高三理科数学第一轮复习§4.1:平面向量的概念及其线性运算
平面向量的概念及其线性运算课件-2025届高三数学一轮复习

(1)是判断两个向量共线的主要依据.若 ,则与共线,且当时,与同向;当时,与 反向.
(2)若与不共线且,则 .
(3)要证明,,三点共线,只需证明与共线,即证 .若已知,,三点共线,则必有与共线,从而存在实数 ,使得 .
(4)( , 为实数),若,,三点共线,则 .
1.【微点1】(多选题)[2024·唐山六校联考] 对于任意向量, ,下列说法中正确的有( )
BD
A. B. C. D.
[解析] 对于A,当, 为非零向量且不共线时,不等式不成立,故A错误;对于B,易知,故B正确;对于C,若非零向量, 方向相反,则,故C错误;对于D,易知,故D正确.故选 .
相同
相反
平行
续表
2.向量的线性运算
运算
定义
法则(或几何意义)
运算律
加法
求两个向量和的运算
_
①交换律: ;#b#②结合律:
减法
求两个向量差的运算
三角形法则
平行四边形法则
三角形法则
运算
定义
法则(或几何意义)
运算律
数乘
求实数 与向量 的积的运算
(1) .#b#(2)当时,与 的方向相同;当时,的方向与 的方向相反;当时,
3.已知( , 为实数),若,,三点共线,则 .
4.向量三角不等式①已知非零向量,,则(当与 反向共线时左边等号成立;当与 同向共线时右边等号成立);②已知非零向量,,则(当与 同向共线时左边等号成立;当与 反向共线时右边等号成立).
◆ 对点演练 ◆
题组一 常识题
1.[教材改编] _____.
[解析] ,为不共线的非零向量,, ,,则, .因为,所以与不共线,所以,, 三点不共线,故A不正确;因为,所以与共线,所以,,三点共线,故B正确;因为 ,所以与不共线,所以,,三点不共线,故C不正确;因为 ,所以与不共线,所以,, 三点不共线,故D不正确.故选B.
高考数学一轮总复习 4.1平面向量的概念及其线性运算课件

×2A→D=A→D,故选A.
答案 A
精选ppt
17
知识点三 共线向量定理
5.判一判 (1)若向量a,b共线,则向量a,b的方向相同.( ) (2)若a∥b,b∥c,则a∥c.( ) (3)设a与b是两个不共线向量,且向量a+λb与2a-b共线,则 λ=-12.( ) (4)设a,b为向量,则“|a·b|=|a|·|b|”是“a∥b”的充分必要 条件.( )
21
问题3 为什么共线定理b=λa中要求a≠0?如何应用共线定
理证明三点共线?
(1)若a=0,当b=0时,λ有无数多个值,b≠0时,λ值不存
在,所以要求a≠0;
(2)证明三点共线,若存在实数λ,使
→ AB
=λ
→ AC
,则A,B,C
三点共线.这里注意A→B与A→C有公共点A.
精选ppt
22
高频考点 考点一 向量的有关概念 【例1】 给出下列四个命题: ①若|a|=|b|,则a=b或a=-b; ②若A→B=D→C,则四边形ABCD为平行四边形; ③若a与b同向,且|a|>|b|,则a>b; ④λ,μ为实数,若λa=μb,则a与b共线.
上,所以ABCD不一定是四边形.
③不正确.两向量不能比较大小.
④不正确.当λ=μ=0时,a与b可以为任意向量,满足λa=
μb,但a与b不一定共线.
答【规律方法】 1.(1)易忽视零向量这一特殊向量,误认为④ 是正确的;(2)充分利用反例进行否定是对向量的有关概念题进行 判定的行之有效的方法.
10
对点自测 知识点一 向量的有关概念 1.判一判 (1)向量与有向线段是一样的,因此可以用有向线段来表示向 量.( ) (2)|a|与|b|是否相等与a,b的方向无关.( )
高三理科数学一轮复习 第四章 平面向量 第一节 平面向量的概念与线性运算课件

向量运算 定义
法则(或几何意义) 运算律
加法
求两个向量 三角形法则 和的运算
平行四边形法则
①交换律:
a+b=b+a;
②结合律:
(a+b)+c=a+(b+c)
8
向量运算 定义
法则(或几何意义) 运算律
减法
求a与b的 相反向量-b 的和的运算 叫做 a 与 b 的差
三角形法则
a-b=a+(-b)
数乘
|λa|=|λ||a|.
3
1 ������������ = 2 ������������ + 1 (������������ − ������������) = 1 ������������ + 1 ������������, 故������������ − ������������ = 1 ������������ −
2
16
【变式训练】
1.(2015·河南八市重点检测)已知点 M 是△ABC 的边 BC 的中点,点
E 在边 AC 上,且������������=2������������,则向量������������ − ������������=( )
A.1 ������������ − 1 ������������ B.1 ������������ − 1 ������������
同理设������, ������分别为������������, ������������中点, 也有������������ = 2������������, ������������ = 2������������, 故点������为
△ ������������������的重心, 即①正确; 对于②, |������������| = |������������| = |������������|,即点 M 到三 顶点的距离相等,所以点 M 应为三角形 ABC 的外心,即②错误.
高三数学一轮复习 第4篇 第1节 平面向量的概念及线性运算 理

④两向量平行是这两个向量相等的必要不充分条件.
其中错误命题的序号为
.
.
解析:(1)①不正确.两个向量的长度相等,但它们的方向不一定相同.
②正确.∵ AB = DC ,∴| AB |=| DC |且 AB ∥ DC , 又 A,B,C,D 是不共线的四点, ∴四边形 ABCD 为平行四边形; 反之,若四边形 ABCD 为平行四边形,
.
5.设 a,b 是两个不共线的向量,且向量 a+λb 与 2a-b 共线,则λ=
.
解析:由题意存在实数μ,使 a+λb=μ(2a-b), 即 a+λb=2μa-μb.
则
2
1,
,
解得
1 2
,
1 2
.
答案:- 1 2
.
考点突破
剖典例 找规律
考点一 平面向量的基本概念 【例 1】 (1)下列有关向量相等的命题: ①若|a|=|b|,则 a=b;
则 AB ∥ DC 且| AB |=| DC |, 因此, AB = DC . ③正确,∵a=b,∴a,b 的长度相等且方向相同, 又 b=c,∴b,c 的长度相等且方向相同, ∴a,c 的长度相等且方向相同,故 a=c. ④不正确.当 a∥b 且|a|=|b|,不一定 a=b 也可以是 a=-b.故|a|=|b|且 a∥b 不 是 a=b 的充要条件,而是必要不充分条件. 综上所述,正确命题的序号是②③.故选 A.
.
编写意图 平面向量的概念及线性运算是高考必考内容,难度不大. 本节重点突出平面向量的线性运算及两个向量共线的含义,难点突破 平面向量的有关概念,如零向量与其他向量的关系,向量与实数的区 别等,通过思想方法栏目使学生体会了运用方程思想解有关平面向量 的线性运算问题.
平面向量的概念及线性运算课件-2025届高三数学一轮复习

+ + = ,所以 = −,所以为的中点. 又因为为
的中点,所以△ =
△
=
,
△
△
则
△
= .
考点一 平面向量的有关概念
例1 (多选)下列命题中的真命题是(
)
A.若 = ,则 =
B.若,,,是不共线的四点,则“ = ”是“四边形为平行四边
√
形”的充要条件
C.若 = , = ��,则 =
√
D. = 的充要条件是 = 且//
解析:两个向量的长度相等,但它们的方向不一定相同,A不正确;因为
= ,所以 = 且//,又,,,是不共线的四点,所以四
边形为平行四边形;反之,若四边形为平行四边形,则
2025届高考数学一轮复习讲义
平面向量、复数之
平面向量的概念及线性运算
1.向量的有关概念
方向
(1)向量:既有大小又有①______的量叫做向量,向量的大小叫做向量
模
的②____.
0
(2)零向量:长度为③___的向量,其方向是任意的.
1个单位长度
(3)单位向量:长度等于④_____________的向量.
定义
法则(或几何意义)
运算律
=⑩______,当
> 时,
=⑭_______;
相同
求实数
与的方向⑪______;
+ =⑮
数乘 与向量的 当 < 时,与 的方向⑫
+
_________;
相反
积的运算 ______;
+
高考数学(理)一轮复习精选课件:第4章 第1节 平面向

闯关二:典题针对讲解——与三角形联系,求参数的值
[例 4] (2013·江苏高考)设 D,E 分别是△ABC 的边 AB,BC 上的
点,AD=1AB,BE=2BC.若
2
3
DE
=λ1
AB +λ2
AC
(λ1,λ2 为实数),
则λ1+λ2 的值为________.
【解析】 DE = DB + BE =1 AB +2 BC =1 AB +2( AC - AB )=
42
33
24
33
解析:选 B 如图, AF = AD + DF ,
由题意知,DE∶BE=1∶3=DF∶AB,
故
DF
=1 3
AB
,则
AF
=1a+1b+1 223
1a-1b 22
=2a+1b. 33
高频考点全通关——平面向量的线性运算
闯关四:及时演练,强化提升解题技能
2. 若 O 是△ABC 所在平面内一点,D 为 BC 边中点,
高频考点全通关——平面向量的线性运算
闯关二:典题针对讲解——考查向量加法或减法的几何意义
[例 1] (2012·辽宁高考)已知两个非零向量 a,b 满足
|a+b|=|a-b|,则下面结论正确的是( ) A.a∥b B.a⊥b C.|a|=|b| D.a+b=a-b
【解析】法一:(代数法)将原式平方得|a+b|2=|a-b|2,
第一节 平面向量的概念及其 线性运算
1.了解向量的实际背景.
考 2.理解平面向量的概念,理解两个向量相等的含义.
纲 3.理解向量的几何表示.
展 4.掌握向量加法、减法的运算,并理解其几何意义.
5.掌握向量数乘的运算及其几何意义,理解两个向量
2022届高考数学一轮复习 第四章 第一节 平面向量的概念及线性运算课时作业 理(含解析)北师大版

第一节平面向量的概念及线性运算授课提示:对应学生用书第315页[A组基础保分练]1.如图所示,在正六边形ABCDEF中,BA→+CD→+EF→=()A.0 B.BE→C.AD→D.CF→解析:由题图知BA→+CD→+EF→=BA→+AF→+CB→=CB→+BF→=CF→.答案:D2.设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则OA→+OB→+OC→+OD→等于()A.OM→B.2OM→C.3OM→D.4OM→解析:OA→+OB→+OC→+OD→=(OA→+OC→)+(OB→+OD→)=2OM→+2OM→=4OM→.答案:D3.(2021·合肥模拟)已知A,B,C三点不共线,且点O满足16OA→-12OB→-3OC→=0,则()A.OA→=12AB→+3AC→B.OA→=12AB→-3AC→C.OA→=-12AB→+3AC→D.OA→=-12AB→-3AC→解析:对于A,OA→=12AB→+3AC→=12(OB→-OA→)+3(OC→-OA→)=12OB→+3OC→-15OA→,整理,可得16OA→-12OB→-3OC→=0,这与题干中条件相符合.答案:A4.已知e1,e2是不共线向量,a=m e1+2e2,b=n e1-e2,且mn≠0.若a∥b,则mn等于()A .-12B .12C .-2D .2解析:∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,故m n=-2.答案:C5.(2021·潍坊模拟)若M 是△ABC 内一点,且满足BA →+BC →=4BM →,则△ABM 与△ACM 的面积之比为( )A .12B .13C .14D .2解析:设AC 的中点为D ,则BA →+BC →=2BD →,于是2BD →=4BM →,从而BD →=2BM →,即M 为BD的中点,于是S △ABM S △ACM =S △ABM 2S △AMD =BM 2MD =12.答案:A6.如图所示,在等边△ABC 中,O 为△ABC 的重心,点D 为BC 边上靠近B 点的四等分点.若OD →=xAB→+yAC →,则x +y =( )A .112 B .13C .23 D .34解析:设点E 为BC 的中点,连接AE (图略),可知O 在AE 上,由OD →=OE →+ED →=13AE →+14CB →=16(AB →+AC →)+14(AB →-AC →)=512AB →-112AC →,故x =512,y =-112,x +y =13. 答案:B7.如图所示,已知∠B =30°,∠AOB =90°,点C 在AB 上,OC ⊥AB .若用OA →和OB →来表示向量OC→,则OC →=_________.解析:易知OC →=OA →+AC →=OA →+14AB →=OA →+14(OB →-OA →)=34OA →+14OB →. 答案:34OA →+14OB →8.(2021·邯郸模拟)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=_________.解析:由于λa +b 与a +2b 平行,所以存在μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0,因为向量a ,b 不平行,所以λ-μ=0,1-2μ=0,解得λ=μ=12.答案:129.经过△OAB 重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,求1n +1m的值.解析:设OA →=a ,OB →=b ,则OG →=13(a +b ), PQ →=OQ →-OP→=n b -m a , PG →=OG →-OP →=13(a +b )-m a =⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 共线得,存在实数λ使得PQ →=λPG →, 即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,则⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ,得1n +1m=3.10.在如图所示的方格纸中,向量a ,b ,c 的起点和终点均在格点(小正方形顶点)上.若c 与x a +y b (x ,y 为非零实数)共线,求xy的值.解析:设e 1,e 2分别为水平方向(向右)与竖直方向(向上)的单位向量,则向量c =e 1-2e 2,a =2e 1+e 2,b =-2e 1-2e 2,由c 与x a +y b 共线,得c =λ(x a +y b ),所以e 1-2e 2=2λ(x -y )e 1+λ(x -2y )e 2,所以⎩⎪⎨⎪⎧2λ(x -y )=1,λ(x -2y )=-2,所以⎩⎪⎨⎪⎧x =3λ,y =52λ,所以x y 的值为65.[B 组 能力提升练]1.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件. 答案:A2.(2021·丹东五校协作体联考)P 是△ABC 所在平面上的一点,满足PA →+PB →+PC →=2AB→,若S △ABC =6,则△PAB 的面积为( )A .2B .3C .4D .8解析:因为PA →+PB →+PC →=2AB →=2(PB →-PA →),所以3PA →=PB →-PC →=CB →,所以PA →∥CB →,且方向相同.所以S △ABC S △PAB =BC AP =|CB →||PA →|=3,所以S △PAB =S △ABC3=2.答案:A3.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD交于点F ,若AC →=a ,BD →=b ,则AF →等于( ) A .14a +12b B .23a +13bC .12a +14b D .13a +23b解析:如图所示,AF →=AD →+DF →,由题意知,AD →=12a +12b ,AB →=12a -12b ,DE ∶BE =1∶3=DF ∶AB ,所以DF →=13AB →.所以AF →=AD →+DF →=12a +12b +13⎝ ⎛⎭⎪⎫12a -12b =23a +13b .答案:B4.如图所示,AB 是圆O 的一条直径,C ,D 是半圆弧的两个三等分点,则AB →=( )A .AC →-AD →B .2AC →-2AD → C .AD →-AC → D .2AD →-2AC →解析:连接CD (图略),因为C ,D 是半圆弧的两个三等分点,所以CD ∥AB ,且AB =2CD ,所以AB →=2CD →=2(AD →-AC →)=2AD →-2AC →.答案:D5.在△ABC 中,AD →=2DB →,CD →=13CA →+λCB→,则λ=_________. 解析:∵A ,D ,B 共线,∴13+λ=1,∴λ=23.答案:236.(2021·包头模拟)如图所示,在△ABC 中,AH ⊥BC 交BC 于点H ,M 为AH 的中点.若AM →=λAB →+μAC →,则λ+μ=_________.解析:因为AM →=12(AB →+BH →)=12[AB →+x (AB →-AC →)]=12[(1+x )AB →-xAC →],又因为AM→=λAB →+μAC →,所以1+x =2λ,2μ=-x ,所以λ+μ=12. 答案:127.设e 1,e 2是两个不共线向量,已知AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2. (1)求证:A ,B ,D 三点共线;(2)若BF →=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.解析:(1)证明:由已知得BD →=CD →-CB→=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2. 因为AB →=2e 1-8e 2,所以AB →=2BD →.又AB →,BD →有公共点B ,所以A ,B ,D 三点共线. (2)由(1)可知BD →=e 1-4e 2,且BF →=3e 1-k e 2, 由B ,D ,F 三点共线得BF →=λBD →, 即3e 1-k e 2=λe 1-4λe 2, 得⎩⎪⎨⎪⎧λ=3,-k =-4λ,解得k =12. [C 组 创新应用练]1.(2021·郑州模拟)如图所示,A ,B 分别是射线OM ,ON 上的点,给出下列向量:①OA→+2OB →;②12OA →+13OB →;③34OA →+13OB →;④34OA →+15OB →;⑤34OA →-15OB →.若这些向量均以O 为起点,则终点落在阴影区域内(包括边界)的有( )A .①②B .②④C .①③D .③⑤解析:在ON 上取点C ,使得OC =2OB ,以OA ,OC 为邻边作平行四边形OCDA (图略),则OD →=OA →+2OB →,其终点不在阴影区域内,排除A ,C ;取线段OA 上一点E ,使AE =14OA ,作EF ∥OB ,交AB 于点F ,则EF =14OB ,由于EF <13OB ,所以34OA →+13OB →的终点不在阴影区域内,排除选项D . 答案:B2.在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D .若AB =4,且AD →=14AC →+λAB →(λ∈R ),则AD 的长为_________.解析:因为B ,D ,C 三点共线,所以14+λ=1,解得λ=34,如图所示,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN →=14AC →,AM →=34AB →,因为△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,所以四边形AMDN 是菱形,因为AB =4,所以AN =AM =3,AD =33. 答案:333.如图所示,在正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点,设AP →=αAB →+βAF →(α,β∈R ),则α+β的取值范围是_________.解析:当P 在△CDE 内时,直线EC 是最近的平行线,过D 点的平行线是最远的,所以α+β∈⎣⎢⎡⎦⎥⎤AN AM ,AD AM =[3,4].答案:[3,4]。
高考理科第一轮课件(4.1平面向量的概念及线性运算)

(2)选D.向量的共线与向量的平行是同义的,故A正确;根据 相反向量的概念可得B正确;由向量相等的概念可知C正确;当 两向量的模相等时,方向不一定相同.故D不正确. (3)①不正确,虽然终点相同,但两个向量也可 能不共线,如图,a,b不共线;②不正确,向量不 能比较大小;③不正确,当λ=μ=0时,a与b可为 任意向量,不一定共线.综上①②③都不正确. 答案:①②③
【规范解答】(1)选A.∵ AB BC CA=0, + + ∴ 2AD 2BE+2CF 0, + =
即 AD BE CF 0. + + = (2)选D.由题意得 PA PB PC PC PA, + + = -
即 PB =-2PA 2AP. =
)
4.如图,正六边形ABCDEF中, +CD EF =( BA +
(A)0 (B) BE (C) AD (D) CF
)
【解析】选D.BA CD EF CD DE EF CE EF CF. + + = + = + =
【解析】①正确;②数与向量的积为向量,而不是数,故不正
确;③当a=b时|a|=|b|且a∥b,反之不成立,故错误;④当 a,b不同向时不成立,故错误. 答案:①
考向 2 平面向量的线性运算
【典例2】(1)如图,
D,E,F分别是△ABC的边AB,
BC,CA的中点,则(
A AD+BE+CF=0 B BD-CF+DF=0 C AD+CE-CF=0 D BD-BE-FC=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 Biblioteka 4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
提示
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析