑工程的质量和安全至关重要。
最几种常用工程塑料及各项性能指标

最几种常用工程塑料及各项性能指标工程塑料是一类具有较高强度、良好的耐磨性和耐腐蚀性的塑料材料,广泛应用于各个领域的工程领域。
下面将介绍几种常用的工程塑料及其各项性能指标。
1.聚酰胺(PA):聚酰胺是一种高强度、高韧性的工程塑料,具有良好的力学性能和耐化学品性能。
其性能指标包括抗拉强度、弹性模量、热变形温度、表面硬度等。
2.聚碳酸酯(PC):聚碳酸酯是一种透明、高温耐性和耐冲击的工程塑料,广泛应用于电子产品、汽车零部件等领域。
其性能指标包括热变形温度、拉伸强度、冲击韧性等。
3.聚甲醛(POM):聚甲醛是一种具有良好机械性能、化学稳定性和耐磨性的工程塑料,常用于制造齿轮、轴承和汽车零部件等。
其性能指标包括热变形温度、抗拉强度、冲击韧性等。
4.聚酯(PET):聚酯是一种优秀的塑料材料,具有优异的机械性能、热稳定性和电气性能。
其性能指标包括热变形温度、拉伸强度、介电常数等。
5.聚苯醚(PPE):聚苯醚是一种高强度、高耐热性和电绝缘性的工程塑料,常用于制造电子设备和电子部件。
其性能指标包括热变形温度、拉伸强度、电绝缘性等。
除了上述几种常用的工程塑料,还有聚酰亚胺(PI)、聚醚醚酮(PEEK)等在特定领域有广泛应用的工程塑料。
每种工程塑料都有独特的性能指标,因此在选择材料时需要根据具体的应用要求进行评估。
总结起来,工程塑料是一类具有高性能的塑料材料,常见的几种工程塑料包括聚酰胺、聚碳酸酯、聚甲醛、聚酯和聚苯醚等。
每种工程塑料都有不同的性能指标,包括抗拉强度、弹性模量、热变形温度、冲击韧性、介电常数等。
在工程领域中选择合适的工程塑料材料,需要根据具体的应用要求进行评估和选择。
工程材料及其性能指标

1.2 材料的力学性能
• (2)试验条件及应用根据压头的种类和总载荷的大小,洛氏硬度常用 的表示方式有HRA , HRB , HRC三种,见表1 -2,其中以HRC应用最 广,如洛氏硬度表示为62 HRC表示用金刚石圆锥压头,总载荷为1 471 N测得的洛氏硬度值
• (2)优缺点洛氏硬度测定设备简单,操作迅速方便,可用来测定各种 金属材料的硬度。测定仅产生很小的压痕,并不损坏零件,因而适合 于成品检验,但测一点无代表性,不准确,需多点测量,然后取平均 值
下一页 返回
1.2 材料的力学性能
• 2.内力与内应力 • 材料受外力作用时,为保持自身形状尺寸不变,在材料内部作用着
与外力相对抗的力,称为内力。内力的大小与外力相等,方向则与外 力相反,和外力保持平衡。单位面积上的内力称为应力。 • 3.载荷下的变形 • (1)弹性变形材料在载荷作用下发生变形,而当载荷卸除后,变形也 完全消失。这种随载荷的卸除而消失的变形称为弹性变形。 • (2)塑性变形当作用在材料上的载荷超过某一限度,此时若卸除载荷, 大部分变形随之消失(弹性变形部分),但还留下了不能消失的部分变 形,称为塑性变形,也称永久变形。 • 4.常用的力学性能指标 • 金属材料的力学性能是指材料在各种载荷作用下表现出来的抵抗变 形和断裂的能力。常用的力学性能指标有:强度、塑性、硬度、韧性 及疲劳强度等,另外还有粘弹性指标,它们是衡量材料性能和决定材 料应用范围的重要指标。
• 式中 бb—抗拉强度,MPa ;
•
Fb—试样在断裂前所受的最大外力,N;
• S0—试样原始截面积,mm2
• бs/бb的值称为屈强比。屈强比越小,工程构件的可靠性越高,也就
是万一超载也不致于马上断裂。但屈强比小,材料强度有效利用率也
机械工程材料材料性能

机械工程材料材料性能概述机械工程材料是用于制造机械零件和设备的材料。
材料性能是评估材料适用性的重要指标。
本文将介绍机械工程材料的材料性能,并深入讨论材料性能的几个关键方面。
强度和硬度强度是机械工程材料的一个重要性能指标,它表示材料抵抗外力的能力。
强度通常通过材料的屈服强度、抗拉强度和抗压强度来衡量。
屈服强度是材料在受力过程中开始发生可观变形的应力值,抗拉强度是材料在拉伸力下能承受的最大应力值,而抗压强度则是材料在受压力下能承受的最大应力值。
硬度是材料抵抗表面划伤或穿透的能力。
硬度测量可以使用各种硬度测试方法,例如洛氏硬度测试、布氏硬度测试和维氏硬度测试。
机械工程材料的强度和硬度取决于它们的化学成分、晶体结构和加工工艺。
通常情况下,高碳钢和合金钢具有较高的强度和硬度,而铝合金和镁合金则具有较低的强度和硬度。
韧性和脆性韧性是材料抵抗断裂的能力,也是衡量材料耐冲击性、耐疲劳性和耐剪切性的重要指标。
韧性较高的材料能够吸收大量的能量才发生破坏,而韧性较低的材料则容易发生断裂。
脆性是材料容易发生断裂的性质。
脆性材料在受到应力时会发生迅速且不可逆转的断裂,而韧性材料则会在受到应力时发生局部变形,使材料产生可逆的形变。
韧性和脆性之间有一个材料特性称为冷脆性。
冷脆性是指材料在低温下变得更加脆性的能力。
某些材料在低温下会变得非常脆弱,容易发生断裂。
疲劳性疲劳性是指材料在交替或反复加载下产生破坏的能力。
疲劳破坏是机械工程材料最常见的失效方式之一。
当材料受到交替或反复加载时,它会累积微小的应力和变形,最终导致疲劳破坏。
疲劳性能包括疲劳寿命和疲劳极限。
疲劳寿命是指材料承受一定载荷下的循环加载次数,达到失效的循环次数。
疲劳极限是指材料在无限次循环加载下能承受的最大应力水平。
机械工程材料的疲劳性能和寿命可以通过疲劳试验来评估和预测。
疲劳试验通常会在不同应力水平下进行,以确定材料的疲劳曲线和SN曲线。
耐腐蚀性耐腐蚀性是机械工程材料抵抗化学物质和环境侵蚀的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 材料的力学性能
• 2.内力与内应力 • 材料受外力作用时,为保持自身形状尺寸不变,在材料内部作用着
与外力相对抗的力,称为内力。内力的大小与外力相等,方向则与外 力相反,和外力保持平衡。单位面积上的内力称为应力。 • 3.载荷下的变形 • (1)弹性变形材料在载荷作用下发生变形,而当载荷卸除后,变形也 完全消失。这种随载荷的卸除而消失的变形称为弹性变形。 • (2)塑性变形当作用在材料上的载荷超过某一限度,此时若卸除载荷, 大部分变形随之消失(弹性变形部分),但还留下了不能消失的部分变 形,称为塑性变形,也称永久变形。 • 4.常用的力学性能指标 • 金属材料的力学性能是指材料在各种载荷作用下表现出来的抵抗变 形和断裂的能力。常用的力学性能指标有:强度、塑性、硬度、韧性 及疲劳强度等,另外还有粘弹性指标,它们是衡量材料性能和决定材 料应用范围的重要指标。
上一页 下一页 返回
1.2 材料的力学性能
• 由图1 -4可知,拉仲过程可分为如下几个阶段: • (1) Oe—弹性变形阶段试样在外力作用下均匀仲长,仲长量与拉
力大小保持正比关系,己点所对应的应力0e称为弹性强度或弹性极限。 • (2) es屈服阶段试样所受的载荷大小超过。点后,材料除产生弹
性变形外,开始出现塑性变形,拉力与仲长量之间不再保持正比关系, 拉力达到图形中、点后,即使拉力不再增加,材料仍会仲长一定距离, 即‘点右侧的接近水平或锯齿状的线段,此现象称为“屈服”,标志 着材料丧失抵抗塑性变形的能力,并产生微量的塑性变形。‘点所对 应的应力бs称为屈服强度或屈服极限
上一页 下一页 返回
1.1 工程材料及常用性能指标
• 1. 1. 2工程材料的常用性能指标 • 工程材料具有许多良好的性能,因此被广泛地应用于制造各种构件、
机械零件、工具和日常生活用具等为了正确地使用工程材料,应充分 了解和掌握材料的性能。通常所说工程材料的性能有两个方面的意义: 一是材料的使用性能,二是材料的工艺性能。 • 1.材料的使用性能 • 它是指材料在使用条件下表现出的性能,包括:强度、塑性、韧性等 力学性能;声光、电、磁等物理性能;以及耐蚀性、抗氧化、耐热性等 化学性能
• 式中 бs—屈服点,MPa ;
•Leabharlann Fs—试样开始屈服时所受的外力,N;
•
S0—试样原始截面积,mm2
• 无明显屈服现象的材料,用试样标距长度产生0. 2%塑性变形时的应 力值作为屈服强度,用б0.2表示,称为条件屈服强度,意义同бs。
上一页 下一页 返回
1.2 材料的力学性能
• (2)抗拉强度用符δb表示,指材料抵抗外力而不致断裂的最大应力值, 是机械零件评定和选材时的重要强度指标,计算公式为:
上一页 下一页 返回
1.2 材料的力学性能
• 1.布氏硬度 • (1)测定原理与方法布氏硬度试验原理如图1-5所示,用直径为D的硬
质合金钢球的压头,以规定的压力F压入被测试样表面,保持规定时 间后去除外力,在试样表面留下球形压痕。依据球面压痕单位表面积 (由尺寸d计算)上所承受的平均压力来测定布氏硬度值。布氏硬度常 用符号HBW表示,可按下面公式计算:
• 材料的一大特点就是要能为人类使用,另外,经济性也很重要,如 金刚石很硬,虽然一般来说硬的材料耐磨,但由于它的稀有和昂贵就 不适宜作为耐磨材料。要想合理使用材料,必须熟悉了解材料。本门 课程围绕材料的最基本问题展开,为合理使用与选用相关工程材料打 下基础。
下一页 返回
1.1 工程材料及常用性能指标
• 2.强度指标 • 根据外力作用方式的不同,强度有多种指标,如抗拉强度、抗压强
度、抗弯强度、抗剪强度和抗扭强度等,常用的强度指标有屈服强度 和抗拉强度。 •
上一页 下一页 返回
1.2 材料的力学性能
• (1)屈服强度用符A表示,指材料开始产生屈服现象时的最低应力,又 称屈服极限,是机械设计的主要依据,也是评定金属材料优劣的重要 指标,计算公式为:
• 式中 бb—抗拉强度,MPa ;
•
Fb—试样在断裂前所受的最大外力,N;
• S0—试样原始截面积,mm2
• бs/бb的值称为屈强比。屈强比越小,工程构件的可靠性越高,也就
是万一超载也不致于马上断裂。但屈强比小,材料强度有效利用率也
低。
上一页 下一页 返回
1.2 材料的力学性能
• 1. 2. 3硬度 • 硬度通常是指金属材料抵抗更硬物体压入其表面的能力,是金属抵
上一页 下一页 返回
1.2 材料的力学性能
• 2.洛氏硬度 • (1)原理与测定方法洛氏硬度试验以直径为1. 588mm的淬火钢球或顶
角为120。的金刚石圆锥作为压头,先施加初载荷F0、使压头与试样 表面良好接触,在施加主载荷F,保持规定时间后卸掉主载荷,依据 压入试样表面留下的深度来测定材料的洛氏硬度值,用符号HR表示, 采用1200的金刚石圆锥作为压头的试验原理如图1一7所示 • 材料的压痕深度越浅,其洛氏硬度越高;反之,洛氏硬度越低。计算 公式为:
上一页 下一页 返回
1.2 材料的力学性能
• (2)试验条件及应用根据压头的种类和总载荷的大小,洛氏硬度常用 的表示方式有HRA , HRB , HRC三种,见表1 -2,其中以HRC应用最 广,如洛氏硬度表示为62 HRC表示用金刚石圆锥压头,总载荷为1 471 N测得的洛氏硬度值
• (2)优缺点洛氏硬度测定设备简单,操作迅速方便,可用来测定各种 金属材料的硬度。测定仅产生很小的压痕,并不损坏零件,因而适合 于成品检验,但测一点无代表性,不准确,需多点测量,然后取平均 值
第1章 工程材料及其性能指标
• 1. 1 工程材料及常用性能指标 • 1. 2 材料的力学性能 • 1. 3 材料的物理及化学性能 • 1. 4 材料的工艺性能
1.1 工程材料及常用性能指标
• 材料是用来制作有用器件的物质,是人类生产和生活所必须的物质基 础。从日常生活用的器具到高技术产品,从简单的手工工具到复杂的 航天器、机器人,都是用各种材料制作而成或由其加工的零件组装而 成的。材料的发展水平和利用程度已成为人类文明进步的重要标志。
子,桌子所受的力;机床的床头箱对机床床身的压力等 • (2)冲击载荷突然增加或消失的载荷。例如:在墙上钉钉子,钉子所
受的力;空气锤锤头下落时锤杆所承受的载荷;冲压时冲床对冲模的冲 击作用等 • (3)交变载荷周期性的动载荷,如机床主轴就是在交变载荷的作用 下工作的 • 根据作用形式不同,载荷又可分为拉仲载荷、压缩载荷、弯曲载荷、 剪切载荷和扭转载荷等,如图1 -2所示
上一页 下一页 返回
1.1 工程材料及常用性能指标
• 当今社会科学技术突飞猛进,新材料层出不穷,而且使用量也不断增 加,但到目前为止,在机械工业中使用最多的材料仍然是金属材料。 金属材料长期以来得到如此广泛地应用,主要是因为它具有优良的使 用性能和加工工艺性能。金属材料是现代机械制造业的基本材料,广 泛地应用于工业生产和生活用品制造中。
• 1. 1. 1工程材料及分类 • 1.工程材料 • 指在机械、船舶、化工、建筑、车辆、仪表、航空航天等工程领域
中用于制造工程构件和机械零件的材料。 • 2.分类 • 工程材料主要包括金属材料和非金属材料两大类。金属材料是以金
属元素或金属元素为主构成的具有金属特性的材料的统称,包括纯金 属、合金、金属间化合物和特种金属材料等;非金属材料包括高分子 材料、陶瓷材料和复合材料等
上一页 下一页 返回
1.2 材料的力学性能
• (2)试验规范硬度值的测定时,由于金属材料有硬有软,被测工件有 厚有薄,有大有小,如果只采用一种标准的试验力F和压头直径D, 就会对某些材料和工件产生不适应的现象,因此国标规定了常用布氏 硬度试验规范,见表1一1。
• (3)布氏硬度的测量工程实际中,硬度值不需按照数学公式计算。典 型的布氏硬度仪器如图1一6所示,不沦何种样式,标准配置中一般都 包括一个20倍的压痕读数显微镜,用于读取压痕直径d,根据压痕直 径与布氏硬度对照表(见附录2)可查出相应的布氏硬度值,这也是目 前大多数布氏硬度的测量手段,但会造成较大的人为测量误差,而且 工作效率极低。随着电子技术的进步,一种全新的、高智能化的便携 式布氏压痕自动测量仪已逐渐被采用,当在被测件上压好压痕后,只 要将测量头放置在压痕上即可通过硬度仪器的显示屏直接读取压痕直 径d,有的甚至还可直接读取布氏硬度值。
• 2.材料的工艺性能 • 它是指材料在加工过程中表现出的性能,如冷热加工、压力加工性能、焊接
性能、铸造性能、切削性能等
上一页
返回
1.2 材料的力学性能
• 1. 2. 1金属材料所受载荷与力学性能 • 1.金属材料承受的载荷 • 金属材料在加工和使用过程中所受到的外力称为载荷。按外力的作
用性质,常分为如下三种: • (1)静载荷大小不变或变化很慢的载荷。如:桌上放置重量不变的箱
上一页 下一页 返回
1.2 材料的力学性能
• (3) .sb—塑性变形阶段试样所受的载荷大小超过、点后,试样的变 形随拉力的增大而逐渐增大,试样发生均匀而明显的塑性变形。
• (4)bz---缩颈阶段当试样所受的力达到b点后,试样在标距长度内 直径明显地出现局部变细,即“缩颈”现象。由于截面积的减小,变 形集中在“缩颈”处,试样保持持续拉长到断裂所需的拉力逐渐下降, 在:点试样断裂。
抗其表面局部变形和破坏的能力,简单说就是材料的软硬程度。 • 通常材料越硬,其耐磨性越好。机械制造业所用的刀具、量具、模
具等,都应具备足够的硬度,才能保证使用性能和寿命。有些机械零 件如车轮、轴承等,也要求有一定的硬度,以保证足够的耐磨性和使 用寿命目前常用的硬度测量方法是压入法,主要有布氏硬度试验、洛 氏硬度试验和维氏硬度试验等,以布氏硬度、洛氏硬度应用较为广泛
上一页 下一页 返回
1.1 工程材料及常用性能指标
• 3.金属材料 • 金属材料又可分为黑色金属材料和有色金属材料两类,黑色金属材