一种三自由度并联机构的运动学分析

合集下载

3自由度并联机器人的运动学与动力学分析_刘善增

3自由度并联机器人的运动学与动力学分析_刘善增
本文基于一种空间自由度并联机器人3rrs并联机器人的运动学特性分析了此并联机构的约束方程与位姿关系给出了个位姿变量之间的显示表达式并利用lagrange方程推导了3rrs并联机器人的动力学方程进而对此并联机器人的动力学特性进行了分析
第 45 卷第 8 期 2009 年 8 月
机械工程学报
JOURNAL OF MECHANICAL ENGINEERING
Vo l . 4 5 N o . 8 Aug. 2009
DOI:10.3901/JME.2009.08.011
3 自由度并联机器人的运动学与动力学分析*
刘善增 1, 2 余跃庆 1 佀国宁 1 杨建新 1 苏丽颖 1
(1. 北京工业大学机械工程与应用电子技术学院 北京 100124; 2. 中国矿业大学机电学院 徐州 221116)
1 3-RRS 并联机器人的运动学分析
一种空间 3 自由度并联机器人的结构简图,如 图 1 所示。它由一个动平台 P1P2P3,三条支链 BiCiPi(i=1, 2, 3)和一个静平台(基座)B1B2B3 组成。其 中,动平台通过球面副(S 副)与各支链连接,静平台 通过转动副(R 副)与各支链连接,且 Bi 处转动副的 轴线与 Ci(i=1, 2, 3)处转动副的轴线对应平行。分别 建立与动平台固结的局部(动)坐标系 Pxyz 和系统 (固定)坐标系 OXYZ,如图 1 所示,坐标系的原点 P 和 O 分别位于动平台和静平台的几何中心,轴 z 和 Z 分别垂直于动、静平台向上,轴 x、y 与 X、Y 分 别平行和垂直于上、下平台的边 P2P3 与 B2B3。局部 定坐标系 Bixiyizi (i=1, 2, 3)的 xi 轴与 Bi 处转动副轴线 一致,zi 垂直于静平台 B1B2B3 向上,yi 轴同时垂直 于 xi 和 zi 轴。

三自由度稳定平台运动学分析

三自由度稳定平台运动学分析
其余3个分支沿圆周逆时针对称分布每一个分支有两个连杆组成短连杆下端通过减速器与电机轴相连形成回转副上端通过球副与长连杆下端相连结长连杆的上端通过球副与动平台相连结这样每个分支都具有6个自由3个步进电机对称分布在基座上电机轴径的方向沿半径方向向外
LOGO
三自由度并联自稳定平台的 机构设计与运动学分析
汇报人: 汇报人:
( X bi , Ybi , Zbi ,1)
旋转矩阵 Rop 为
cα sγ Rop = s s α γ cβ cγ + cα sβ c y − cα sβ c y 0
T
= Rop ( xbi , ybi , zbi ,1)
T
(1-1)
e ix β = − x b i c γ s β + y b i s γ s β + z b i c β e ix γ = − x b i s γ c β + y b i c γ c β
e iy α = − x b i s γ s α − x b i c γ s β s α − y b i c γ s α − y b i s γ s β c α − z b i c β c α e iy β = − x b i c γ c β c α − y b i s γ c β s α + z b i s β s α e iy γ = − x b i c γ c α − x b i s γ c β s α − y b i s γ s α − y b i c γ s β c α − z b i c β c α
Company Logo
ai , Yai (pX−aixyz , Z ai )
自稳定平台的工作空间

基于Adams的3自由度并联机构运动学分析

基于Adams的3自由度并联机构运动学分析
第 4卷第 2 期
2 0 1 3 年 5 月



大 学




Vo 1 . 4 。 NO . 2
Ma y, 2 01 3
J o u r n a l o f En g i n e e r i n g o f He i l o n g j i a n g Un i v e r s i t y
c r e a t e d t h r o u g h t h e d a t u m c o o r d i n a t e s y s t e m a n d t h e mo t i o n v e c t o r e q u a t i o n . An d t h e a n a l y t i c a l s o l u t i o n o f t h e i n v e r s e s o l u t i o n wa s c a l c u l a t e d o n u s i n g t h e a n a l y t i c a l me t h o d . F i n a l l y t h r o u g h Ad a ms v i r t u a l p r o t o t y p i n g we g o o n t h e s t r u c t u r e o f t h e s i mu l a t i o n a n d d a t a a n a l y s i s .An d we g e t t h e p o s i t i o n d a t a o f t h e u n i o n l e v e r ,t h e mo v i n g p l a t f o r m a n d v e r i f y t h e r a t i o n a l i t y .

一种新型三自由度并联机构逆运动学及其工作空间分析

一种新型三自由度并联机构逆运动学及其工作空间分析

量法对其逆运动学进行 分析 , 推导 出机 构位 置反解 的显式数 学表达式 ; 随后 , 利 用极 限边界搜 索法, 根据并联机构位
置反解及其它约束条件 , 获得其工作空间, 最后通过数值仿 真对逆运动 学数 学模 型 以及机构 工作 空 间搜 索方 法进 行
了验 证 .
关键词 : 并联机构 ;逆运 动学 ; 工作空间
近 几 年 来 ,少 自由度 并 联 机 器人 , 尤其是三 自
由度 并联机 器 人 已成 为本 领 域 的研 究 热 点 , 许 多研 究成 果 已经用 于制造 和科研 中 4 J , 如 已经应 用 于生 产实 际 的 D E L T A机器 人 , Hu n t 提 出的 3 一 R P S并 联 机构 , T s a i 和J o s h i 的3 一 U P U 并 联 机构 等. 由于 该 类机 器人相 对 六 自由度 机器 人 具 有 l 3- DOF p a r a l l e l ma n i p ul a t o r
F AN J i a n — h u i ,Z HAO Xi n — h u a ,L I B i n
( S c h o o l o f Me c h a n i c a l E n g i n e e i r n g , T i a n j i n U n i v e r s i t y o f T e c h n o l o g y , T i a n j i n 3 0 0 3 8 4, C h i n a )
究 中的难点 问题 . 工 作 空 问 是并 联 机 器 人 的 工作 区

种 新 型 三 自 由度 并 联 机构 逆 运 动 学 及 其 工 作 空 间分 析
范建会 ,赵新华 ,李 彬

一种三自由度解耦并联平动机构

一种三自由度解耦并联平动机构

一种三自由度解耦并联平动机构近几年来,机器人领域的研究取得了长足的进步,各种新型机构的设计不断涌现。

其中,解耦并联平动机构因其在空间平动方面具有较好的性能,受到了广泛的关注。

本文将介绍一种三自由度解耦并联平动机构的设计原理、结构特点和应用前景。

一、设计原理该机构是一种平行四连杆机构,由上、下评台和四个连杆组成。

其中,上、下评台分别固定在机器人的移动评台和基座上,通过四个连杆将两个评台连接起来。

通过设计连杆的长度和角度,可以实现线性运动,并且可以将平移运动的方向和速度进行独立控制。

二、结构特点1.三自由度解耦:该机构通过精心设计连杆长度和角度,实现了三个自由度的解耦。

即可以分别控制X、Y和Z方向的平移运动,从而具有更灵活的运动方式。

2.稳定性高:由于平行四连杆机构的特点,该机构在运动过程中具有较好的稳定性,可以适用于复杂的工作环境。

3.结构简洁:由于该机构只由上、下评台和四个连杆组成,结构简洁,易于制造和维护。

三、应用前景1.工业制造:该机构可以用于工业制造中的自动化装配线上,实现对工件的精准定位和运动控制。

2.医疗器械:在医疗器械领域,该机构可以应用于手术机器人的运动部件,实现对手术工具的精确操控。

3.航空航天:在航空航天领域,该机构可以用于太空探测器的核心零部件,实现对探测器的平移运动和定位控制。

四、结语三自由度解耦并联平动机构作为一种新型的机械结构,在工业制造、医疗器械和航空航天等领域具有广阔的应用前景。

随着机器人技术的不断发展,相信这种机构将会在未来得到更广泛的应用和推广。

五、性能优势该三自由度解耦并联平动机构具有许多性能优势,使其在机器人领域备受青睐。

该机构具有较高的定位精度和重复定位精度。

由于机构设计合理,运动部件的相对位置和方位角度能够保持较好的稳定性,在进行运动控制时能够实现较高的精度要求。

该机构的运动轨迹平滑,并且具有较强的载荷承载能力。

这意味着机构在运动过程中产生的振动较小,能够较好地适应工作环境的变化,同时能够承载一定重量的工作载荷。

三自由度绳驱动并联机器人运动学分析

三自由度绳驱动并联机器人运动学分析
收 稿 日期 :2 1- 8 3 0 0 0 -1
5 )完全分 离 的传 动 :用全 绳驱 动控 制器 ,所
有 的传 动 和 敏 感部 分 可 以放 在 离 终端 执 行 器 和工 作地带 很远 的地方 。可适应 危险 的工作环境 。
作 者 简i :乔 文 刚 (9 1 ), 男 ,副 教 授 ,硕 士 ,研 究 方 向为 机 电控 制 工程 与 液 压 技 术 。 t 16 一 [2] 第3卷 14 3 第2 期 2 1- ( ) 01 2上
作 空 间 内部 存 在 着 奇 异 点 ;其 控 制 系 统 非 常 复 杂 ,致 使 研 究难 度 、 生产 成本 等 相 应增 加 。并联 机 器人 由于其 运 动速 度 高 、动 态 响 应快 、定 位 准
确性 好 等 优点 ,在某 些 领域 作 为 串联 机 器 人 强有
力 的补充 ,所 以应 用 潜 力 非常 大 ,广 泛 应 用于 装 配 、包 装 、点焊 等领 域 。近 年 来 , 少 自 由度并 联
7 l i )Oi 与 的夹 角 :x 8 2 绳 与Xi )0i : 的夹 角 9 3 绳 与Y 的夹 角 )0i :
和 气缸 与上 下 平 台的 连 接 ) 。由于 气 缸 的两 端 分
别 安装 在 两 平 台的 几何 中 心 ,所 以起 辅 助 支 撑 作
用 不参 与机 构 主 要 运动 。 该机 构 的 动 力 源 来 自安 装 在基 座 上 的伺 服 电机 ,每 个 电机 驱 动 一 组 摆 杆
、 l
1 动 作原理 . 2
三 自由 度绳 驱 动 并 联 机 器 人 共 计 九 个 关 节 ,
包 括 三个 转 动 关 节 ( 电机 与摆 杆 的 连 接 )和 有 即 六 个球 面 副关 节 ( 绳 与 摆 杆机 、动 平 台的 连 接 即

一种三自由度并联机构的运动学分析

一种三自由度并联机构的运动学分析

龙源期刊网
一种三自由度并联机构的运动学分析
作者:刘锟泽
来源:《科技资讯》2013年第05期
摘要:本文设计了一种三自由度混连机构,介绍了该机构的组成、计算了该机构的自由度,推导了并联部分的运动学正反解求解公式。

给出了具体的算例进行验证,结果对该机器人机构的设计控制等有重要的指导意义。

关键词:三自由度正反解并联机构
中途分类号:TG156 文献标识码:A 文章编号:1672-3791(2013)02(b)-0128-01
并联机构相对于串联机构具有刚度高、陈承载能力大、运动精度高、动态特性好等特点。

但并联机构的缺点也同样明显:位置正解运算复杂、工作空间小、难以实现大倾角加工以及运动特性和力特性的非线性关系、机床标定困难等。

因此混连机构的研究成为当下研究的热门课题。

混联结构机床是机床技术、并联机器人技术、现代伺服驱动技术和数控技术相结合而产生的一种新型自动化加工设备。

1 结构及其自由度
2 运动学正反解
3 算例
4 结语
本文以一种三自由度混连机构为研究对象,研究了该机构的自由度,提出了该机构的正反解计算公式,给出了具体算例,结果符合要求,计算简单,效率高。

参考文献
[1] 熊有伦.机器人技术基础[M].华中科技大学出版社,1996:1-92.
[2] 黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].机械工业出版社,1997,12。

3PRS并联机构的运动学和误差分析

3PRS并联机构的运动学和误差分析

3PRS并联机构的运动学和误差分析目录一、内容概述 (1)二、概述并联机构及运动学基础 (2)三、3PRS并联机构的运动学分析 (3)3.1 机构描述与基本结构 (5)3.2 运动学建模与方程建立 (6)3.3 运动学仿真与结果分析 (7)四、误差来源及分类分析 (8)4.1 制造误差分析 (9)4.2 安装误差分析 (10)4.3 运行误差分析 (11)五、误差模型建立与误差计算 (12)5.1 误差模型的建立方法 (13)5.2 误差计算过程及影响因素分析 (15)5.3 误差优化策略探讨 (16)六、实验验证与结果讨论 (17)6.1 实验目的与实验方案制定 (18)6.2 实验数据与结果分析对比讨论 (19)七、结论总结与展望未来发展方向分析 (20)一、内容概述本文档旨在探讨“3PRS并联机构的运动学和误差分析”。

我们需要理解并联机构及其重要性,并联机构是一种多输入多输出的机械结构,广泛应用于各种精密制造和加工领域。

3PRS并联机构以其独特的结构特点和性能优势,在机器人技术、航空航天等领域发挥着重要作用。

运动学分析:这一部分的重点在于理解3PRS并联机构的基本运动特性。

这包括对其运动学模型的建立,对其关节、连杆和末端执行器等部件的运动分析,以及对整体运动性能的优化。

理解这些基本知识,对于我们进行误差分析是非常重要的基础。

误差建模:由于在实际应用中,各种因素如制造误差、装配误差等都会对并联机构的运动性能产生影响,因此误差建模是本文的重要部分。

在这一部分,我们将详细介绍如何建立3PRS并联机构的误差模型,并分析误差来源和影响。

我们还将探讨如何对误差进行量化评估。

误差分析:基于建立的误差模型,我们将对3PRS并联机构的误差进行详细的定量和定性分析。

这包括分析误差的分布特性、对运动性能的影响等。

我们还将探讨如何通过优化结构设计、改进制造工艺等方法来减小误差,提高并联机构的运动性能。

实验验证:为了验证理论分析的正确性,本文将介绍相关的实验验证工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档