2013年广西初中毕业升学考试数学学科说明及样卷
2013年广西省桂林市初中毕业升学考试试卷数学(含答案)

D
C
第 21 题图
22. (本题满分 8 分)在重阳节敬老爱老活动中,某校计划组织志愿者服务小组到“夕 阳红”敬老院为老人服务,准备从初三(1)班中的 3 名男生小亮、小明、小伟 和 2 名女生小丽、小敏中选取一名男生和一名女生参加学校志愿者服务小组. (1)若随机选取一名男生和一名女生参加志愿者服务小组,请用树状图或列表法写 出所有可能出现的结果; (2)求出恰好选中男生小明与女生小丽的概率.
E O1
17.函数的图象与函数 y 的图象在第一象限内交于点 B, 点 C 是函数 y 在第一象限图象上的一个动点,当△OBC 的面积 为 3 时,点 C 的横坐标是
[来源:中 国教^ 育出&版 @网~#]O2 H D
B
C
.
K
18. 如图,已知线段 AB 10 , AC BD 2 ,点 P 是 CD 上一动点, 分别以 AP、PB 为边向上、向下作正方形 APEF 和 PHKB,设正方 形对角线的交点分别为 O1 、 O2 ,当点 P 从点 C 运动到点 D 时,线 段 O1O2 中点 G 的运动路径的长是 19. (本题满分 6 分)计算: . 三、解答题(本大题共 8 题,共 66 分,请将答案写在答题 卡 上) . .. .
15. 桂林市某气象站测得六月份一周七天的降雨量分别为 0,32,11,45,8,51,27(单 位:mm),这组数据的极差是 .
E C D B
O
y
B
16. 如图,在 ABC 中, CA CB , AD BC , BE AC ,
AB 5 , ,则
.
4 x
A
x
第 16 题图
第 17 题图
2013年广西桂林中考数学试卷及答案(word解析版)-推荐下载

【答案】51
16.(2013 广西桂林,16,3 分)如图,在△ABC 中,
CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则 AE=
A
E
C
第 16 题图
【答案】3
D
B
4
17.(2013 广西桂林,17,3 分)函数 y=x 的图象与函数 y= 的图象在第一象限内交于点
x
4
B,点 C 是函数 y= 在第一象限图象上的一个动点,当△OBC 的面积为 3 时,点 C
PM2.5 是指直径小于或等于 2.5 微米的颗粒物,已知 1 毫米=1000 微米,用科学计数法表示
2.5 微米=
【答案】2.5×10-3
毫米.
15.(2013 广西桂林,15,3 分)桂林市某气象站测得六月份一周七天的降雨量分别为
0,32,11,45,8,51,27(单位:mm),这组数据的极差是
以 B 为圆心的弧与 AD、DC 相切,则阴影部分的面积是
A.2 3 - 3 3
C.4 3 -
【答案】D
【答案】 4
B.4 3 - 3 3
D.2 3 -
11.(2013 广西桂林,11,3 分)已知关于 x 的一元二次方程 x2+2x+a-1=0 有两根为
x1、x2,且 x12- x1x2=0,则 a 的值是
B.-2013
2
2.(2013 广西桂林,2,3 分)在 0,2,-2, 这四个数中,最大的数是
3
A.2
【答案】A
B. 0
3.(2013 广西桂林,3,3 分)如图,与∠1 是同位角的是
A.∠2
【答案】C
1 23
45
B.∠3
2013年广西自治区南宁市中考数学试卷含答案.docx

2013 年中考真題广西南宁市中考2013年数学试卷一、选择题(本大题共12 小题,每小题 3 分,共 36 分)每小题都给出代号(A)、(B)、(C)、(D )四个结论,其中只有一个是正确的,请考上用2B 铅笔在答题卡上将选定答案标号涂黑.1.( 3 分)( 2013?南宁)在﹣ 2, 1, 5,0 这四个数中,最大的数是()A .﹣ 3B .1C. 5D. 0考点:有理数大小比较.分析:根据有理数大小比较的法则:① 正数都大于0;②负数都小于0;③ 正数大于一切负数进行比较即可.解答:解:在﹣ 2, 1,5, 0 这四个数中,大小顺序为:﹣2< 0< 1<5,所以最大的数是5.故选 C.点评:本题主要考查了有理数的大小的比较,解题的关键利用熟练掌握有理数的大小比较法则,属于基础题.2.( 3 分)( 2013?南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是()A .B .C.D.考点:点、线、面、体.分析:根据半圆绕它的直径旋转一周形成球即可得出答案.解答:解:半圆绕它的直径旋转一周形成球体.故选: A .点评:本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.3.( 3 分)( 2013?南宁) 2013 年 6 月 11 日,神舟十号飞船发射成功,神舟十号飞船身高9米,重约 8 吨,飞行速度约每秒 7900 米,将数 7900 用科学记数法表示,表示正确的是()A .0.79×1044C. 7.9×1033B .7.9×10D. 0.79×10考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为 a×10n的形式,其中 1≤|a|< 10, n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.2013 年中考真題解答:解:将 7900 用科学记数法表示为:7.9×103.故选: C .a ×10n的形式,其中 1≤|a|点评:此题考查了科学记数法的表示方法. 科学记数法的表示形式为< 10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4.( 3 分)( 2013?南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A .三 角形B .线 段C . 矩形D . 正方形考点 :平行投影.分析:根据平行投影的性质分别分析得出即可即可.解答:解:将矩形木框立起与地面垂直放置时,形成的影子为线段;将矩形木框与地面平行放置时,形成的影子为矩形;将木框倾斜放置形成的影子为平行四边形; 由物体同一时刻物高与影长成比例, 且矩形对边相等, 故得到的投影不可能是三角形.故选: A .点评:本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.5.( 3 分)( 2013?南宁)甲、乙、丙、丁四名选手参加 100 米决赛,赛场只设 1、 2、 3、4 四个跑道, 选手以随机抽签的方式决定各自的跑道, 若甲首先抽签, 则甲抽到 1 号跑道的概率是()A .1B .C .D .考点 :概率公式.分析:由设 1、 2、 3、 4 四个跑道,甲抽到 1 号跑道的只有 1 种情况,直接利用概率公式求解即可求得答案.解答:解:∵设 1、 2、3、 4 四个跑道,甲抽到 1 号跑道的只有 1 种情况,∴甲抽到1 号跑道的概率是:.故选 D .点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.( 3 分)( 2013?南宁)若分式的值为 0,则x 的值为()A .﹣ 1B .0C . 2D .﹣ 1 或 2考点 :分式的值为零的条件. 分析:根据分式值为零的条件可得x ﹣ 2=0 ,再解方程即可.解答:解:由题意得: x ﹣ 2=0 ,且 x+1≠0,解得: x=2 , 故选: C .点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意: “分母不为零 ”这个条件不能少.7.( 3 分)( 2013?南宁)如图,圆锥形的烟囱底面半径为15cm ,母线长为 20cm ,制作这样一个烟囱帽所需要的铁皮面积至少是()A .150πcm 2B .300πcm 2C . 600πcm 2D . 150πcm 2考点 :圆锥的计算. 专题 :计算题.分析:根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.解答:解:烟囱帽所需要的铁皮面积=×20×2π×15=300π( cm 2).故选 B .点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.8.( 3 分)( 2013?南宁)下列各式计算正确的是()32 6 4 282 36A .3a +2a =5aB .C . a ?a =aD . ( ab ) =ab考点 :二次根式的加减法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 专题 :计算题.分析:分别根据合并同类项、 同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行 逐一判断即可.解答:解: A 、 3a 3 与 2a 2不是同类项,不能合并,故本选项错误;B 、 2+=3,故本选项正确;426C 、 a ?a =a ,故本选项错误;2 33 6,故本选项错误.D 、( ab ) =a b 故选 B .点评:本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式, 再把被开方数相同的二次根式进行合并,合并方法为系数相加减, 根式不变.9.( 3 分)( 2013?南宁)陈老师打算购买气球装扮学校 “六一 ”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束( 4 个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的 价格为()A .19B .18C . 16D . 15考点 :二元一次方程组的应用.分析:要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.解答:解:设笑脸形的气球 x 元一个,爱心形的气球y 元一个,由题意,得,解得: 2x+2y=16 .故选 C .点评:本题考查了学生观察能力和识图能力,列二元一次方程组解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量 =总价的数量关系建立方程是关键.2( a ≠0)的图象如图所示,下列说法错误 10.( 3 分)(2013?南宁)已知二次函数 y=ax +bx+c 的是( )2A .图 象关于直线 x=1 对称B . 函数 ax +bx+c ( a ≠0)的最小值是﹣ 4C .﹣ 1 和 3 是方程 ax 2+bx+c ( a ≠0)的两个根 D . 当 x < 1 时, y 随 x 的增大而增大考点 :二次函数的性质.分析:根据对称轴及抛物线与 x 轴交点情况,结合二次函数的性质,即可对所得结论进行判断.解答:解: A 、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1 对称,正确,故本选项不符合题意;B 、观察图象,可知抛物线的顶点坐标为(1,﹣ 4),又抛物线开口向上,所以函数2ax +bx+c ( a ≠0)的最小值是﹣ 4,正确,故本选项不符合题意;C 、由图象可知抛物线与 x 轴的一个交点为(﹣ 1, 0),而对称轴为直线 x=1 ,所以抛物线与 x 轴的另外一个交点为( 3,0),则﹣ 1 和 3 是方程 ax 2+bx+c ( a ≠0)的两个根,正确,故本选项不符合题意;D 、由抛物线的对称轴为x=1 ,所以当 xx < 1 时, y 随 x 的增大而减小,错误,故本选项符合题意.故选 D.点评:此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题.11.(3 分)( 2013?南宁)如图, AB 是⊙ O 的直径,弦CD 交 AB 于点 E,且 AE=CD=8 ,∠BAC=∠ BOD,则⊙ O的半径为()A .4B .5C. 4D. 3考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据∠ BAC=∠ BOD可得出=,故可得出AB ⊥ CD,由垂径定理即可求出DE 的长,再根据勾股定理即可得出结论.解答:解:∵∠ BAC=∠ BOD,∴= ,∴AB ⊥ CD ,∵ AE=CD=8 ,∴DE= CD=4 ,设OD=r ,则 OE=AE ﹣ r=8 ﹣ r,在RtODE 中, OD=r , DE=4 , OE=8﹣ r,222222∵ OD=DE +OE,即 r =4 +( 8﹣ r),解得 r=5.故选 B.点评:本题考查的是垂径定理及圆周角定理,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.2013年中考真題12.( 3 分)(2013?南宁)如图,直线y=与双曲线y=( k> 0,x>0)交于点 A ,将直线y=向上平移 4 个单位长度后,与y 轴交于点C,与双曲线y=( k> 0,x> 0)交于点 B ,若OA=3BC,则k 的值为()A .3B .6C.D.考点:反比例函数综合题.专题:探究型.分析:先根据一次函数平移的性质求出平移后函数的解析式,再分别过点 A 、 B作 AD ⊥ x 轴, BE⊥ x 轴, CF⊥ BE 于点 F,再设 A( 3x,x),由于 OA=3BC ,故可得出B( x,x+4 ),再根据反比例函数中k=xy 为定值求出 x解答:解:∵将直线 y=向上平移 4 个单位长度后,与y 轴交于点 C,∴平移后直线的解析式为y=x+4 ,分别过点 A 、B 作 AD ⊥ x 轴, BE⊥ x 轴, CF ⊥BE 于点 F,设 A ( 3x,x),∵OA=3BC , BC ∥ OA , CF∥ x 轴,∴ CF= OD ,∵点 B 在直线 y= x+4 上,∴B( x, x+4 ),∵点 A 、 B 在双曲线y=上,∴3x? x=x ?( x+4 ),解得 x=1,∴k=3×1× ×1= .故选 D.2013 年中考真題点评:本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、 B 两点的坐标,再根据 k=xy 的特点求出 k 的值即可.二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)13.( 3 分)( 2013?南宁)若二次根式有意义,则 x 的取值范围是x≥2 .考点:二次根式有意义的条件.分析:根据二次根式有意义的条件,可得x﹣ 2≥0,解不等式求范围.解答:解:根据题意,使二次根式有意义,即 x﹣ 2≥0,解得 x≥2;故答案为 x≥2.点评:本题考查二次根式的意义,只需使被开方数大于或等于0 即可.14.( 3 分)( 2013?南宁)一副三角板如图所示放置,则∠AOB=105°.考点:角的计算.分析:根据三角板的度数可得:∠1=45 °,∠ 2=60°,再根据角的和差关系可得∠ AOB= ∠ 1+∠2,进而算出角度.解答:解:根据三角板的度数可得:∠1=45°,∠ 2=60°,∠AOB= ∠1+∠2=45 °+60 °=105 °,故答案为: 105.点:此主要考了角的算,关是掌握角之的关系.2(x+5)(x 5).15.( 3 分)( 2013?南宁)分解因式:x25=考点:因式分解 -运用公式法.分析:直接利用平方差公式分解即可.2故答案:( x+5 )( x 5).点:本主要考利用平方差公式因式分解,熟公式构是解的关.16.( 3 分)( 2013?南宁)某中学定:学生的学期体育合成分100 分,其中,期中考成占40% ,期末考成占60%,小海个学期的期中、期末成(百分制)分是 80 分、 90 分,小海个学期的体育合成是86分.考点:加平均数.分析:利用加平均数的公式直接算.用80 分, 90 分分乘以它的百分比,再求和即可.解答:解:小海学期的体育合成=(80×40%+90 ×60% ) =86 (分).故答案86.点:本考的是加平均数的求法.本易出的是求80、90 两个数的平均数,平均数的理解不正确.17.( 3 分)( 2013?南宁)有一数据a1, a2, a3,⋯a n,足以下律:,( n≥2 且n 正整数),a2013的1(果用数字表示).考点:律型:数字的化.:律型.分析:求出前几个数便不,每三个数一个循依次循,用2013除以3,根据商和余数的情况确定答案即可.解答:解: a1=,2=2,a =a3== 1,a4== ,⋯,依此推,每三个数一个循依次循,∵2013÷3=671 ,∴ a2013为第 671 循环组的最后一个数,与a3相同,为﹣ 1.故答案为:﹣1.点评:本题是对数字变化规律的考查,根据计算得到每三个数为一个循环组依次循环是解题的关键.18.( 3 分)( 2013?南宁)如图,在边长为 2 的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为﹣π .考点:三角形的内切圆与内心.分析:连接 OB ,以及⊙ O 与 BC 的切点,在构造的直角三角形中,通过解直角三角形易求得⊙ O 的半径,然后作⊙ O 与小圆的公切线 EF,易知△ BEF 也是等边三角形,那么小圆的圆心也是等边△ BEF 的重心;由此可求得小圆的半径,即可得到四个圆的面积,从而由等边三角形的面积减去四个圆的面积和所得的差即为阴影部分的面积.解答:解:如图,连接OB、 OD;设小圆的圆心为P,⊙ P 与⊙ O 的切点为G;过 G 作两圆的公切线EF,交 AB 于 E,交BC 于 F,则∠ BEF=∠ BFE=90 °﹣ 30°=60°,所以△ BEF 是等边三角形.在Rt△OBD 中,∠ OBD=30 °,则 OD=BD ?tan30°=1× =, OB=2OD=, BG=OB ﹣ OG=;由于⊙ P 是等边△ BEF 的内切圆,所以点P 是△ BEF 的内心,也是重心,故 PG=BG=;∴ S⊙O=π×(2)2π;) = π, S⊙P=π×(=∴ S 阴影 =S△ABC﹣ S⊙O﹣ 3S⊙P= ﹣π﹣π=﹣π.故答案为﹣π.点评:此题主要考查了等边三角形的性质、相切两圆的性质以及图形面积的计算方法,难度适中.三、(本大题共 2 小题,每小题 6 分,共12 分)19.( 6 分)( 2013?南宁)计算: 20130﹣+2cos60°+(﹣ 2)考点:实数的运算;零指数幂;特殊角的三角函数值.分析:分别进行零指数幂、二次根式的化简,然后代入特殊角的三角函数值合并即可得出答案.解答:解:原式 =1﹣ 3 +2× ﹣ 2=﹣3.点评:本题考查了实数的运算,属于基础题,关键是掌握零指数幂的运算法则及一些特殊角的三角函数值.20.(6 分)( 2013?南宁)先化简,再求值:,其中x=﹣2.考点:分式的化简求值.专题:计算题.分析:先算括号里面的,再把除式的分母分解因式,并把除法转化为乘法,然后进行约分,最后把 x 的值代入进行计算即可得解.解答:解:(+)÷=÷=?=x ﹣ 1,当 x= ﹣2 时,原式 =﹣ 2﹣ 1=﹣ 3.点评:本题考查了分式的化简求值,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.2013年中考真題四、本大题共 2 小题,每小题8 分,共 16 分21.( 8 分)(2013?南宁)如图,△ ABC 三个定点坐标分别为 A (﹣ 1, 3), B(﹣ 1,1),C (﹣ 3, 2).(1)请画出△ ABC 关于 y 轴对称的△ A 1B1C1;(2)以原点 O 为位似中心,将△A 1B1C1放大为原来的 2 倍,得到△ A 2B 2C2,请在第三象限内画出△A 2B2C2,并求出 S△A1B1C1: S△A2B2C2的值.考点:作图 -旋转变换;作图-轴对称变换.专题:作图题.分析:( 1)根据网格结构找出点A 、B 、 C 关于 y 轴的对称点 A 1、 B 1、 C1的位置,然后顺次连接即可;(2)连接 A 1O 并延长至 A 2,使 A 2O=2A 1O,连接 B1O 并延长至 B 2,使 B 2O=2B 1O,连接 C1O 并延长至 C2,使 C2O=2C 1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.解答:解:( 1)△ A 1B 1C1如图所示;( 2)△A 2B2C2如图所示,∵△ A 1B1C1放大为原来的 2 倍得到△A 2B2C2,∴△ A 1B1C1∽△ A 2B2C2,且相似比为,2∴ S△A1B1C1: S△A2B2C2 =() =.2013 年中考真題点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键,还利用了相似三角形面积的比等于相似比的平方的性质.22.( 8 分)( 2013?南宁) 2013 年 6 月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图 1 和图 2 提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图 1)补充完整;(3)求出扇形统计图(图 2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生 1800 名,那么请你估计最喜爱科普类书籍的学生人数.考点:折线统计图;用样本估计总体;扇形统计图.专题:图表型.分析:( 1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.解答:解:( 1) 90÷30%=300(名),故,一共调查了300 名学生;(2)艺术的人数: 300×20%=60 名,其它的人数: 300×10%=30 名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:×360°=48°;(4) 1800× =480 (名).答: 1800 名学生中估计最喜爱科普类书籍的学生人数为480.2013 年中考真題点评:本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与 360°的比.五、(本大题满分8 分)ABCD中, AC为对角线,点E、 F 分别是边BC、23.( 8 分)( 2013?南宁)如图,在菱形AD 的中点.(1)求证:△ ABE ≌△ CDF ;(2)若∠ B=60 °, AB=4 ,求线段 AE 的长.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:( 1)首先根据菱形的性质,得到AB=BC=AD=CD ,∠ B= ∠ D,结合点 E、 F 分别是边BC、 AD 的中点,即可证明出△ ABE ≌△ CDF;(2)首先证明出△ ABC 是等边三角形,结合题干条件在 Rt△ AEB 中,∠ B=60 °,AB=4 ,即可求出 AE 的长.解答:解:( 1)∵四边形ABCD 是菱形,∴AB=BC=AD=CD ,∠ B= ∠ D,∵点 E、 F 分别是边 BC、AD 的中点,∴BE=DF ,在△ ABE 和△ CDF 中,∵,∴△ ABE ≌△ CDF ( SAS);(2)∵∠ B=60 °,∴△ ABC 是等边三角形,∵点 E 是边 BC 的中点,∴AE ⊥ BC ,在Rt△AEB 中,∠ B=60 °,AB=4 ,sin60°= =,解得 AE=2.点评:本题主要考查菱形的性质等知识点,解答本题的关键是熟练掌握菱形的性质、全等三角形的证明以及等边三角形的性质,此题难度不大,是一道比较好的中考试题.六、(本大题满分10 分)24.( 10 分)( 2013?南宁)在一条笔直的公路上有 A 、B 两地,甲骑自行车从 A 地到 B 地;乙骑自行车从 B 地到 A 地,到达 A 地后立即按原路返回,如图是甲、乙两人离 B 地的距离y( km)与行驶时x( h)之间的函数图象,根据图象解答以下问题:(1)写出 A 、 B 两地直接的距离;(2)求出点 M 的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km 时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x 的取值范围.考点:一次函数的应用.分析:( 1) x=0 时甲的 y 值即为 A 、B 两地的距离;(2)根据图象求出甲、乙两人的速度,再利用相遇问题求出相遇时间,然后求出乙的路程即可得到点 M 的坐标以及实际意义;( 3)分相遇前和相遇后两种情况求出x 的值,再求出最后两人都到达 B 地前两人相距3 千米的时间,然后写出两个取值范围即可.解答:解:( 1) x=0 时,甲距离 B 地 30 千米,所以, A 、B 两地的距离为 30 千米;( 2)由图可知,甲的速度:30÷2=15 千米 /时,乙的速度: 30÷1=30 千米 /时,30÷( 15+30) =,×30=20 千米,所以,点M 的坐标为(,20),表示小时后两车相遇,此时距离 B 地 20 千米;( 3)设 x 小时时,甲、乙两人相距3km ,①若是相遇前,则15x+30x=30 ﹣ 3,解得 x=,②若是相遇后,则解得 x=,15x+30x=30+3,③若是到达 B 地前,则15x﹣ 30(x﹣ 1) =3,解得 x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,难点在于( 3)要分情况讨论.七、(本大题满分10 分)25.( 10 分)( 2013?南宁)如图,在△ABC 中,∠ BAC=90 °, AB=AC , AB 是⊙ O 的直径,⊙O 交 BC 于点 D,DE ⊥ AC 于点 E,BE 交⊙ O 于点 F,连接 AF ,AF 的延长线交 DE 于点P.(1)求证: DE 是⊙ O 的切线;(2)求 tan∠ ABE 的值;(3)若 OA=2 ,求线段 AP 的长.考点:切线的判定;圆周角定理;解直角三角形.专题:证明题.分析:( 1)连结 AD 、 OD,根据圆周角定理得∠ADB=90 °,由 AB=AC ,根据等腰三角形的直线得 DC=DB ,所以 OD 为△BAC 的中位线,则 OD∥ AC ,然后利用 DE ⊥AC 得到OD ⊥ DE ,这样根据切线的判定定理即可得到结论;( 2)易得四边形OAED 为正方形,然后根据正切的定义计算tan∠ ABE 的值;( 3)由 AB 是⊙ O 的直径得∠ AFB=90 °,再根据等角的余角相等得∠EAP= ∠ABF ,则 tan∠ EAP=tan ∠ABE=,在Rt△EAP中,利用正切的定义可计算出EP,然后利用勾股定理可计算出解答:( 1)证明:连结AP.AD 、 OD,如图,。
广西2013年初中数学毕业升学考试试题样卷

2013年某某初中毕业升学考试试题样卷数学(考试时间:120分钟 满分:120分)注意事项:1.试卷分为试题卷和答题卡两部分,在本试...题.卷上作答无效........ 2.答题前,请认真阅读答题....卡.上的注意事项....... 3.考试结束后,将本试卷和答题......卡.一并交回.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题..卡.上对应题目的答案标号涂黑). 1.在0,-1,2,-1.5这四个数中,是负整数的是A. -1B. 0 C )2.如图,与∠1是同位角的是A .∠2B .∠3C .∠4D .∠5(知识X 围:同位角 能力:了解 难度: 0.95) 3.如图,数轴上点N 表示的数可能是A.10 B.5 C.3 D.2(知识X 围:实数、数轴 能力:理解 难度: 0.90)4.下面四个图案是某种衣物的说明标识,其中没有用到图形的平移、旋转或轴对称设计的是(知识X 围:图形的平移、旋转和对称 能力: 了解 难度: 0.95) 5.在一次多人参加的男子马拉松长跑比赛中,其中一名选手要判断自己的成绩是否比一半以上选手的成绩好,他可以根据这次比赛中全部选手成绩的哪一个统计结果进行比较 (A )平均数 (B )众数 (C ) 极差(D )中位数(知识X 围: 统计 能力: 理解 难度: 0.85) 6.下列计算正确的是第2题图第3题图(A) 222)(n m m m -=- (B) 62232)2(b a ab = (C)a a a 283= (D)xy xy xy 532=+(知识X 围:有关运算 能力: 理解 难度: 0.85) 7.图l 是由六个小正方体组合而成的一个立体图形,它的主视图是(知识X 围:视图 能力: 了解 难度: 0.90)8.若分式xx x 2422--的值为零,则x 的值为A. -2B. 2 C(知识X 围: 分式,因式分解 能力: 理解 难度: 0.8) 9.如图,一个圆锥形零件,高为8cm ,底面圆的直径为12cm ,则此圆锥的侧面积是A. 260cm π B.248cm π C. 296cm π D.230cm π (知识X 围:圆锥侧面展开 能力:掌握 难度: 0.75)10.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会 A.逐渐增大 B .不变 C .逐渐减小 D .先增大后减小 (知识X 围:反比例函数 能力: 掌握 难易程度: 0.75) 11.一个边长为4的等边三角形ABC 的高与⊙O 的直径相等,如图放置, ⊙O 与BC 相切于点C ,⊙O 与AC 相交于点E ,则CE 的长是: A. 32 B .3 C .2 D .3(知识X 围: 圆,三角形 能力 : 灵活运用 难度: 0.60)12.如图,已知扇形的圆心角为︒60,半径为1,将它沿着箭头方向无滑动滚动到B A O '''位置,则有:12cm 8cm第9题图ECBO第11题图yO A B 第10题图①点O 到O '的路径是1OO →21O O →O O '2; ②点O 到O '的路径是⋂1OO →⌒21O O →⋂'O O 2; ③点O 在1O →2O 段上的运动路径是线段21O O ; ④点O 到O '所经过的路径长为π34; 以上命题正确的序号是:A. ②③ B .③④ C .①④ D .②④(知识X 围: 图形旋转、圆的弧长 能力: 灵活运用 难度: 0.40) 二、填空题(共6小题,每小题3分,共18分,请将答案填在答题..卡.上). 13.函数42-=x y 的自变量x 的取值X 围是___________。
2013年广西自治区百色市中考数学试卷含答案.docx

2013 年中考真題2013 年广西百色中考数学试题(本试卷满分120 分,考试时间120 分钟)第Ⅰ卷(选择题,共36 分)一、选择题(本大题共12 小题,每小题 3 分,共 36 分。
)每小题都给出代号为 A 、 B、 C、D 的四个结论,其中只有一个是正确的,请用2B 铅笔在答题卷上将选定的答案代号涂黑。
1.(2013年广西百色3分)- 2013 的相反数是【】A.- 2013 B .2013C.11D.2013 2013【答案】 B 。
2.(2013年广西百色3分)已知∠ A = 65°,则∠ A 的补角的度数是【】A. 15° B . 35°C. 115 ° D .135 °【答案】 C。
3.(2013年广西百色3分)百色市人民政府在 2013 年工作报告中提出,今年将继续实施十项为民办实事工程。
其中教育惠民工程将投资 2.82 亿元,用于职业培训、扩大农村学前教育资源、农村义务教育学生营养改善计划、学生资助等项目。
那么数据282 000 000 用科学记数法(保留两个有效数字)表示为【】A. 2.82 ×108B.2.8 ×108C. 2.82 ×109 D . 2.8 ×109【答案】 B 。
4.(2013年广西百色3分)下列运算正确的是【】A. 2a+ 3b= 5ab B. 3x2y- 2x2y= 1C. (2 a2)3=6a6D. 5x 3÷x2= 5x【答案】 D。
5.(2013年广西百色3分)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为【】A. 6cm2B. 4πcm2C. 6πcm2 D .9πcm2【答案】 B 。
6.(2013年广西百色3 分)在反比例函数y m中,当x>0时,y随x的增大而增大,则二次函数y= m x 2+m xx的图象大致是下图中的【】[来 A . B .C. D .【答案】 A 。
【2013年】广西南宁市中考数学试卷及答案(word解析)

广西南宁市中考2013年数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请考上用2B铅笔在答题卡上将选定答案标号涂黑.1.(3分)(2013•南宁)在﹣2,1,5,0这四个数中,最大的数是()A.﹣3B.1C.5D.0考点:有理数大小比较.分析:根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.解答:解:在﹣2,1,5,0这四个数中,大小顺序为:﹣2<0<1<5,所以最大的数是5.故选C.点评:本题主要考查了有理数的大小的比较,解题的关键利用熟练掌握有理数的大小比较法则,属于基础题.2.(3分)(2013•南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.B.C.D.考点:点、线、面、体.分析:根据半圆绕它的直径旋转一周形成球即可得出答案.解答:解:半圆绕它的直径旋转一周形成球体.故选:A.点评:本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.3.(3分)(2013•南宁)2013年6月11日,神舟十号飞船发射成功,神舟十号飞船身高9米,重约8吨,飞行速度约每秒7900米,将数7900用科学记数法表示,表示正确的是()A.0.79×104B.7.9×104C.7.9×103D.0.79×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将7900用科学记数法表示为:7.9×103.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.正方形考点:平行投影.分析:根据平行投影的性质分别分析得出即可即可.解答:解:将矩形木框立起与地面垂直放置时,形成的影子为线段;将矩形木框与地面平行放置时,形成的影子为矩形;将木框倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且矩形对边相等,故得到的投影不可能是三角形.故选:A.点评:本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.5.(3分)(2013•南宁)甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.C.D.考点:概率公式.分析:由设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:∵设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∵甲抽到1号跑道的概率是:.故选D.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.(3分)(2013•南宁)若分式的值为0,则x的值为()A.﹣1B.0C.2D.﹣1或2考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣2=0,再解方程即可.解答:解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故选:C.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.7.(3分)(2013•南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.600πcm2D.150πcm2考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.解答:解:烟囱帽所需要的铁皮面积=×20×2π×15=300π(cm2).故选B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.8.(3分)(2013•南宁)下列各式计算正确的是()A.3a3+2a2=5a6B.C.a4•a2=a8D.(ab2)3=ab6考点:二次根式的加减法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.解答:解:A、3a3与2a2不是同类项,不能合并,故本选项错误;B、2+=3,故本选项正确;C、a4•a2=a6,故本选项错误;D、(ab2)3=a3b6,故本选项错误.故选B.点评:本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.9.(3分)(2013•南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.15考点:二元一次方程组的应用.分析:要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.解答:解:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得,解得:2x+2y=16.故选C.点评:本题考查了学生观察能力和识图能力,列二元一次方程组解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.10.(3分)(2013•南宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c(a≠0)的两个根D.当x<1时,y随x的增大而增大考点:二次函数的性质.分析:根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断.解答:解:A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意;B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数ax2+bx+c(a≠0)的最小值是﹣4,正确,故本选项不符合题意;C、由图象可知抛物线与x轴的一个交点为(﹣1,0),而对称轴为直线x=1,所以抛物线与x轴的另外一个交点为(3,0),则﹣1和3是方程ax2+bx+c(a≠0)的两个根,正确,故本选项不符合题意;D、由抛物线的对称轴为x=1,所以当xx<1时,y随x的增大而减小,错误,故本选项符合题意.故选D.点评:此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题.11.(3分)(2013•南宁)如图,AB是∵O的直径,弦CD交AB于点E,且AE=CD=8,∵BAC=∵BOD,则∵O的半径为()A.4B.5C.4D.3考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据∵BAC=∵BOD可得出=,故可得出AB∵CD,由垂径定理即可求出DE 的长,再根据勾股定理即可得出结论.解答:解:∵∵BAC=∵BOD,∵=,∵AB∵CD,∵AE=CD=8,∵DE=CD=4,设OD=r,则OE=AE﹣r=8﹣r,在RtODE中,OD=r,DE=4,OE=8﹣r,∵OD2=DE2+OE2,即r2=42+(8﹣r)2,解得r=5.故选B.点评:本题考查的是垂径定理及圆周角定理,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.12.(3分)(2013•南宁)如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.D.考点:反比例函数综合题.专题:探究型.分析:先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD∵x 轴,BE∵x轴,CF∵BE于点F,再设A(3x,x),由于OA=3BC,故可得出B (x,x+4),再根据反比例函数中k=xy为定值求出x解答:解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∵平移后直线的解析式为y=x+4,分别过点A、B作AD∵x轴,BE∵x轴,CF∵BE于点F,设A(3x,x),∵OA=3BC,BC∵OA,CF∵x轴,∵CF=OD,∵点B在直线y=x+4上,∵B(x,x+4),∵点A、B在双曲线y=上,∵3x•x=x•(x+4),解得x=1,∵k=3×1××1=.故选D.点评:本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2013•南宁)若二次根式有意义,则x的取值范围是x≥2.考点:二次根式有意义的条件.分析:根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.解答:解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为x≥2.点评:本题考查二次根式的意义,只需使被开方数大于或等于0即可.14.(3分)(2013•南宁)一副三角板如图所示放置,则∵AOB=105°.考点:角的计算.分析:根据三角板的度数可得:∵1=45°,∵2=60°,再根据角的和差关系可得∵AOB=∵1+∵2,进而算出角度.解答:解:根据三角板的度数可得:∵1=45°,∵2=60°,∵AOB=∵1+∵2=45°+60°=105°,故答案为:105.点评:此题主要考查了角的计算,关键是掌握角之间的关系.15.(3分)(2013•南宁)分解因式:x2﹣25=(x+5)(x﹣5).考点:因式分解-运用公式法.分析:直接利用平方差公式分解即可.解答:解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).点评:本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.16.(3分)(2013•南宁)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是86分.考点:加权平均数.分析:利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.解答:解:小海这学期的体育综合成绩=(80×40%+90×60%)=86(分).故答案为86.点评:本题考查的是加权平均数的求法.本题易出现的错误是求80、90这两个数的平均数,对平均数的理解不正确.17.(3分)(2013•南宁)有这样一组数据a1,a2,a3,…a n,满足以下规律:,(n≥2且n为正整数),则a2013的值为﹣1(结果用数字表示).考点:规律型:数字的变化类.专题:规律型.分析:求出前几个数便不难发现,每三个数为一个循环组依次循环,用过2013除以3,根据商和余数的情况确定答案即可.解答:解:a1=,a2==2,a3==﹣1,a4==,…,依此类推,每三个数为一个循环组依次循环,∵2013÷3=671,∵a2013为第671循环组的最后一个数,与a3相同,为﹣1.故答案为:﹣1.点评:本题是对数字变化规律的考查,根据计算得到每三个数为一个循环组依次循环是解题的关键.18.(3分)(2013•南宁)如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为﹣π.考点:三角形的内切圆与内心.分析:连接OB,以及∵O与BC的切点,在构造的直角三角形中,通过解直角三角形易求得∵O的半径,然后作∵O与小圆的公切线EF,易知∵BEF也是等边三角形,那么小圆的圆心也是等边∵BEF的重心;由此可求得小圆的半径,即可得到四个圆的面积,从而由等边三角形的面积减去四个圆的面积和所得的差即为阴影部分的面积.解答:解:如图,连接OB、OD;设小圆的圆心为P,∵P与∵O的切点为G;过G作两圆的公切线EF,交AB于E,交BC于F,则∵BEF=∵BFE=90°﹣30°=60°,所以∵BEF是等边三角形.在Rt∵OBD中,∵OBD=30°,则OD=BD•tan30°=1×=,OB=2OD=,BG=OB﹣OG=;由于∵P是等边∵BEF的内切圆,所以点P是∵BEF的内心,也是重心,故PG=BG=;∵S∵O=π×()2=π,S∵P=π×()2=π;∵S阴影=S∵ABC﹣S∵O﹣3S∵P=﹣π﹣π=﹣π.故答案为﹣π.点评:此题主要考查了等边三角形的性质、相切两圆的性质以及图形面积的计算方法,难度适中.三、(本大题共2小题,每小题6分,共12分)19.(6分)(2013•南宁)计算:20130﹣+2cos60°+(﹣2)考点:实数的运算;零指数幂;特殊角的三角函数值.分析:分别进行零指数幂、二次根式的化简,然后代入特殊角的三角函数值合并即可得出答案.解答:解:原式=1﹣3+2×﹣2=﹣3.点评:本题考查了实数的运算,属于基础题,关键是掌握零指数幂的运算法则及一些特殊角的三角函数值.20.(6分)(2013•南宁)先化简,再求值:,其中x=﹣2.考点:分式的化简求值.专题:计算题.分析:先算括号里面的,再把除式的分母分解因式,并把除法转化为乘法,然后进行约分,最后把x的值代入进行计算即可得解.解答:解:(+)÷=÷=•=x﹣1,当x=﹣2时,原式=﹣2﹣1=﹣3.点评:本题考查了分式的化简求值,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.四、本大题共2小题,每小题8分,共16分21.(8分)(2013•南宁)如图,∵ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C (﹣3,2).(1)请画出∵ABC关于y轴对称的∵A1B1C1;(2)以原点O为位似中心,将∵A1B1C1放大为原来的2倍,得到∵A2B2C2,请在第三象限内画出∵A2B2C2,并求出S∵A1B1C1:S∵A2B2C2的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.解答:解:(1)∵A1B1C1如图所示;(2)∵A2B2C2如图所示,∵∵A1B1C1放大为原来的2倍得到∵A2B2C2,∵∵A1B1C1∵∵A2B2C2,且相似比为,∵S∵A1B1C1:S∵A2B2C2=()2=.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键,还利用了相似三角形面积的比等于相似比的平方的性质.22.(8分)(2013•南宁)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.考点:折线统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.解答:解:(1)90÷30%=300(名),故,一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:×360°=48°;(4)1800×=480(名).答:1800名学生中估计最喜爱科普类书籍的学生人数为480.点评:本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.五、(本大题满分8分)23.(8分)(2013•南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:∵ABE∵∵CDF;(2)若∵B=60°,AB=4,求线段AE的长.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)首先根据菱形的性质,得到AB=BC=AD=CD,∵B=∵D,结合点E、F分别是边BC、AD的中点,即可证明出∵ABE∵∵CDF;(2)首先证明出∵ABC是等边三角形,结合题干条件在Rt∵AEB中,∵B=60°,AB=4,即可求出AE的长.解答:解:(1)∵四边形ABCD是菱形,∵AB=BC=AD=CD,∵B=∵D,∵点E、F分别是边BC、AD的中点,∵BE=DF,在∵ABE和∵CDF中,∵,∵∵ABE∵∵CDF(SAS);(2)∵∵B=60°,∵∵ABC是等边三角形,∵点E是边BC的中点,∵AE∵BC,在Rt∵AEB中,∵B=60°,AB=4,sin60°==,解得AE=2.点评:本题主要考查菱形的性质等知识点,解答本题的关键是熟练掌握菱形的性质、全等三角形的证明以及等边三角形的性质,此题难度不大,是一道比较好的中考试题.六、(本大题满分10分)24.(10分)(2013•南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B 地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.考点:一次函数的应用.分析:(1)x=0时甲的y值即为A、B两地的距离;(2)根据图象求出甲、乙两人的速度,再利用相遇问题求出相遇时间,然后求出乙的路程即可得到点M的坐标以及实际意义;(3)分相遇前和相遇后两种情况求出x的值,再求出最后两人都到达B地前两人相距3千米的时间,然后写出两个取值范围即可.解答:解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示小时后两车相遇,此时距离B地20千米;(3)设x小时时,甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=,②若是相遇后,则15x+30x=30+3,解得x=,③若是到达B地前,则15x﹣30(x﹣1)=3,解得x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,难点在于(3)要分情况讨论.七、(本大题满分10分)25.(10分)(2013•南宁)如图,在∵ABC中,∵BAC=90°,AB=AC,AB是∵O的直径,∵O交BC于点D,DE∵AC于点E,BE交∵O于点F,连接AF,AF的延长线交DE于点P.(1)求证:DE是∵O的切线;(2)求tan∵ABE的值;(3)若OA=2,求线段AP的长.考点:切线的判定;圆周角定理;解直角三角形.专题:证明题.分析:(1)连结AD、OD,根据圆周角定理得∵ADB=90°,由AB=AC,根据等腰三角形的直线得DC=DB,所以OD为∵BAC的中位线,则OD∵AC,然后利用DE∵AC得到OD∵DE,这样根据切线的判定定理即可得到结论;(2)易得四边形OAED为正方形,然后根据正切的定义计算tan∵ABE的值;(3)由AB是∵O的直径得∵AFB=90°,再根据等角的余角相等得∵EAP=∵ABF,则tan∵EAP=tan∵ABE=,在Rt∵EAP中,利用正切的定义可计算出EP,然后利用勾股定理可计算出AP.解答:(1)证明:连结AD、OD,如图,∵AB是∵O的直径,∵∵ADB=90°,∵AB=AC,∵AD垂直平分BC,即DC=DB,∵OD为∵BAC的中位线,∵OD∵AC,而DE∵AC,∵OD∵DE,∵DE是∵O的切线;(2)解:∵OD∵DE,DE∵AC,∵四边形OAED为矩形,而OD=OA,∵四边形OAED为正方形,∵AE=AO,∵tan∵ABE==;(3)解:∵AB是∵O的直径,∵∵AFB=90°,∵∵ABF+∵FAB=90°,而∵EAP+∵FAB=90°,∵∵EAP=∵ABF,∵tan∵EAP=tan∵ABE=,在Rt∵EAP中,AE=2,∵tan∵EAP==,∵EP=1,∵AP==.点评:本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和解直角三角形.八、(本大题满分10分)26.(10分)(2013•南宁)如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.考点:二次函数综合题.专题:代数几何综合题.分析:(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解;(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证;(3)①k=0时,求出AM、BN的长,然后代入+计算即可得解;②设点A(x1,x12﹣1),B(x2,x22﹣1),然后表示出+,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2,x1•2,并求出x12+x22,x12•x22,然后代入进行计算即可得解.解答:(1)解:∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),∵,解得,所以,抛物线的解析式为y=x2﹣1;(2)证明:设点A的坐标为(m,m2﹣1),则AO==m2+1,∵直线l过点E(0,﹣2)且平行于x轴,∵点M的纵坐标为﹣2,∵AM=m2﹣1﹣(﹣2)=m2+1,∵AO=AM;(3)解:①k=0时,直线y=kx与x轴重合,点A、B在x轴上,∵AM=BN=0﹣(﹣2)=2,∵+=+=1;②k取任何值时,设点A(x1,x12﹣1),B(x2,x22﹣1),则+=+==,联立,消掉y得,x2﹣4kx﹣4=0,由根与系数的关系得,x1+x2=4k,x1•x2=﹣4,所以,x12+x22=(x1+x2)2﹣2x1•x2=16k2+8,x12•x22=16,∵+===1,∵无论k取何值,+的值都等于同一个常数1.点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,勾股定理以及点到直线的距离,根与系数的关系,根据抛物线上点的坐标特征设出点A、B的坐标,然后用含有k的式子表示出+是解题的关键,也是本题的难点,计算量较大,要认真仔细.。
广西南宁市中考2013年数学试卷(含解析)
广西南宁市中考2013年数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请考上用2B铅笔在答题卡上将选定答案标号涂黑.1.(3分)(2013•南宁)在﹣2,1,5,0这四个数中,最大的数是()A.﹣3 B.1C.5D.0考点:有理数大小比较.分析:根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.解答:解:在﹣2,1,5,0这四个数中,大小顺序为:﹣2<0<1<5,所以最大的数是5.故选C.点评:本题主要考查了有理数的大小的比较,解题的关键利用熟练掌握有理数的大小比较法则,属于基础题.2.(3分)(2013•南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.B.C.D.考点:点、线、面、体.分析:根据半圆绕它的直径旋转一周形成球即可得出答案.解答:解:半圆绕它的直径旋转一周形成球体.故选:A.点评:本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.3.(3分)(2013•南宁)2013年6月11日,神舟十号飞船发射成功,神舟十号飞船身高9米,重约8吨,飞行速度约每秒7900米,将数7900用科学记数法表示,表示正确的是()A.0.79×104B.7.9×104C.7.9×103D.0.79×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将7900用科学记数法表示为:7.9×103.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.正方形考点:平行投影.分析:根据平行投影的性质分别分析得出即可即可.解答:解:将矩形木框立起与地面垂直放置时,形成的影子为线段;将矩形木框与地面平行放置时,形成的影子为矩形;将木框倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且矩形对边相等,故得到的投影不可能是三角形.故选:A.点评:本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.5.(3分)(2013•南宁)甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.12C.34D.14考点:概率公式.分析:由设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:∵设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∴甲抽到1号跑道的概率是:14.故选D.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.(3分)(2013•南宁)若分式的值为0,则x的值为()A.﹣1 B.0C.2D.﹣1或2考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣2=0,再解方程即可.解答:解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故选:C.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.7.(3分)(2013•南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.600πcm2D.150πcm2考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.解答:解:烟囱帽所需要的铁皮面积=×20×2π×15=300π(cm2).故选B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.8.(3分)(2013•南宁)下列各式计算正确的是()A.3a3+2a2=5a6B.C.a4•a2=a8D.(ab2)3=ab6考点:二次根式的加减法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.解答:解:A、3a3与2a2不是同类项,不能合并,故本选项错误;B、2+=3,故本选项正确;C、a4•a2=a6,故本选项错误;D、(ab2)3=a3b6,故本选项错误.故选B.点评:本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.9.(3分)(2013•南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15考点:二元一次方程组的应用.分析:要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.解答:解:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得,解得:2x+2y=16.故选C.点评:本题考查了学生观察能力和识图能力,列二元一次方程组解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.10.(3分)(2013•南宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c(a≠0)的两个根D.当x<1时,y随x的增大而增大考点:二次函数的性质.分析:根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断.解答:解:A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意;B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数ax2+bx+c(a≠0)的最小值是﹣4,正确,故本选项不符合题意;C、由图象可知抛物线与x轴的一个交点为(﹣1,0),而对称轴为直线x=1,所以抛物线与x轴的另外一个交点为(3,0),则﹣1和3是方程ax2+bx+c(a≠0)的两个根,正确,故本选项不符合题意;D、由抛物线的对称轴为x=1,所以当xx<1时,y随x的增大而减小,错误,故本选项符合题意.故选D.点评:此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题.11.(3分)(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()A.4B.5C.4D.3考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据∠BAC=∠BOD可得出=,故可得出AB⊥CD,由垂径定理即可求出DE的长,再根据勾股定理即可得出结论.解答:解:∵∠BAC=∠BOD,∴=,∴AB⊥CD,∵AE=CD=8,∴DE=CD=4,设OD=r,则OE=AE﹣r=8﹣r,在RtODE中,OD=r,DE=4,OE=8﹣r,∵OD2=DE2+OE2,即r2=42+(8﹣r)2,解得r=5.故选B.点评:本题考查的是垂径定理及圆周角定理,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.12.(3分)(2013•南宁)如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.D.考点:反比例函数综合题.专题:探究型.分析:先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x 轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x解答:解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点B在直线y=x+4上,∴B(x,x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选D.点评:本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy 的特点求出k的值即可.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2013•南宁)若二次根式有意义,则x的取值范围是x≥2.考点:二次根式有意义的条件.分析:根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.解答:解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为x≥2.点评:本题考查二次根式的意义,只需使被开方数大于或等于0即可.14.(3分)(2013•南宁)一副三角板如图所示放置,则∠AOB=105°.考点:角的计算.分析:根据三角板的度数可得:∠1=45°,∠2=60°,再根据角的和差关系可得∠AOB=∠1+∠2,进而算出角度.解答:解:根据三角板的度数可得:∠1=45°,∠2=60°,∠AOB=∠1+∠2=45°+60°=105°,故答案为:105.点评:此题主要考查了角的计算,关键是掌握角之间的关系.15.(3分)(2013•南宁)分解因式:x2﹣25=(x+5)(x﹣5).考点:因式分解-运用公式法.分析:直接利用平方差公式分解即可.解答:解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).点评:本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.16.(3分)(2013•南宁)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是86分.考点:加权平均数.分析:利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.解答:解:小海这学期的体育综合成绩=(80×40%+90×60%)=86(分).故答案为86.点评:本题考查的是加权平均数的求法.本题易出现的错误是求80、90这两个数的平均数,对平均数的理解不正确.17.(3分)(2013•南宁)有这样一组数据a1,a2,a3,…a n,满足以下规律:,(n≥2且n为正整数),则a2013的值为﹣1(结果用数字表示).考点:规律型:数字的变化类.专题:规律型.分析:求出前几个数便不难发现,每三个数为一个循环组依次循环,用过2013除以3,根据商和余数的情况确定答案即可.解答:解:a1=,a2==2,a3==﹣1,a4==12,…,依此类推,每三个数为一个循环组依次循环,∵2013÷3=671,∴a2013为第671循环组的最后一个数,与a3相同,为﹣1.故答案为:﹣1.点评:本题是对数字变化规律的考查,根据计算得到每三个数为一个循环组依次循环是解题的关键.18.(3分)(2013•南宁)如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为﹣π.考点:三角形的内切圆与内心.分析:连接OB,以及⊙O与BC的切点,在构造的直角三角形中,通过解直角三角形易求得⊙O的半径,然后作⊙O与小圆的公切线EF,易知△BEF也是等边三角形,那么小圆的圆心也是等边△BEF的重心;由此可求得小圆的半径,即可得到四个圆的面积,从而由等边三角形的面积减去四个圆的面积和所得的差即为阴影部分的面积.解答:解:如图,连接OB、OD;设小圆的圆心为P,⊙P与⊙O的切点为G;过G作两圆的公切线EF,交AB于E,交BC 于F,则∠BEF=∠BFE=90°﹣30°=60°,所以△BEF是等边三角形.在Rt△OBD中,∠OBD=30°,则OD=BD•tan30°=1×=,OB=2OD=,BG=OB﹣OG=;由于⊙P是等边△BEF的内切圆,所以点P是△BEF的内心,也是重心,故PG=BG=;∴S⊙O=π×()2=π,S⊙P=π×()2=π;∴S阴影=S△ABC﹣S⊙O﹣3S⊙P=﹣π﹣π=﹣π.故答案为﹣π.点评:此题主要考查了等边三角形的性质、相切两圆的性质以及图形面积的计算方法,难度适中.三、(本大题共2小题,每小题6分,共12分)19.(6分)(2013•南宁)计算:20130﹣+2cos60°+(﹣2)考点:实数的运算;零指数幂;特殊角的三角函数值.分析:分别进行零指数幂、二次根式的化简,然后代入特殊角的三角函数值合并即可得出答案.解答:解:原式=1﹣3+2×﹣2=﹣3.点评:本题考查了实数的运算,属于基础题,关键是掌握零指数幂的运算法则及一些特殊角的三角函数值.20.(6分)(2013•南宁)先化简,再求值:,其中x=﹣2.考点:分式的化简求值.专题:计算题.分析:先算括号里面的,再把除式的分母分解因式,并把除法转化为乘法,然后进行约分,最后把x的值代入进行计算即可得解.解答:解:(+)÷=÷=•=x﹣1,当x=﹣2时,原式=﹣2﹣1=﹣3.点评:本题考查了分式的化简求值,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.四、本大题共2小题,每小题8分,共16分21.(8分)(2013•南宁)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示,∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为,∴S△A1B1C1:S△A2B2C2=()2=.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键,还利用了相似三角形面积的比等于相似比的平方的性质.22.(8分)(2013•南宁)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.考点:折线统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.解答:解:(1)90÷30%=300(名),故,一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:×360°=48°;(4)1800×=480(名).答:1800名学生中估计最喜爱科普类书籍的学生人数为480.点评:本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.五、(本大题满分8分)23.(8分)(2013•南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)首先根据菱形的性质,得到AB=BC=AD=CD,∠B=∠D,结合点E、F分别是边BC、AD的中点,即可证明出△ABE≌△CDF;(2)首先证明出△ABC是等边三角形,结合题干条件在Rt△AEB中,∠B=60°,AB=4,即可求出AE的长.解答:解:(1)∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D,∵点E、F分别是边BC、AD的中点,∴BE=DF,在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵∠B=60°,∴△ABC是等边三角形,∵点E是边BC的中点,∴AE⊥BC,在Rt△AEB中,∠B=60°,AB=4,sin60°==,解得AE=2.点评:本题主要考查菱形的性质等知识点,解答本题的关键是熟练掌握菱形的性质、全等三角形的证明以及等边三角形的性质,此题难度不大,是一道比较好的中考试题.六、(本大题满分10分)24.(10分)(2013•南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.考点:一次函数的应用.分析:(1)x=0时甲的y值即为A、B两地的距离;(2)根据图象求出甲、乙两人的速度,再利用相遇问题求出相遇时间,然后求出乙的路程即可得到点M的坐标以及实际意义;(3)分相遇前和相遇后两种情况求出x的值,再求出最后两人都到达B地前两人相距3千米的时间,然后写出两个取值范围即可.解答:解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=23,23×30=20千米,所以,点M的坐标为(23,20),表示小时后两车相遇,此时距离B地20千米;(3)设x小时时,甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=35,②若是相遇后,则15x+30x=30+3,解得x=,③若是到达B地前,则15x﹣30(x﹣1)=3,解得x=95,所以,当35≤x≤或95≤x≤2时,甲、乙两人能够用无线对讲机保持联系.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,难点在于(3)要分情况讨论.七、(本大题满分10分)25.(10分)(2013•南宁)如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.(1)求证:DE是⊙O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.考点:切线的判定;圆周角定理;解直角三角形.专题:证明题.分析:(1)连结AD、OD,根据圆周角定理得∠ADB=90°,由AB=AC,根据等腰三角形的直线得DC=DB,所以OD为△BAC的中位线,则OD∥AC,然后利用DE⊥AC得到OD⊥DE,这样根据切线的判定定理即可得到结论;(2)易得四边形OAED为正方形,然后根据正切的定义计算tan∠ABE的值;(3)由AB是⊙O的直径得∠AFB=90°,再根据等角的余角相等得∠EAP=∠ABF,则tan∠EAP=tan∠ABE=,在Rt△EAP中,利用正切的定义可计算出EP,然后利用勾股定理可计算出AP.解答:(1)证明:连结AD、OD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴AD垂直平分BC,即DC=DB,∴OD为△BAC的中位线,∴OD∥AC,而DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵OD⊥DE,DE⊥AC,∴四边形OAED为矩形,而OD=OA,∴四边形OAED为正方形,∴AE=AO,∴tan∠ABE==;(3)解:∵AB是⊙O的直径,∴∠AFB=90°,∴∠ABF+∠FAB=90°,而∠EAP+∠FAB=90°,∴∠EAP=∠ABF,∴tan∠EAP=tan∠ABE=,在Rt△EAP中,AE=2,∵tan∠EAP==,∴EP=1,∴AP==.点评:本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和解直角三角形.八、(本大题满分10分)26.(10分)(2013•南宁)如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.考点:二次函数综合题.专题:代数几何综合题.分析:(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解;(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证;(3)①k=0时,求出AM、BN的长,然后代入+计算即可得解;②设点A(x1,x12﹣1),B(x2,x22﹣1),然后表示出+,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2,x1•2,并求出x12+x22,x12•x22,然后代入进行计算即可得解.解答:(1)解:∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),∴,解得,所以,抛物线的解析式为y=x2﹣1;(2)证明:设点A的坐标为(m,m2﹣1),则AO==m2+1,∵直线l过点E(0,﹣2)且平行于x轴,∴点M的纵坐标为﹣2,∴AM=m2﹣1﹣(﹣2)=m2+1,∴AO=AM;(3)解:①k=0时,直线y=kx与x轴重合,点A、B在x轴上,∴AM=BN=0﹣(﹣2)=2,∴+=+=1;②k取任何值时,设点A(x1,x12﹣1),B(x2,x22﹣1),则+=+==,联立,消掉y得,x2﹣4kx﹣4=0,由根与系数的关系得,x1+x2=4k,x1•x2=﹣4,所以,x12+x22=(x1+x2)2﹣2x1•x2=16k2+8,x12•x22=16,∴+===1,∴无论k取何值,+的值都等于同一个常数1.点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,勾股定理以及点到直线的距离,根与系数的关系,根据抛物线上点的坐标特征设出点A、B的坐标,然后用含有k的式子表示出+是解题的关键,也是本题的难点,计算量较大,要认真仔细.。
2013年广西中考数学真题卷含答案解析
2013年南宁市初中毕业升学考试试卷数学试题(含答案全解全析)(满分120分时间120分钟)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A、B、C、D四个结论,其中只有一个是正确的.1.在-2,1,5,0这四个数中,最大的数是()A.-2B.1C.5D.02.如图所示,将平面图形绕轴旋转一周,得到的几何体是()3.2013年6月11日,神舟十号飞船发射成功.神舟十号飞船身高约9米,重约8吨,飞行速度约每秒7900米.将数7900用科学记数法表示,正确的是()A.0.79×104B.7.9×104C.7.9×103D.79×1024.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能...出现的投影是()A.三角形B.线段C.矩形D.正方形5.甲、乙、丙、丁四名选手将参加100米决赛.赛场共设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.12C.13D.146.若分式x-2x+1的值为0,则x的值为()A.-1B.0C.2D.-1或27.如图,圆锥形的烟囱帽底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.600πcm2D.150cm28.下列各式计算正确的是()A.3a3+2a3=5a6B.2√a+√a=3√aC.a4·a2=a8D.(ab2)3=ab69.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种.两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.15的是()10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误..A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是-4C.-1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大11.如图,AB 是☉O 的直径,弦CD 交AB 于点E,且AE=CD=8,∠BAC=12∠BOD,则☉O 的半径为( )A.4√2B.5C.4D.312.如图,直线y=12x 与双曲线y=k x (k>0,x>0)交于点A,将直线y=12x 向上平移4个单位长度后,与y 轴交于点C,与双曲线y=kx (k>0,x>0)交于点B.若OA=3BC,则k 的值为( )A.3B.6C.94D.92第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分) 13.要使二次根式√x -2有意义,则x 的取值范围是 . 14.一副三角板如图所示放置,则∠AOB= °.15.因式分解:x 2-25= .16.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末体育成绩(百分制)分别是80分,90分,则小海这个学期的体育综合成绩是 分.17.有这样一组数据a1,a2,a3,…,a n,满足以下规律:a1=12,a2=11-a1,a3=11-a2,…,a n=11-a n-1(n≥2且n为正整数),则a2013的值为.(结果用数字作答)18.如图,在边长为2的正三角形中,将其内切圆和三个角切圆...(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为.三、(本大题共2小题,每小题满分6分,共12分)19.计算:20130-√27+2cos60°+(-2).20.先化简,再求值:(x x-1+1x-1)÷x+1x2-2x+1,其中x=-2.四、(本大题共2小题,每小题满分8分,共16分)21.如图,△ABC三个顶点坐标分别为A(-1,3),B(-1,1),C(-3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2.请在第三象限内画出△A2B2C2,并求出S△A1B1C1∶S△A2B2C2的值.22.2013年6月,某中学结合广西中小学生阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②所提供的信息,解答下列问题:(1)在这次抽样调查中,一共抽查了多少名学生?(2)请把折线统计图(图①)补充完整;(3)求出扇形统计图(图②)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.五、(本大题满分8分)23.如图,在菱形ABCD中,AC是对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.六、(本大题满分10分)24.在一条笔直的公路上有A、B两地.甲骑自行车从A地到B地;乙骑摩托车从B地到A地,到达A地后立即按原路返回.如图是甲、乙两人离.B.地的距离....y(km)与行驶时间x(h)之间的函数图象.根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;甲、乙两人能(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,请直接写出....够用无线对讲机保持联系时x的取值范围.七、(本大题满分10分)25.如图,在△ABC中,∠BAC=90°,AB=AC,AB是☉O的直径,☉O交BC于点D,DE⊥AC于点E,BE交☉O于点F,连结AF,AF的延长线交DE于点P.(1)求证:DE是☉O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.八、(本大题满分10分)26.如图,抛物线y=ax2+c(a≠0)经过C(2,0)、D(0,-1)两点,并与直线y=kx交于A、B两点,直线l 过点E(0,-2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM; (3)探究:①当k=0时,直线y=kx 与x 轴重合,求出此时1AM +1BN 的值;②试说明无论k 取何值,1AM +1BN 的值都等于同一个常数.答案全解全析:1.C 因为-2<0<1<5,所以最大的数为5,故选C.2.A 半圆绕直径所在的直线旋转一周所得的几何体为球,故选A.3.C 7 900=7.9×103,故选C.4.A 在平行光线下,矩形的投影可能是线段或矩形或正方形,矩形的平行投影不可能是三角形,故选A.5.D 甲抽到每个跑道的可能性相等,共4个跑道,则甲抽到每个跑道的可能性都是14,抽到1号道的概率为14,故选D.6.C 由x -2x+1=0解得x=2,当x=2时,x+1≠0,故x=2是原分式方程的解,故选C. 7.B S 圆锥侧=πrl=15×20π=300π cm 2,故选B.8.B 因为3a 3+2a 3=5a 3,a 4·a 2=a 6,(ab 2)3=a 3b 6,所以选项A 、C 、D 错误,故选B. 9.C 设笑脸气球x 元/个,爱心气球y 元/个. 则{3x +y =14,①x +3y =18,②由①+②得2(x+y)=16,故选C.评析 本题考查二元一次方程组的应用,确定等量关系列方程组是关键,应根据题意灵活解方程组.10.D 由题中图象可知抛物线的对称轴为x=1,顶点坐标为(1,-4),开口向上,点(-1,0)关于直线x=1的对称点为(3,0),故选项A 、B 、C 正确,故选D.11.B 连结AD,则∠BAD =12∠BOD=∠BAC,∴BC ⏜=BD ⏜,又AB 为直径,∴CD⊥AB,DE=12CD=4,设☉O 的半径为r,则OE=8-r,在Rt△DEO 中,OE 2+DE 2=OD 2,(8-r)2+42=r 2,解得r=5,故选B. 12.D 作AE⊥y 轴于点E,BF⊥y 轴于点F,易证△BFC∽△AEO,所以BF AE =BC AO =13,设x B =m,则x A =3m,所以有B (m ,12m +4),A (3m ,32m).因点A,B 在y=kx 上,所以k=m (12m +4)=3m·32m,解得m=0(舍去)或m=1.所以k=92,故选D.评析 本题考查一次函数、反比例函数、图形的相似等知识,关键是根据相似比确定A 、B 两点的坐标,求出k 值.属中等难度题. 13.答案 x≥2解析 x-2≥0时二次根式有意义,∴x≥2. 14.答案 105解析 由题意得∠AOB=45°+60°=105°. 15.答案 (x+5)(x-5)解析 由平方差公式得x 2-25=(x+5)(x-5). 16.答案 86解析 设综合成绩为x ,则x =80×40%+90×60%=86(分). 17.答案 -1 解析 a 1=12,a 2=11-a 1=11-12=2,a 3=11-a 2=11-2=-1,a 4=11-a 3=11-(-1)=12,…,即每3个循环一次,而2 013÷3=671,所以a 2 013=-1.18.答案 √3-4π9解析 设内切圆的半径为R,角切圆的半径为r,可求得R=√33,r=√39,S 阴影=√34×22-πR 2-3πr 2=√3-π3-π9=√3-4π9.19.解析 原式=1-3√3+2×12-2(4分)=1-3√3+1-2(5分) =-3√3.(6分) 20.解析 原式=x+1x -1÷x+1(x -1)2(2分)=x+1x -1·(x -1)2x+1(3分)=x-1.(4分)当x=-2时,原式=-2-1(5分) =-3.(6分)21.解析 (1)轴对称图形如图所示.(3分) (2)位似图形如图所示.(6分)∵△A 1B 1C 1∽△A 2B 2C 2,A 1B 1A 2B 2=12,(7分)∴S △A 1B 1C 1∶S △A 2B 2C 2=(12)2=14.(8分) 22.解析 (1)90÷30%=300(名).(2分) (2)如图所示. (4分)×360°=48°.(6分)(3)40300×1 800=480(名).(8分)(4)8030023.解析(1)证明:在菱形ABCD中,AB=BC=CD=DA,(1分)∠B=∠D.(2分)∵点E、F分别是边BC、AD的中点,∴BE=DF,(3分)∴△ABE≌△CDF.(4分)(2)解法一:∵AB=BC,∠B=60°,∴△ABC是等边三角形.(5分) ∵点E是BC边的中点,∴AE⊥BC.(6分)在Rt△ABE中,sin∠B=AE,(7分)AB=2√3.(8分)∴AE=AB·sin∠B=4×√32解法二:∵AB=BC,∠B=60°,∴△ABC是等边三角形.(5分)∵点E是BC边的中点,∴AE⊥BC.(6分)∴∠BAE=30°.AB=2,(7分)在Rt△ABE中,BE=12∴AE=√AB2-BE2=√42-22=2√3.(8分)评析 本题考查菱形的性质、三角形全等的判定、等边三角形的性质、勾股定理等知识,属基础题.24.解析 (1)30千米.(2分)(2)解法一:当0≤x≤2时,设y甲=kx+b,将点(0,30),(2,0)代入得{b =30,2k +b =0,解得{k =-15,b =30,∴y 甲=-15x+30(0≤x≤2).(3分)当0≤x≤1时,设y 乙=mx,将点(1,30)代入得m=30,∴y 乙=30x(0≤x≤1),(4分)当y 甲=y 乙时,-15x+30=30x,(5分)解得x=23,此时y 甲=y 乙=20,∴点M 的坐标为(23,20).(6分) 该点坐标所表示的实际意义:甲、乙两人行驶23小时后第一次相遇,此时两人离B 地的距离均为20千米.(7分)解法二:由题图可知,甲的速度为15千米/时,(3分)乙的速度为30千米/时.(4分)设经过x 小时后甲、乙两人第一次相遇,则15x+30x=30,(5分)解得x=23,∴30x=20,∴点M 的坐标为(23,20).(6分) 该点坐标所表示的实际意义:甲、乙两人行驶23小时后第一次相遇,此时两人离B 地的距离均为20千米.(7分)(3)35≤x≤23(8分)或23<x≤1115(9分)或95≤x≤2.(10分)评析本题是以行程问题为背景的一次函数应用型问题,考查了待定系数法求函数解析式,一次函数图象及其性质,数形结合是常用的解题方法.25.解析(1)证法一:连结OD.∵∠BAC=90°,AB=AC,∴∠C=∠ABC=45°.∵DE⊥AC,∴∠CDE=45°.(1分)∵OB=OD,∴∠ODB=∠ABC=45°.(2分)∵∠CDE+∠ODE+∠ODB=180°,∴∠ODE=90°,∴DE是☉O的切线.(3分)证法二:连结OD.∵∠BAC=90°,AB=AC,∴∠ABC=45°.∵OB=OD,∴∠ODB=∠ABC=45°,(1分)∴∠DOB=90°.(2分)∵DE⊥AC,BA⊥AC,∴DE∥BA,∴∠ODE=∠DOB=90°,∴DE是☉O的切线.(3分)(2)∵∠BAC=∠DEA=∠ODE=90°,OA=OD,∴四边形AODE是正方形.(4分)∴AE=OA=12AB,(5分)∴tan∠ABE=AEAB =12.(6分)(3)∵AB是☉O的直径, ∴∠AFB=90°.(7分)∵∠EAP+∠PAB=90°,∠PAB+∠ABE=90°,∴∠EAP=∠ABE,(8分)∴tan∠ABE=tan∠EAP=PE AE =12.∵AE=OA=2,∴PE=1.(9分)在Rt△AEP 中,AP=√AE 2+PE 2=√5.(10分)评析 本题考查圆的性质、切线的判定、平行四边形的性质以及解直角三角形,构造相应的直角三角形是解题关键.26.解析 (1)将点C(2,0),D(0,-1)代入y=ax 2+c得{c =-1,4a +c =0,(1分) 解得{a =14,c =-1,∴此抛物线的解析式为y=14x 2-1.(2分) (2)证明:过点A 作AG 垂直于y 轴,垂足为点G.设点A 的坐标为(x 1,14x 12-1),则AO 2=AG 2+GO 2 =x 12+(14x 12-1)2=116x 14+12x 12+1.(3分)AM 2=(14x 12-1+2)2 =116x 14+12x 12+1.(4分) ∴AO 2=AM 2.∵AO、AM 的值均为正数,∴AO=AM.(5分)(3)①当k=0时,直线AB 与x 轴重合,且AB∥MN,则AM=2,BN=2,∴1AM +1BN =1.(6分) ②当k>0时,延长AG,交BN 于点H,由(2)可知AO=AM,同理可证:BO=BN.(7分)设AO=AM=m,BN=BO=n.易知BN∥OE,∴△AGO∽△AHB,∴AOOG =ABBH,即m2-m=m+nn-m,(8分)整理得m+n=mn.∵m≠0,n≠0,∴两边同除以mn得1m +1n=1,即1AM +1BN=1.(9分)当k<0时,同理可证:1AM +1BN=1,综上所述,无论k取何值,1AM +1BN的值都等于同一个常数.(10分)评析本题属二次函数的综合题,考查了待定系数法求函数解析式、勾股定理、三角形相似的判定与性质,本题难点在相似三角形的构造,依据条件作垂线是构造相似三角形的途径.本题对学生的计算能力要求较高,属难题.。
广西来宾市2013年中考数学试卷(含答案)
数学试卷(第Ⅰ卷) 第1页(共2页)A 2013年来宾市初中毕业升学统一考试数 学(考试时间:120分钟 总分:120分)第Ⅰ卷说明:1.本试卷分第Ⅰ卷(填空题和选择题)和第Ⅱ卷(答卷,含解答题)两部分。
第Ⅰ卷共2页,第Ⅱ卷共6页。
考试结束后,将第Ⅰ卷和第Ⅱ卷一并交回。
2.答题前,考生务必将自己的姓名、准考证号及座位号填写在第Ⅱ卷中规定的位置。
3.考生必须在第Ⅱ卷中规定的位置答题,在.第.Ⅰ.卷.和草稿纸上.....作答无效....。
一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,请将正确选项对应的字母填写在第Ⅱ卷相应题号下的空格中. 1.-3的绝对值是 A .3B .-3C .31D .312.如图是由六个大小相同的小正方体组成的几何体,它的主视图是3.分解因式:x 2-4y 2的结果是A .(x +4y )(x -4y )B .(x +2y )(x -2y ) C .(x -4y )2 D .(x -2y )24.下列式子计算正确的是 A .x +x 2=x 3B .3x 2-2x =xC .(3x 2y )2=3x 4y 2D .(-3x 2y )2=9x 4y 25.2013年全国参加高考的人数为9120000人,这个数字用科学记数法表示是A .91.2×105B .9.12×106C .9.12×107D .0.912×1076.如图,直线AB ∥CD ,∠CGF =130°,则∠BFE的度数是 A .30° B .40°C .50°D .60°7.已知图形:①等边三角形,②平行四边形,③菱形,④圆.其中既是轴对称图形,又是中心对称图形的有 A .1个B .2个C .3个D .4个(第2题图) A B C D数学试卷(第Ⅰ卷) 第2页(共2页)8.已知反比例函数的图象经过点(2,-1),则它的解析式是A .x y 2-=B .x y 2=C .xy 2=D .xy 2-= 9.已知关于x 的一元二次方程02=+-k x x 的一个根是2,则k 的值是A .-2B .2C .1D .-110.已知数据:10,17,13,8,11,13.这组数据的中位数和极差分别是A .12和9B .12和8C .10.5和9D .13和811.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件中不能证明....△ABE ≌△ACD 的是 A .AD =AE B .BD =CE C .BE =CD D .∠B =∠C12.如图,其图象反映的过程是:张强从家去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中 x 表示时间, y 表示张强离家的距离.根据图象,下列回答正确的是A .张强在体育场锻炼45分钟B .张强家距离体育场是4千米C .张强从离家到回到家一共用了200分钟D .张强从家到体育场的平均速度是10千米/小时二、填空题:本大题共6小题,每小题3分,共18分.请将答案填写在第Ⅱ卷相应题号后的横线上.13.5的相反数是______.14.从1,2,3这三个数字中任意抽取两个,其和是偶数的概率是 .15.不等式组⎩⎨⎧>≥-8203x x 的解集是 .16.在△ABC 中,∠C =90°,BC =6,32sin =A ,则AB 边的长 是 .17.如图是一圆形水管的截面图,已知⊙O 的半径OA =13,水面宽AB =24,则水的深度CD 是 .18.已知二次函数y =x 2+bx +c 经过点(3,0)和(4,0),则这个二次函数的解析式是 .(第17题图)(第12题图)y/(第11题图) EDCBA数学试卷(第Ⅰ卷) 第3页(共2页)2013年来宾市初中毕业升学统一考试数 学(考试时间:120分钟 总分:120分)第Ⅱ卷一、选择题:请将正确选项对应的字母填写在下表相应题号下的空格中.(每小题3分,共36分)二、填空题:请将答案填写在相应题号后的横线上.(每小题3分,共18分) 13._________________; 14._________________; 15._________________;16._________________; 17._________________; 18._________________.三、解答题:本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.(每小题6分,共12分)(1)计算: (2)解方程:()9211)1(12013-⎪⎭⎫⎝⎛+-+--πxx 2122=+数学试卷(第Ⅰ卷) 第4页(共2页)20.(本题8分)如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (0,4),B (-3,5), C (-4,1).(1)把△ABC 向右平移2个单位得△A 1B 1C 请画出△A 1B 1C 1,并写出点A 1的坐标;(2)把△ABC 绕原点O 旋转180°得到 △A 2B 2C 2,请画出△A 2B 2C 2.21.(本题8分)某校九年级为建立学习兴趣小组,对语文、数学、英语、物理、化学、思想品德、历史、综合共八个科目的喜欢情况进行问卷调查(每人只选一项),下表是随机抽取部分学生的问卷进行统计的结果:根据表中信息,解答下列问题: (1)本次随机抽查的学生共有______人;(2)本次随机抽查的学生中,喜欢__________科目的人数最多; (3)根据上表中的数据补全条形统计图;(4)如果该校九年级有600名学生,那么估计该校九年级喜欢综合科目的学生有_____人.(第20题图)(第21题图)22.(本题8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?数学试卷(第Ⅰ卷)第5页(共2页)数学试卷(第Ⅰ卷) 第6页(共2页)23.(本题8分)如图,在等腰梯形ABCD 中,AD ∥BC ,E ,F ,G ,H 分别是梯形各边的中点. (1)请用全等符号表示出图中所有的全等三角形(不得添加辅助线),并选其中一对加以证明;(2)求证:四边形EFGH 是菱形.(第23题图)A BCD E FGH24.(本题10分)如图,A,B,C,D是⊙O上的四点,∠BAC=∠CAD,P是线段CD延长线上一点,且∠P AD=∠ABD.Array(1)请判断△BCD的形状(不要求证明);(2)求证:P A是⊙O的切线;(3)求证:AP2-DP2=DP·BC.(第24题图)数学试卷(第Ⅰ卷)第7页(共2页)25.(本题12分)在△AOB中,∠AOB=90°,AO=6厘米,BO=8厘米,分别以OB和OA所在直线为x轴,y轴建立平面直角坐标系,如图所示,动点M从点A开始沿AO方向以2厘米/秒的速度向点O移动,同时动点N从点O开始沿OB方向以4厘米/秒的速度向点B移动(其中一点到达终点时,另一点随即停止移动).(1)求过点A和点B的直线表达式;(2)当点M移动多长时间时,四边形AMNB的面积最小?并求出四边形AMNB面积的最小值;(3)在点M和点N移动的过程中,是否存在以O,M,N为顶点的三角形与△AOB相似?若存在,请求出点M 和点N的坐标;若不存在,请说明理由.数学试卷(第Ⅰ卷)第8页(共2页)数学试卷(第Ⅰ卷) 第9页(共2页)2013年来宾市初中毕业升学统一考试数学参考答案及评分标准一、选择题(每小题3分,共36分)二、填空题(每小题3分,共18分) 13.5-;14.31;15.x ﹥4 ; 16.9; 17.8;18.y =x 2-7x +12.三、解答题(本大题共7小题,共66分)19.解:(1)原式=1-1+2-3(每个知识点1分) …………………4分=-1……………………………6分(2)去分母,得2×2x =x +2 ………………………………2分 3x =2 ………………………………3分32=x ………………………………4分 检验:把32=x 代入 2x (x +2) ≠0 ………………………………5分∴32=x 是原分式方程的解 ………………………………6分20.解:(1)A 1的坐标是(2,4); ………………………………2分(画图正确3分,每对一点给1分) ………………………………5分 (2)(画图正确3分,每对一点给1分); ………………………………8分 (画图略)21.解:(1)80 ………………………………2分(2)综合 ………………………………4分 (3)(画图略) ………………………………6分 (如果有刻度线或条形图上标有数据且画图正确给满分,否则只画图给1分) (4)105 ………………………………8分22.解:(1)依题意,得(360-280)×60=4800 ………………………………2分 故降价前商场每月销售该商品的利润是4800元. ………………3分(2)设每件商品应降价x 元,依题意,得 ………………………………4分 (360-280-x )(60+5x )=7200 ………………………………6分数学试卷(第Ⅰ卷) 第10页(共2页)整理,得x 2-68x +480=0解得 x 1=60,x 2=8 ………………………………7分 因为要更有利于减少库存,所以必须多销售,故取x =60答:每件商品应降价60元. ………………………………8分23.解:(1)△AEH ≌△DGH ………………………………1分△BEF ≌△CGF ………………………………2分 (当只写出四个三角形或两个能全等的三角形只给1分) 【证法一】:∵梯形ABCD 是等腰梯形,AD ∥BC ∴∠A =∠D ,AB=DC∵E ,F ,G ,H 分别是梯形ABCD 各边的中点∴AH =DH ,AB AE 21=,CD DG 21= …………………………3分∴AE =DG ∴△AEH ≌△DGH ………………………………4分 【证法二】:连接AC ,BD…………………………3分∵E ,F ,G ,H 分别是梯形ABCD 各边的中点,∴AH =DH ,AB AE 21=,CD DG 21=,BD EH 21=,AC GH 21= 又∵梯形ABCD 是等腰梯形 ∴AC =BD ,AE =DG ∴EH =GH∴△AEH ≌△DGH ………………………………4分 (2)【证法一】:连接AC ,BD ………………………………5分∵E ,F ,G ,H 分别是梯形ABCD 各边的中点∴BD EH 21=,BD FG 21=,AC EF 21=,AC GH 21= ………6分 又∵梯形ABCD 是等腰梯形 ∴AC =BD∴EF =FG =GH =HE ………7分 ∴四边形EFGH 是菱形 ………8分 【证法二】:连接AC ,BD ………5分 ∵E ,F ,G ,H 分别是梯形ABCD 各边的中点 ∴EH ∥BD 且BD EH 21=,FG ∥BD 且BD FG 21= ∴EH ∥FG 且EH =FG 同理 EF ∥HG 且EF =HG∴四边形EFGH 是平行四边形 ………………………………6分H G FE D CBA(第23题图)数学试卷(第Ⅰ卷) 第11页(共2页)又∵梯形ABCD 是等腰梯形∴AC =BD∵AC EF 21=,BD EH 21= ∴EF =EH ………………………………7分 ∴四边形EFGH 是菱形 ………………………………8分 (其它证法参照以上方法步骤给分) 24.(1)解:△BCD 是等腰三角形…………………2分(2)证明:作⊙O 的直径AE ,连接DE ………………………3分∵AE 是⊙O 的直径∴∠ADE =90° ………………………4分 ∴∠DAE +∠E =90°又∵∠E =∠ABD ,∠P AD =∠ABD∴∠E =∠P AD ………………………5分 ∴∠DAE +∠P AD =90° 即∠P AE =90°∴P A 是⊙O 的切线. ………………………6分(3)证明:∵∠P AD =∠ABD ,∠ABD =∠ACP∴∠P AD =∠ACP …………7分 又∵∠P =∠P∴△APD ∽△CP A …………8分 ∴APDPCP AP =∴AP 2=CP ·DP∴AP 2=(CD +DP )·DP ……9分 ∵∠BAC =∠CAD ∴ BC =CD∴AP 2=(BC +DP )·DP =DP ·BC +DP 2∴AP 2-DP 2=DP ·BC ………………………10分25.解:(1)依题意,得A ,B 两点的坐标分别是A (0,6),B (8,0),设过点A 和点B 的直线表达式是:y =kx +b ………………1分∴⎩⎨⎧=+=086b k b解得:⎪⎩⎪⎨⎧=-=643b k∴直线AB 的表达式是:643+-=x y ………………………2分(第24题图)数学试卷(第Ⅰ卷) 第12页(共2页)(2)设点M 的移动时间为t 秒,△OMN 的面积为S 1平方厘米,△AOB 的面积为S 2平方厘米,四边形AMNB 的面积为S 平方厘米,得OM =6-2t ,ON =4t ………………………3分15)23(441224)26(421682121212212+-=+-=-⨯-⨯⨯=⋅-⋅=-=t t t t t OM ON OA OB S S S ………………………5分当23=t 时,S 有最小值是15 所以,当点M 移动32秒时,四边形AMNB 的面积最小值是15平方厘米;………7分(3)存在. ……………………………8分①设当点M ,N 移动t 1秒时,如果OBONOA OM =, 则有△OMN ∽△OAB ∴8462611t t =-,解得:2.11=t ∴当点M ,N 移动1.2秒时, OM =6-2t 1=6-2×1.2=3.6, ON =4t 1=4×1.2=4.8∴点M 和点N 的坐标分别为M (0,3.6),N (4.8,0) …………10分②设当点M ,N 移动t 2秒时,如果OAONOB OM =, 则有△OMN ∽△OBA ∴6482622t t =-,解得:1192=t ∴当点M ,N 移动119秒时, OM =6-2t 2=6-2×119=1148, ON =4t 2=4×119=1136∴点M 和点N 的坐标分别为M (0,1148),N (1136,0) ………11分 综上所述:点M 和点N 的坐标分别为M (0,3.6),N (4.8,0)或 M (0,1148),N (1136,0). ……………………………………12分数学试卷(第Ⅰ卷)第13页(共2页)。
2013年广西初中毕业升学考试学科说明数学及样卷
附件22013年广西初中毕业升学考试学科说明数学一、考试目的初中毕业升学考试是义务教育阶段的终结性考试,目的是全面、准确地反映初中毕业生在学科学习方面所达到的水平。
考试结果既是衡量学生是否达到初中毕业标准的重要依据,也是普通高中招生录取的重要依据之一。
二、命题的指导思想认真贯彻党的十八大精神,以科学发展观为指导,全面贯彻党的教育方针。
数学学科的初中毕业升学考试,应有利于贯彻新课改理念,全面推进素质教育;有利于检查初中教学质量,促进义务教育教育均衡发展,全面提高教育教学质量;有利于推动课程改革,减轻学生的过重学业负担,促使教师转变教学方式、学生转变学习方式,培养学生的创新精神和实践能力;有利于考试评价制度改革和高一级学校选拔合格的具有学习潜能的新生。
三、命题的基本原则(一)注重导向性。
试题有利于全面实施素质教育,推进城乡公平教育,促进教育均衡发展;有利于继续推进基础教育课程改革,促进教师转变教学方式和学生转变学习方式;有利于培养学生正确的人生观和价值观;有利于初高中教学的衔接,为学生在高中阶段的学习打好基础。
(二)注重科学性。
严格按照规定的程序和要求组织命题,做到考试内容和形式科学,符合考生的年龄特征和认知水平;试题内容科学,难易适当,表述正确;试卷结构科学、合理,形式规范;具备较高信度、效度和良好的区分度。
(三)注重基础性。
试题要在指导学生掌握必要的基础知识的同时,加强考查学生对知识与技能及数学思想方法的理解和掌握情况,特别是考查运算能力和综合运用所学知识分析和解决问题的能力。
(四)注重能力立意。
试题内容要以课程教材作为基础材料,并紧密联系学生的实际,联系社会生活和科技发展的需要。
考查灵活运用基础知识和基本技能分析问题、解决实际问题的能力,尤其注重考查探究能力和实践能力。
要注重考查数学知识在生活中的应用,要引导学生关注社会中的热点、焦点问题,做到课内课外相结合,促使学生的学习及考试的内容更加贴近学生的生活和社会发展实际,从而更好地考查学生学习探究应用的能力和水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年广西初中毕业升学考试数学学科说明及样卷附件2 2013年广西初中毕业升学考试学科说明数学一、考试目的初中毕业升学考试是义务教育阶段的终结性考试,目的是全面、准确地反映初中毕业生在学科学习方面所达到的水平。
考试结果既是衡量学生是否达到初中毕业标准的重要依据,也是普通高中招生录取的重要依据之一。
二、命题的指导思想认真贯彻党的十八大精神,以科学发展观为指导,全面贯彻党的教育方针。
数学学科的初中毕业升学考试,应有利于贯彻新课改理念,全面推进素质教育;有利于检查初中教学质量,促进义务教育教育均衡发展,全面提高教育教学质量;有利于推动课程改革,减轻学生的过重学业负担,促使教师转变教学方式、学生转变学习方式,培养学生的创新精神和实践能力;有利于考试评价制度改革和高一级学校选拔合格的具有学习潜能的新生。
三、命题的基本原则(一)注重导向性。
试题有利于全面实施素质教育,推进城乡公平教育,促进教育均衡发展;有利于继续推进基础教育课程改革,促进教师转变教学方式和学生转变学习方式;有利于培养学生正确的人生观和价值观;有利于初高中教学的衔接,为学生在高中阶段的学习打好基础。
(二)注重科学性。
严格按照规定的程序和要求组织命题,做到考试内容和形式科学,符合考生的年龄特征和认知水平;试题内容科学,难易适当,表述正确;试卷结构科学、合理,形式规范;具备较高信度、效度和良好的区分度。
(三)注重基础性。
试题要在指导学生掌握必要的基础知识的同时,加强考查学生对知识与技能及数学思想方法的理解和掌握情况,特别是考查运算能力和综合运用所学知识分析和解决问题的能力。
(四)注重能力立意。
试题内容要以课程教材作为基础材料,并紧密联系学生的实际,联系社会生活和科技发展的需要。
考查灵活运用基础知识和基本技能分析问题、解决实际问题的能力,尤其注重考查探究能力和实践能力。
要注重考查数学知识在生活中的应用,要引导学生关注社会中的热点、焦点问题,做到课内课外相结合,促使学生的学习及考试的内容更加贴近学生的生活和社会发展实际,从而更好地考查学生学习探究应用的能力和水平。
(五)体现教育性。
发挥试题的教育功能,有机渗透科学精神和人文精神,关注人与自然、社会的协调发展。
对学生的学习过程、学习方法,及其对事物、生活、人生的情感、态度和价值观进行考查,以更好地培养学生的基本素养、科学和人文精神,促进全面发展。
四、考试范围《全日制义务教育数学课程标准》(实验稿)所规定的第三学段(7~9年级)涉及到的四个知识领域,即“数与代数”、“空间与图形”、“统计与概率”、“课题学习”的内容。
参照人民教育出版社出版的义务教育课程标准实验教科书《数学》(7~9年级)教材。
五、考试内容与要求初中毕业与升学数学学科考试在知识与技能、过程与方法、情感与态度、数学思想、解决问题等方面对学生进行全面的考查。
重视对能力的考查,特别是考查运算能力,逻辑思维的能力;重点考查基本的数学基础知识和基本技能,以及基本的数学思想和方法;关注考查学生的数感、符号感、空间观念、统计观念,以及运用一般图表、图象处理数据信息的能力,包括对数学语言的阅读理解及表达能力;能够结合实际背景和相关学科中的数学问题理解和应用;适当设置一些讨论性、开放性、探索性的问题,考查学生的创新意识和实践能力。
考试要求的知识技能目标分为四个不同层次:了解(认识)、理解、掌握、灵活运用。
其具体涵义如下:了解(认识):能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。
理解:能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握:能在理解的基础上,会把对象运用到新的情境中。
灵活运用:能综合运用知识,熟练、灵活、合理地选择与运用有关的方法完成特定的数学任务。
(一)数与代数 1.数与式(1)有理数①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。
④理解有理数的运算律,并能运用运算律简化运算。
⑤能运用有理数的运算解决简单的问题。
(2)实数①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。
②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根。
③了解无理数和实数的概念,知道实数与数轴上的点一一对应。
④能用有理数估计一个无理数的大致范围。
⑤了解近似数与有效数字的概念;在解决实际问题中,能按问题的要求对结果取近似值。
⑥了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化)。
(3)代数式①理解用字母表示数的意义。
②能分析简单问题的数量关系,并用代数式表示。
③会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。
(4)整式与分式①了解整数指数幂的意义和基本性质,会用科学记数法表示数。
②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。
③会推导乘法公式:;,了解公式的几何背景,并能进行简单计算。
④会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。
⑤了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。
2.方程与不等式(1)方程与方程组①能够根据具体问题中的数量关系,列出方程。
体会方程是刻画现实世界数量关系的一个有效的数学模型。
②能用观察、画图等手段估计方程的解。
③会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)。
④理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。
⑤能根据具体问题的实际意义,检验结果是否合理。
(2)不等式与不等式组①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
②会解简单的一元一次不等式,并能在数轴上表示出解集。
会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。
3.函数(1)函数①能探索具体问题中的数量关系和变化规律,了解常量、变量的意义。
②了解函数的概念和三种表示方法,能举出函数的实例。
③能结合图象对简单实际问题中的函数关系进行分析。
④能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。
⑤能用适当的函数表示法刻画出某些实际问题中变量之间的关系。
⑥结合对函数关系的分析,并尝试对变量的变化规律进行初步预测。
(2)一次函数①了解一次函数的意义,根据已知条件确定一次函数表达式。
②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况)。
③理解正比例函数。
④能根据一次函数解决实际问题。
(3)反比例函数①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。
②能画出反比例函数的图象,根据图象和解析表达式y=k/x(k≠0)探索并理解其性质(k>0或k<0时,图象的变化)。
③能用反比例函数解决某些实际问题。
(4)二次函数①通过对实际问题情境的分析确定二次函数的表达式,了解二次函数的意义。
②会用描点法画出二次函数的图象,认识二次函数的性质。
③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。
④会利用二次函数的图象求一元二次方程的近似解。
(二)空间与图形 1.图形的认识(1)点、线、面了解点、线、面的意义。
(2)角①认识角。
②会比较角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。
③理解角平分线及其性质。
(3)相交线与平行线①了解补角、余角、对顶角等概念,知道等角的余角相等、等角的补角相等、对顶角相等。
②理解垂线、垂线段等概念,理解垂线段最短的性质及点到直线距离的意义。
③知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。
④理解线段垂直平分线及其性质。
⑤知道两直线平行同位角相等,进一步探索平行线的性质。
⑥知道过直线外一点有且仅有一条直线平行于已知直线,会用三角尺和直尺过已知直线外一点画这条直线的平行线。
⑦了解两条平行线之间距离的意义,会度量两条平行线之间的距离。
(4)三角形①了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性。
②掌握三角形中位线的性质。
③了解全等三角形的概念,掌握两个三角形全等的条件。
④了解等腰三角形的有关概念,掌握等腰三角形的性质和一个三角形是等腰三角形的条件;了解等边三角形的概念及其性质。
⑤了解直角三角形的概念,并掌握直角三角形的性质和一个三角形是直角三角形的条件。
⑥会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。
(5)四边形①了解多边形的内角和与外角和公式,了解正多边形的概念。
②掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。
③掌握平行四边形的有关性质和四边形是平行四边形的条件。
④掌握矩形、菱形、正方形、梯形的有关性质和四边形是矩形、菱形、正方形的条件。
⑤了解等腰梯形的有关性质和四边形是等腰梯形的条件。
⑥了解线段、矩形、平行四边形、三角形的重心及物理意义。
⑦了解平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。
(6)圆①理解圆及其有关概念,了解弧、弦、圆心角的关系,了解点与圆、直线与圆以及圆与圆的位置关系。
②理解圆的性质,理解圆周角与圆心角的关系、直径所对圆周角的特征。
③了解三角形的内心和外心。
④了解切线的概念及切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。
⑤会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。
(7)尺规作图①完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线。
②利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。
③会过一点、两点和不在同一直线上的三点作圆。
④在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出做法。
(8)视图与投影①会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。