风光互补发电技术
风光互补供电系统技术参数

风光互补供电系统技术参数一、引言在能源发展的背景下,传统能源的不可持续性和环境问题已经引起了广泛的关注和担忧。
因此,可再生能源逐渐成为了一个备受关注的新兴能源形式。
风光互补供电系统作为可再生能源的一种重要形式,具有广阔的应用前景。
本文将对风光互补供电系统的技术参数进行全面、详细、完整和深入的探讨。
二、风光互补供电系统概述风光互补供电系统是利用风能和光能进行能量转换和供电的系统。
该系统包括风力发电系统和光伏发电系统两部分组成,通过充分利用两种能源的优势互补,以实现更高效、稳定和可持续的电能供应。
下面将详细介绍风光互补供电系统的技术参数。
三、风力发电系统技术参数风力发电系统是风光互补供电系统中的一个重要组成部分。
以下是风力发电系统的技术参数:1. 风机额定功率风机额定功率是指风机在额定工况下的输出功率。
该参数决定了风机的发电能力和性能。
2. 风机轴高度风机轴高度是指风机轴线离地面的高度,一般以米为单位。
风机轴高度的选择影响着风能资源的利用效果和风机的发电能力。
3. 风机切入风速和切出风速风机切入风速是指风机开始发电的最低风速,而风机切出风速则是指风机停止发电的最低风速。
这两个参数的设置可以保证风机在适宜的风速范围内运行,并保护风机免受恶劣气象条件的影响。
4. 风机转速和转子直径风机转速和转子直径是两个相关的参数,转速越高,转子直径一般更小。
风机的转速和转子直径对发电效率和机械结构设计有着重要影响。
四、光伏发电系统技术参数光伏发电系统也是风光互补供电系统中的一个重要组成部分。
以下是光伏发电系统的技术参数:1. 光伏电池组件额定功率光伏电池组件额定功率是指光伏电池在标准测试条件下的额定输出功率。
该参数决定了光伏发电系统的发电能力和性能。
2. 光伏电池组件的开路电压和短路电流光伏电池组件的开路电压是指在无负载情况下的电压,而短路电流则是在短路情况下的电流。
这两个参数可以用来评估光伏电池组件的输出特性和性能。
描述风光互补发电系统的组成及其功能

描述风光互补发电系统的组成及其功能
描述风光互补发电系统的组成及其功能
风光互补发电系统是采用风能和太阳能共同发电的节能、环保发电系统。
它指通过利用风能和太阳能共同发电,实现电能供应可靠性和可再生替代能源的更加可靠、低成本、高效率的发电技术系统。
该系统是由风能发电机和太阳能发电机组成,它们会根据天气情况相互补充,以达到最大发电效率。
一般情况下,风光互补发电系统主要由以下几个部分组成:
1、风力发电机:用以提取风能,通过风轮旋转驱动发电机,将风能转换为机械能,再转换为电能。
2、太阳能发电机:太阳能发电机是用太阳能驱动的一种发电机,它可以将太阳能转换为电能。
3、控制器:控制器是风光互补系统的大脑,它可以根据风能和太阳能的变化情况,自动调整发电机的转速,以达到最佳发电效率。
4、储能装置:储能装置可以存储由风力发电机和太阳能发电机发出的电能,让其不会被浪费掉。
风光互补发电系统的主要功能是利用风能和太阳能进行发电,它可以使发电系统具有高度的可靠性。
风能发电系统可以在无太阳能的情况下仍然发电,而太阳能发电系统可以在白天发电;控制器可以自动调节风能发电机和太阳能发电机的转速,将其实现最佳发电效率;储能装置可以存储风力发电机和太阳能发电机发出的电能,以便在无风或无太阳能的情况下提供电能。
总之,风光互补发电系统的组成及其功能是利用风能和太阳能发电,以达到最佳发电效率,具有高度的可靠性和可再生替代能源的发电技术系统。
风光互补发电技术

风光互补发电技术作者:邵洪涛来源:《科技视界》 2014年第36期邵洪涛(国网安徽省电力公司阜阳供电公司,安徽阜阳 236017)【摘要】风能和太阳能都是清洁能源,随着光伏发电技术、风力发电技术的日趋成熟及实用化进程中产品的不断完善,为风光互补发电系统的推广应用奠定了基础。
风光互补发电站系统主要由风力发电机、太阳能电池方阵、智能控制器、蓄电池组、多功能逆变器、电缆及支撑和辅助件等组成一个发电系统,将电力并网送入常规电网中风光。
互补发电系统推动了我国节能环保事业的发展,促进资源节约型和环境友好型社会的建设。
【关键词】风光互补;逆变器;蓄电池组1 风光互补发电技术概述在国外对于风光互补发电系统的设计主要有两种方法进行功率的确定:一是功率匹配的方法,即在不同辐射和风速下对应的光伏阵列的功率和风机的功率和大于负载功率,主要用于系统的优化控制;另一是能量匹配的方法,即在不同辐射和风速下对应的光伏阵列的发电量和风机的发电量的和大于等于负载的耗电量,主要用于系统功率设计。
风光互补,是一套发电应用系统,该系统是利用太阳能电池方阵、风力发电机(将交流电转化为直流电)将发出的电能存储到蓄电池组中,当用户需要用电时,逆变器将蓄电池组中储存的直流电转变为交流电,通过输电线路送到用户负载处。
是风力发电机和太阳电池方阵两种发电设备共同发电。
最初的风光互补发电系统,就是将风力机和光伏组件进行简单的组合,因为缺乏详细的数学计算模型,同时系统只用于保证率低的用户,导致使用寿命不长。
近几年随着风光互补发电系统应用范围的不断扩大,保证率和经济性要求的提高,国外相继开发出一些模拟风力、光伏及其互补发电系统性能的大型工具软件包。
通过模拟不同系统配置的性能和供电成本可以得出最佳的系统配置。
其中colorado state university和national renewable energy laboratory合作开发了hybrid2应用软件。
2023风光互补发电系统发展趋势:风光互补发电系统广泛应用

2023风光互补发电系统发展趋势:风光互补发电系统广泛应用显示,风光互补发电系统利用了风能和太阳能资源的互补性的新型能源发电系统。
这种绿色又环保的可持续进展能源将会被国家大力推动。
风光互补发电系统是独立电源系统太阳能和风能是最普遍的自然资源,也是取之不尽的可再生能源。
风能是太阳能在地球表面的另外一种表现形式,由于地球表面的不同形态对太阳光照的吸热系数不同,在地球表面形成温差,地表空气的温度不同形成空气对流而产生风能。
因此,太阳能与风能在时间上和地域上都有很强的互补性。
白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强。
在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。
太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性,风光互补发电系统是资源条件最好的独立电源系统。
风光互补发电系统解决供电问题通过对风能和太阳能这两种进展相对较好的能源的综合考虑,得出这两种能源的互补合作形成了一种新的发电模式,增加了对环境和气候的适应力量,可以在夜间、雨雪等简单天气条件下持续发电。
风能和太阳能可以互补,更科学,更经济,更有用。
风光互补发电系统应用广泛,优势明显,可以在相同的供电环境下降低电池容量,通过两种能源的互补使电流输出更加稳定,互补发电可以满意系统的供电,削减传统发电设备的应用,经济、社会和环境效益优势明显。
对于偏远地区,风光互补发电技术可以解决供电问题,供应稳定的电力服务,促进区域经济进展。
同时,目前已经进展起来的路灯和景观照明为人们供应了生活的便利,该技术在通信基站中的应用也促进了地区的进展。
风光互补发电系统解决一体化问题风光互补发电可用于槽式发电,与蝶式和塔式发电相比,效率更高,容量规模更大,对商业化规模和技术要求更低。
是目前比较成熟、应用比较广泛的CSP 技术。
合理利用风光互补发电系统的优势,有利于解决风能和太阳能一体化中的难题,同时可以建立新能源电力系统的框架和解决方案,对新能源的形成和大规模利用开发起到借鉴作用。
什么是风光互补 风光互补系统的优缺点

什么是风光互补风光互补系统的优缺点
风光互补技术是利用太阳能电池和风力发电机发电,将风能和太阳能转化为电能,经蓄电池储能,再用于照明的装置,两沖发电系统在同一个装置内互为补充,给设备供电的一种新技术。
关于“什么是风光互补风光互补系统的优缺点”的详细说明。
1.什么是风光互补
风光互补技术是利用太阳能电池和风力发电机发电,将风能和太阳能转化为电能,经蓄电池储能,再用于照明的装置,两沖发电系统在同一个装置内互为补充,给设备供电的一种新技术。
我国许多地区风能和太阳能随季节变化显著,时空分布不均,在夏季太阳辐射强烈,太阳能资源丰富;而在冬季则风速大,风能资源丰富。
采用单一的风能或太阳能发电,往往出现某些月份供电不足。
风光互补技术正是利用了这两种资源的季节互补特性,将太阳能电池和风力发电机组合成一个系统,可以充分发挥两者的特性和优点,最大限度地利用太阳能和风能,从而克服了由于风能、太阳能随季节变化而造成供电不均衡的缺陷,可以保证一年四季均衡供电,使自然资源得到充分利用。
2.风光互补系统的优缺点
优点
1.昼夜互补--中午太阳能发电,夜晚风能发电。
2.季节互补--夏季日照强烈,冬季风能强盛。
3.稳定性高--利用风光的天然。
4.互补性,大大提高系统供电稳定性。
缺点
对比:单纯的风能与太阳能供电有显著的缺陷
1.季节性障碍无法克服
2.供电不稳定
3.公用设施供电不适宜。
风光互补发电系统

知识创造未来
风光互补发电系统
风光互补发电系统是指通过风能和光能相结合,共同发电的系统。
这种系统的设计思路是利用风能发电和光能发电的互补优势,提高
能源利用效率和发电稳定性。
风能发电主要依靠风力涡轮机(即风车)转换风能为机械能,再经
由发电机将机械能转化为电能。
而光能发电则是利用光伏发电技术,将太阳能直接转化为电能。
风能和光能具有互补性:太阳照射较强
的时候,风力较弱;而太阳照射较弱的时候,风力较强。
因此,将
风能发电和光能发电结合起来,可以弥补彼此之间的不足,提高综
合发电能力和发电质量。
风光互补发电系统一般由风力涡轮机和光伏发电组成,并配备逆变器、蓄电池等设备。
逆变器可以将风力涡轮机和光伏发电的直流电
转化为交流电,以供给家庭、工业和商业用电。
蓄电池的作用是存
储多余的电能,以备不时之需。
通过风光互补发电系统,可以有效提高发电效率和稳定性,减少对
传统能源的依赖,进一步推动可再生能源的发展和应用。
1。
2024年风光互补发电市场前景分析

风光互补发电市场前景分析1. 引言随着可再生能源技术的发展和应用,风光互补发电作为一种新兴的能源发电模式,受到了越来越多的关注。
本文通过对当前风光互补发电市场的分析,探讨其未来的市场前景。
2. 风光互补发电的优势风光互补发电是指将风力发电和太阳能发电相结合,在同一个区域内共同发电的一种模式。
相比单一的风力发电或太阳能发电,风光互补发电具有如下优势:•提高发电效率:在同一地区,风力发电和太阳能发电可以互相补充,利用不同的天气条件来提高发电效率。
•减少发电成本:通过共享基础设施和减少设备投资,风光互补发电可以降低发电成本。
•改善电网稳定性:风光互补发电可以提高电网的稳定性,减少对传统能源的依赖。
3. 目前的风光互补发电市场现状目前,风光互补发电市场还处于初级阶段,但已经取得了一些进展。
以下是目前的市场现状:•市场规模扩大:随着政府对可再生能源的支持政策的出台,风光互补发电市场规模逐渐扩大。
•技术进步:风力发电和太阳能发电技术不断改进,降低了生产成本,提高了发电效率。
•市场竞争加剧:随着市场规模的扩大,越来越多的企业进入风光互补发电市场,竞争日益激烈。
4. 风光互补发电市场的前景在未来,风光互补发电市场有着广阔的前景。
以下是分析所得:•政策支持:随着各国对可再生能源的支持力度不断加大,风光互补发电市场将受到更多政策的支持,激发市场的发展。
•节能环保:风光互补发电是一种清洁能源发电模式,符合当前环保节能的要求,受到越来越多人的关注和认可。
•应用扩展:风光互补发电可以应用于农村地区和偏远地区等没有电网覆盖的地方,满足电力供应需求,具有广泛的应用前景。
5. 风光互补发电市场的挑战尽管风光互补发电市场前景广阔,但仍面临一些挑战:•技术限制:风力发电和太阳能发电仍存在技术限制,如天气条件的不稳定性和设备的维护难度等。
•成本压力:虽然风光互补发电可以降低发电成本,但初期投资仍较高,需要政府和企业的支持。
6. 结论综上所述,风光互补发电作为一种新兴的能源发电模式,具有巨大的市场前景。
风光互补发电系统原理

风光互补发电系统原理
风光互补发电系统原理是指通过利用风力发电与光伏发电相结合,实现能源的互补和互补利用,以提高发电效率和稳定性。
在风光互补发电系统中,风力发电和光伏发电是独立而又相互协调的两种方式。
风力发电利用风能驱动风力发电机转动,产生电能。
光伏发电则是通过光能将太阳光转化为电能。
两者都属于可再生能源,具有环保、清洁的特点。
风光互补发电系统的运行需要充分考虑风力和光照的变化因素。
一般情况下,当风力较强时,风力发电系统将主导能源的生产;而在风力较弱或没有风的情况下,光伏发电系统则发挥主要作用。
通过这种互补方式,可以最大程度地充分利用两种能源,提高系统的发电效率。
此外,风光互补发电系统还需要具备适当的能量储存装置,以便在能源生产过剩时储存多余的电能,在风力或光照不足时释放储存的电能。
能量储存装置可以采用电池组、储热装置等形式。
风光互补发电系统的优势在于能够有效弥补风力发电和光伏发电各自的不足之处,提高了系统的稳定性和可靠性。
同时,风光互补发电系统也能够减少能源依赖、降低碳排放,实现可持续发展。
总之,风光互补发电系统利用风力发电和光伏发电相结合,通
过互补和互补利用的方式提高发电效率和稳定性,具有重要的应用前景和环境保护意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络教育学院《新能源发电》课程设计
题目:风光互补发电技术
学习中心:安徽阜阳奥鹏学习中心
层次:专升本
专业:电气工程及其自动化
年级: 2014 年春季
学号: ************
学生:王瑞瑞
辅导教师:康永红
完成日期: 2016 年 2 月15 日
风光互补发电技术
总则:风光互补发电系统可以根据用户的用电负荷情况和资源条件进行系统容量的合理配置,既可保证发电系统的供电可靠性,又可降
低发电系统的造价,是一种经济合理的供电方式。
一.风光互补发电系统的结构、工作原理、基本要求以及优缺点
1.1风光互补发电系统的结构
风光互补发电系统主要由风力发电机组、太阳能光伏电池组、控制器、蓄电池、逆变器、交流直流负载等部分组成。
该系统是集风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。
1.2风光互补发电系统的工作原理及运行模式
风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电;逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的220v交流电,保证交流电负载设备的正常使用。
同时还具有自动稳压功能,可改善风光互补发电系统的供电质量;控制部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载。
另一方面把多余的电能送往蓄电池组存储。
发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性;蓄电池部分由多块蓄电池组成,在系统中同时起到能量调节和平衡负载两大作用。
它将风力发电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。
风光互补发电系统根据风力和太阳辐射变化情况,可以在以下三种模式下运行:风力发电机组单独向负载供电;光伏发电系统单独向负载供电;风力发电机组和光伏发电系统联合向负载供电。
1.3风光互补发电系统的优缺点
风光互补发电比单独风力发电或光伏发电有以下优点:
(1)利用风能、太阳能的互补性,可以获得比较稳定的输出,系统有较高的稳定性和可靠性;
(2)在保证同样供电的情况下,可大大减少储能蓄电池的容量;
(3)通过合理地设计与匹配,可以基本上由风光互补发电系统供电,很少或基本
不用启动备用电源如柴油机发电机组等,可获得较好的社会效益和经济效益。
风光互补发电系统可以根据用户的用电负荷情况和资源条件进行系统容量的合理配置,无论是怎样的环境和怎样的用电要求,风光互补发电系统都可做出最优化的系统设计方案来满足用户的要求,即可保证系统供电的可靠性,又可降低发电系统的造价。
应该说,风光互补发电系统是最合理的独立电源系统。
太阳能和风能虽然存在上述一些优点,但是也有不足之处:
(1)能量密度低
太阳能和风能相对于火电、水电、核电等传统能源,其能量密度偏低,对于太阳能发电需要足够的受热面积,而风力发电机如果要提高输出功率,则必须要增加风轮的尺寸和整个风场的规模,才能达到我们所需要的电量,这都需要占用大面积土地资源。
(2)间歇性、不稳定性和不可控性
传统能源我们可以根据需求来调节供应,而太阳能只有在晴天和白天时才能,风机只有在风力达到要求时才能发电,且根据风速的大小风机输出的电量也随时都在变化,太阳能和风能的这种间性和不稳定性直接导致了不可控性,所以要有效利用太阳能和风能,储能是必不可少的。
由于这些不利的因素,太阳能或风能单独的经济可靠地使用就遇到许多技术问题。
随着科学技术的发展,将太阳能和风能综合利用,组成一个互补系统成为一种实用的方式,使得我们可以更加稳定可靠经济合理地使用这无穷无尽的风光资源。
二.风光互补发电系统的发展过程及现状
最初的风光互补发电系统,就是将风力机和光伏组件进行简单的组合,因为缺乏详细的数学计算模型,同时系统只用于保证率低的用户,导致使用寿命不长。
近几年随着风光互补发电系统应用范围的不断扩大,保证率和经济性要求的提高,国外相继开发出一些模拟风力、光伏及其互补发电系统性能的大型工具软件包。
通过模拟不同系统配置的性能和供电成本可以得出最佳的系统配置。
在国外对于风光互补发电系统的设计主要有两种方法进行功率的确定:一是功率匹配的方法,即在不同辐射和风速下对应的光伏阵列的功率和风机的功率和大于负载功率,只要用于系统的优化控制;另一是能量匹配的方法,即在不同辐射和风速下对应的光伏阵列的发电量和风机的发电量的和大于等于负载的耗电量,主要用于系统功率设计。
据国内有关资料报道,目前运行的风光互补发电系统有:西藏纳曲乡离格村风光互补发电站、用于气象站的风能太阳能混合发电站、太阳能风能无线电话离转台电源系统、内蒙微型风光互补发电系统等。
三.风光互补发电系统的应用前景
3.1偏远农村的生活生产用电
中国目前的农村人口数目众多。
但偏远农村若靠电网供电,则需架设很长的输电线路,其经济性很差.很不现实。
而在这些地方其风能和太阳能蕴藏量十分丰富。
若采用太阳能,风能这些可再生能源进行发电。
则可基本满足偏远农村的生活及照明用电。
利用风光互补发电系统可以有效的解决用电问题。
3.2路灯照明系统
风光互补路灯不需要输电线路。
不消耗电网电能,一次性投入与常规路灯大体相当的建设经费后即可一劳永逸地利用取之不尽用之不竭的风能与太阳能提供稳定可靠的能源。
与单纯由太阳能供电的路灯相比。
风光互补路灯也有着显著优点:(1)风能的充分利用不单大大提高了能量转换率。
还显著降低了太阳能系统设备的成本。
使其在长期阴雨天气下仍能持续工作,提高了供电系统稳定性;
(2)能量效率的提高使得风光互补路灯在光源配置上更灵活。
3.3通信基站中的应用
移动通信、微波、广播和电视转发,还是卫星通信。
都各自在全国建立了一定数量的通信基站。
如今通信基站的建设已从最初期的城市内建设向城镇乡村发展.在未来的几年。
还将更多地向不发达的西部地区、偏远山区发展。
这些基站负荷比较小,若采用市电供电,架设输电线路代价很大。
而采用风光互补发电系统可以很好的解决问题。
可使用清洁能源自给自足。
在十分重要的基站,则可以配备备用的柴油发电机,形成风光柴油混合发电系统,提高供电的可靠性.保证实时通信。
3.4并网发电
弥补了独立风电和光电系统的不足。
向电网提供更加稳定的电源。
充分利用土地资源。
风力发电设备利用高空风能。
光伏发电设备则利用风机之间的地面太阳能实现地面和高空的有效结合。
由于共用一套送变电设备。
降低了工程造价。
大大提高了经济效益。