平面向量的线性运算随堂练习(答案)
2.2 平面向量的线性运算

2.2 平面向量的线性运算2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ .⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++ ;③00a a a +=+=.⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++.3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ= ;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+;③()a b a b λλλ+=+ .⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= .设()11,a x y =,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.课堂训练 一.选择题1.下列命题正确的是( ) A.若∥a b ,则a 与b 同向B.若∥a b ,则a 与b 同向或反向 C.若a =0,则a 与0共线D.若a 不为0,则a 与0不共线且3AC CB =-,设2.如图1所示,向量 ,,OAOBOC 的终点A B C ,,在一条直线上,=OA p ,= OB q ,= OC r ,则以下等式中成立的是( )A.1322r p q =-+B.2r p q =-+baCBAa b C C -=A -AB =BC.3122r p q =- D.2r q p =-+3.如图2所示,在菱形ABCD 中,120DAB ∠= ,则以下说法错误的是( ) A.与AB 相等的向量只有一个(不含AB本身) B.与AB 的模相等的向量只有4个(不含AB本身) C.BD 的长度恰为DAD.CB 与DA不共线4.将1[2(28)4(42)]12+--a b a b 化简成最简式为( ) A.2a b - B.b a - C.a b - D.2b a -5.已知G 是ABC △的重心,如图1所示,则GA GB GC +-=( ) A.0 B.4GEC.4GDD.4GF6.若9AB = ,6AC = ,则BC的取值范围为( )A.[315],B.[39], C.(315),D.[69],二.填空题7.已知非零向量1e 和2e 不共线,欲使t 12+e e 和1+e t 2e 共线, 则实数t 的值为 .8.平行四边形ABCD 中,M 为DC 中点,N 为BC 的中点.设AB = a ,AD = b ,则=MN (用a ,b 表示).9.已知菱形ABCD 的边长为1,60ABC AB ∠==,a ,AC = c ,BC =b ,则a bc ++= .10.已知OA = a ,OB = b ,若12OA = ,5OB =,且90AOB ∠= ,则-=a b . 11.在菱形ABCD 中,60DAB ∠= ,1AB = ,则BC DC +=.12.在静水中划船速度是10米/分钟,水流速度10米/分钟,如果船从岸边径直沿垂直于水流方向行走,那么船实际行进速度应是 .实际行进方向与水流方向的夹角为 . 三.解答题13.两个非零向量12,e e 不共线.(1)若= AB 12e e +,BC = 1228e e +,CD =123()-e e ,求证:,,A B D 三点共线; (2)求实数k ,使k 12e e +与12+e k 2e 共线.14.一艘军舰从基地A 出发向东航行了200海里到达基地B ,然后又改变航向向东偏北60 航行了400海里到达C 岛,最后又改变航行,向西航行了200海里到达D 岛.(1)试作出向量AB BC CD,,;(2)求AD .15.如图4,在ABC △中,在AC 上取点N ,使得13AN AC =,在AB 上取点M ,使得13AM AB =,在BN 的延长线上取点P ,使得12NP BN =,在CM 的延长线上取点Q ,使得12MQ CM =,用向量的方法证明P A Q ,,三点共线.16.一架飞机向北飞行300 km ,然后改变方向向西飞行400 km ,求飞机飞行的路程及两次位移的合成.17.已知ABCD 的对角线AC 和BD 相交于O ,且OA a = ,OB b = ,用向量a ,b 分别表示向量OC ,OD,DC ,BC .18.飞机从甲地以北偏西15˚的方向飞行1400km 到达乙地,再从乙地以南偏东75˚的方向飞行1400km 到达丙地.试画出飞机飞行的位移示意图,并说明丙地在甲地的什么方向?丙地距甲地多远?第19题.如图,13AM AB = ,13AN AC =.求证:13MN BC = .同步提升一.选择题(每题5分)1.设b →是a →的相反向量,则下列说法错误的是( ) A .a →与b →的长度必相等 B .a bC .a →与b →一定不相等 D .a →是b →的相反向量2.已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为a →、b →、c →,则向量OD 等于( ) A .a b c ++ B .a b c -+ C .a b c + - D .a b c-- 3.(如图)在平行四边形ABCD 中,下列正确的是( ).A .AB CD = B .AB AD BD -=C .AD AB AC += D .AD BC 0+= 4.+++等于( ) A . B . C .AC D .CA5.化简SP PS QP OP ++-的结果等于( )A 、B 、C 、D 、A AB OC = B AB ∥DEC AD BE =D AD FC =7.下列等式中,正确的个数是( )①a b b a +=+ ②a b b a = --③0a a -=- ④(a )a --= ⑤a (a )0+-=A .5B .4C .3D .28.在△ABC 中,AB a = ,AC b = ,如果a||b|=|,那么△ABC 一定是( ).A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形9.在ABC ∆中,BC a =,CA b =,则AB 等于( )A .a b +B .(a b )-+C .a b -D .b a -10.已知a 、b 是不共线的向量,AB a b λ=+ ,AC a b μ=+(λ、R μ∈),当且仅当( )时, A 、B 、C 三点共线. ()1A λμ+= ()1B λμ-=()1C λμ=-()1D λμ=二.填空题(每题5分)11.ABCD 的两条对角线相交于点M ,且AB a,AD b ==,则MA = ______,MB = ______,MC = ______,MD =______.12.已知向量a 和b 不共线,实数x ,y 满足b y x a b a y x)2(54)2(-+=+-,则=+y x ______13.在ABCD 中,AB a,AD b ==,则AC = ______,DB = ______.14.已知四边形ABCD 中,1AB DC 2=,且AD BC = 则四边形ABCD 的形状是______.三.解答题15.化简下列各式:(1)=++++______;(2)()()AB MB BO BC OM ++++=______.(3)=-++-)()(______.16.某人从A 点出发向西走了10m ,到达B 点,然后改变方向按西偏北︒60走了15m 到达C 点,最后又向东走了10米到达D 点.(1)作出向量AB ,,(用1cm 长线段代表10m 长);(2)求DA17.如图,在梯形ABCD 中,对角线AC 和BD 交于点O ,E 、F 分别是AC 和BD 的中点,分别写出 (1)图中与、共线的向量; (2)与相等的向量.CDABNM18.在直角坐标系中,画出下列向量: (1)a 2= ,a的方向与x 轴正方向的夹角为 60,与y 轴正方向的夹角为 30;(2)a 4=,a的方向与x 轴正方向的夹角为 30,与y 轴正方向的夹角为 120;(3)a=,a的方向与x 轴正方向的夹角为 135,与y 轴正方向的夹角为 135.19.在ABC ∆所在平面上有一点P ,使得=++,试判断P 点的位置.20.如图所示,在平行四边形ABCD 中,点M 是AB 边中点,点N 在BD 上且BD BN 31=,求证:M 、N 、C 三点共线.2.2 平面向量的线性运算 课堂训练参考答案一.选择题 1~5 CADDD 6 A 二.填空题7.1± 8.1()2-a b 9.2 10.13 11.45三.解答题 第13题.(1)证明:=++= AD AB BC CD 1266+=e e 6AB, A B D ∴,,三点共线;(2)解: k 12+e e 与12e +k 2e 共线, ∴k 12+=e e λ(12e +k 2e ),(2)λ∴-k 1e +(1)k λ-2e =0,201k k k λλ-=⎧∴⇒=⎨-⎩,,第14题.解:(1)向量ABBC CD ,,如右图所示.(2)根据题意,易知AB 和CD 方向相反,故AB 与CD共线.又AB CD = ,∴在四边形ABCD 中,AB CD∥,四边形ABCD 是平行四边形, AD BC ∴= ,400AD BC ∴==海里.第15题.证明:111()()222AP NP NA BN CN BN NC BC =-=-=+=,111()()222QA MA MQ BM CM BM MC BC =-=-=+= ,AP QA ∴= ,P A Q ∴,,三点共线.第16题.飞机飞行的路程是700 km ;两次位移的合成是向北偏西约53˚方向飞行500 km .第17题.OC a =- ,OD b =- ,DC b a =- ,BC a b =--.第18题.丙地在甲地的北偏东45˚方向,距甲地1400km .第19题.证明:因为MN AN AM =-,而13AN AC = ,13AM AB = ,所以1133MN AC AB =- ()1133AC AB BC =-= .同步提升参考答案 一.选择题(每题5分)1.C2. B3.C4.B5. B6.D7.C8.A9.B 10.D 二.填空题(每题5分)11.111(a b ),(a b ),(a b )222-+-+ ,1(b a )2-12.1 13.a b + ,a b- 14.等腰梯形三.解答题(每题10分)15.(1)0(2)AC (3)016.【解答】(1)如图,(2)∵-=,故四边形ABCD 为平行四边形, )m (15==DA BC17.【解答】与EF 共线的向量有AB 、; 与CO 共线的向量有CE ,CA ,OE ,OA ,; 与EA 相等的向量是18.【解答】19.【解答】 PA PB PC AB ++=()PA PA AB PC AB ∴+++=,故-=2A ∴、P 、C 三点共线,且P 是线段AC 的三分点中靠近A 的那一个20.【解答】提示:可以证明MC 3MN =CDABNM。
平面向量专题练习(带答案详解)

平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
平面向量的线性运算(含答案)

平面向量的线性运算一、单选题(共10道,每道10分)1.设P是△ABC所在平面内的一点,,则( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义2.设D,E,F分别是△ABC的三边AB,BC,CA的中点,则等于( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义3.在△ABC中,,P是CR的中点,若,则m+n等于( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义4.如图,在△ABC中,,若,则的值是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义5.已知点P是△ABC内一点,且,则的值是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义6.设M是平行四边形ABCD的对角线的交点,O为任意一点(不与M重合),则等于( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义7.若M是△ABC的重心,O为任意一点,,则n的值是( )A.0B.1C.2D.3答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义8.在△ABC中,,,点P在AM上且满足,则的值是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义9.设P是等边△ABC所在平面内的一点,满足,若AB=1,则的值是( )A.4B.3C.2D.1答案:B解题思路:试题难度:三颗星知识点:平面向量数量积的运算10.如图,BC,DE是半径为1的圆O的两条直线,,则的值是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平面向量数量积的运算。
高中 平面向量的线性运算及基本定理 练习 含答案

训练目标 (1)平面向量的概念;(2)平面向量的线性运算;(3)平面向量基本定理. 训练题型(1)平面向量的线性运算;(2)平面向量的坐标运算;(3)向量共线定理的应用. 解题策略(1)向量的加、减法运算要掌握两个法则:平行四边形法则和三角形法则,还要和式子:AB →+BC →=AC →,OM →-ON →=NM →联系起来;(2)平面几何问题若有明显的建系条件,要用坐标运算;(3)利用向量共线可以列方程(组)求点或向量坐标或求参数的值.1.下列各式计算正确的有________个. ①(-7)6a =-42a ;②7(a +b )-8b =7a +15b ; ③a -2b +a +2b =2a ;④4(2a +b )=8a +4b .2.(·贵州遵义一模)在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.3.(·云南昆明质检)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m =________.4.若a 为任一非零向量,b 为模为1的向量,下列各式: ①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1,其中正确的是________.5.(·课标全国Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=________. 6.已知点G 是△ABC 的重心,则GA →+GB →+GC →=__________________________________. 7.(·青海西宁质检)已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足P A →+PB →+PC →=AB →,则点P 与△ABC 的关系为________.8.在△ABC 中,O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=xAM →,AC →=yAN →,则x +y =________.9.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,若用m ,n 表示p ,则p =________. 10.如图,平面内有三个向量OA →、OB →、OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________. 11.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2=________.12.已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP →|=32|PB →|,则点P 坐标为________.13.已知a ,b 是两个不共线的向量,它们的起点相同,且a ,t b ,13(a +b ) (t ∈R )这三个向量的终点在一条直线上,则t 的值为________. 14.给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.答案解析1.3 2.23 3.19 4.③ 5.(-7,-4) 6.07.P 是AC 边的一个三等分点 解析 ∵P A →+PB →+PC →=AB →, ∴P A →+PB →+PC →=PB →-P A →, ∴PC →=-2P A →=2AP →,∴P 是AC 边的一个三等分点. 8.2解析 因为M 、O 、N 三点共线, 所以存在常数λ(λ≠0,且λ≠-1), 使得MO →=λON →,即AO →-AM →=λ(AN →-AO →), 所以AO →=11+λAM →+λ1+λAN →,又O 是BC 的中点,所以AO →=12AB →+12AC →=x 2AM →+y 2AN →,又AM →、AN →不共线,所以⎩⎨⎧x2=11+λ,y 2=λ1+λ,得x 2+y 2=11+λ+λ1+λ=1, 即x +y =2.9.-74m +138n 10.611.12解析 易知DE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →.所以λ1+λ2=-16+23=12.12.(8,-15) 解析 设P (x ,y ), 因为|AP →|=32|PB →|,又P 在线段AB 的延长线上,故AP →=-32PB →=32BP →,所以(x -2,y -3)=32(x -4,y +3),即⎩⎨⎧x -2=32(x -4),y -3=32(y +3),所以⎩⎪⎨⎪⎧x =8,y =-15.故P (8,-15).13.12 解析如图所示,OA →=t b , OB →=13(a +b ),OC →=a .∴AC →=OC →-OA →=a -t b , BC →=OC →-OB →=23a -13b ,∵A 、B 、C 三点共线,a ,b 不共线, ∴AC →与BC →共线, ∴231=-13-t ,∴t =12. 14.2 解析以O 为坐标原点,OA 所在的直线为x 轴, OA →的方向为x 轴的正方向,建立平面直角坐标系, 则可知A (1,0),B (-12,32),设C (cos α,sin α)(α∈[0,2π3]),则由OC →=xOA →+yOB →,得(cos α,sin α)=x (1,0)+y (-12,32),得x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin(α+π6),所以当α=π3时,x +y 取得最大值2.。
平面向量的基本概念及线性运算练习题(基础、经典、好用)

平面向量的基本概念及线性运算一、选择题1.(2013·湛江质检)若a +c 与b 都是非零向量,则“a +b +c =0”是“b ∥(a +c )”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.设P 是△ABC 所在平面内的一点,BC→+BA →=2BP →,则( ) A.P A →+PB→=0 B.PC →+P A →=0 C.PB →+PC →=0 D.P A →+PB→+PC →=0 3.下列命题中是真命题的是( )①对任意两向量a 、b ,均有:|a |-|b |<|a |+|b |;②对任意两向量a 、b ,a -b 与b -a 是相反向量;③在△ABC 中,AB→+BC →-AC →=0; ④在四边形ABCD 中,(AB→+BC →)-(CD →+DA →)=0. A .①②③ B .②④ C .②③④ D .②③4.已知A 、B 、C 三点共线,点O 在该直线外,若OB →=λOA →+μOC →,则λ+μ的值为( )A .0B .1C .2D .35.(2013·佛山调研)已知e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,则a 与b 共线的条件是( )A .λ=0B .e 2=0C .e 1∥e 2D .e 1∥e 2或λ=0二、填空题6.如图4-1-2所示,向量a -b =________(用e 1,e 2表示).图4-1-27.(2013·揭阳模拟)已知点O 为△ABC 外接圆的圆心,且OA→+OB →+OC →=0,则△ABC 的内角A 等于________.8.已知向量a ,b 是两个非零向量,则在下列四个条件中,能使a 、b 共线的条件是________(将正确的序号填在横线上).①2a -3b =4e ,且a +2b =-3e ;②存在相异实数λ、μ,使λa +μb =0;③xa +yb =0(实数x ,y 满足x +y =0);④若四边形ABCD 是梯形,则AB→与CD →共线. 三、解答题图4-1-39.(2013·清远调研)如图4-1-3所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,求实数m 的值. 10.设a ,b 是不共线的两个非零向量.(1)若OA→=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A 、B 、C 三点共线. (2)若AB→=a +b ,BC →=2a -3b ,CD →=2a -kb ,且A 、C 、D 三点共线,求k 的值. 11.设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ(AB →|AB→|+AC →|AC →|),λ∈[0,+∞).求点P 的轨迹,并判断点P 的轨迹通过下述哪一个定点: ①△ABC 的外心;②△ABC 的内心;③△ABC 的重心;④△ABC 的垂心.解析及答案一、选择题1.【解析】 若a +b +c =0,则b =-(a +c ),∴b ∥(a +c );若b ∥(a +c ),则b =λ(a +c ),当λ≠-1时,a +b +c ≠0,因此“a +b +c =0”是“b ∥(a +c )”的充分不必要条件.【答案】 A2.【解析】 由BC→+BA →=2BP →知,点P 是线段AC 的中点, 则PC →+P A →=0.【答案】 B3.【解析】 ①假命题.∵当b =0时,|a |-|b |=|a |+|b |.∴该命题不成立.②真命题,这是因为(a -b )+(b -a )=0,∴a -b 与b -a 是相反向量.③真命题.∵AB→+BC →-AC →=AC →-AC →=0. ④假命题.∵AB→+BC →=AC →,CD →+DA →=CA →, ∴(AB→+BC →)-(CD →+DA →)=AC →-CA →=AC →+AC →≠0, ∴该命题不成立.【答案】 D4.【解析】 因为A 、B 、C 三点共线,所以AB→=kAC →, ∴OB→-OA →=k (OC →-OA →),所以OB →=OA →+kOC →-kOA →, ∴OB→=(1-k )OA →+kOC →,又因为OB →=λOA →+μOC →,所以λ=1-k ,μ=k ,所以λ+μ=1. 【答案】 B5.【解析】 若e 1与e 2共线,则e 2=λ′e 1,∴a =(1+λλ′)e 1,此时a ∥b ,若e 1与e 2不共线,设a =μb ,则e 1+λe 2=μ·2e 1,∴λ=0,1-2μ=0.【答案】 D二、填空题6.【解析】 由图知,a -b =BA →=e 1+(-3e 2)=e 1-3e 2. 【答案】 e 1-3e 27.【解析】 由OA→+OB →+OC →=0,知点O 为△ABC 重心,又O 为△ABC 外接圆的圆心,∴△ABC 为等边三角形,A =60°.【答案】 60°8.【解析】 由①得10a -b =0,故①对.②对.对于③当x =y =0时,a 与b 不一定共线,故③不对.若AB ∥CD ,则AB→与CD →共线,若AD ∥BC ,则AB →与CD →不共线,故④不对. 【答案】 ①②三、解答题9.【解】 如题图所示,AP→=AB →+BP →, ∵P 为BN 上一点,则BP→=kBN →, ∴AP→=AB →+kBN →=AB →+k (AN →-AB →), 又AN →=13NC →,即AN →=14AC →, 因此AP →=(1-k )AB →+k 4AC →, 所以1-k =m ,且k 4=211,解得k =811.则m =1-k =311.10.【解】 (1)证明 AB →=OB →-OA →=a +2b ,AC→=OC →-OA →=-a -2b . 所以AC→=-AB →,又因为A 为公共点, 所以A 、B 、C 三点共线.(2)AC→=AB →+BC →=(a +b )+(2a -3b )=3a -2b , 因为A 、C 、D 三点共线,所以AC→与CD →共线. 从而存在实数λ使AC →=λCD →,即3a -2b =λ(2a -kb ),解得λ=32,k =43,所以k =43.11.【解】 如图,记AM →=AB →|AB →|,AN →=AC →|AC→|,则AM →,AN →都是单位向量, ∴|AM→|=|AN →|,AQ →=AM →+AN →,则四边形AMQN 是菱形,∴AQ 平分∠BAC . ∵OP →=OA →+AP →,由条件知OP →=OA →+λAQ →, ∴AP →=λAQ →(λ∈[0,+∞)),∴点P 的轨迹是射线AQ ,且AQ 通过△ABC 的内心.。
平面向量的概念及线性运算练习题

5.1平面向量的概念及线性运算练习题(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--§平面向量的概念及线性运算一、选择题1. 已知两个非零向量a,b满足|a+b|=|a-b|,则下面结论正确的是()∥b B.a⊥bC.{0,1,3} +b=a-b答案 B2.对于非零向量a,b,“a+b=0”是“a∥b”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析若a+b=0,则a=-b.∴a∥b;若a∥b,则a=λb,a+b=0不一定成立.答案A3.设P是△ABC所在平面内的一点,BC→+BA→=2BP→,则().→=0 +PA→=0+PB→=0 +PB→+PC→=0+PC→+BA→=2BP→⇔P是AC的中点,解析如图,根据向量加法的几何意义,BC→+PC→=0.∴PA答案B4.已知向量a=(x,2),b=(3,-1),若(a+b)∥(a-2b),则实数x的值为() A.-3 B.2 C.4 D.-6解析因为(a+b)∥(a-2b),a+b=(x+3,1),a-2b=(x-6,4),∴4(x+3)-(x-6)=0,x=-6.答案 D5.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是( ). A .矩形 B .平行四边形 C .梯形D .以上都不对解析 由已知AD→=AB →+BC →+CD →=-8a -2b =2(-4a -b )=2BC →.∴AD→∥BC →,又AB →与CD →不平行, ∴四边形ABCD 是梯形. 答案 C6.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m ,使得AB →+AC →=mAM →成立,则m =( ). A .2B .3C .4D .5解析 ∵MA→+MB →+MC →=0,∴点M 是△ABC 的重心,∴AB →+AC →=3AM →,∴m =3. 答案 B7.已知点O 为△ABC 外接圆的圆心,且OA +OB +CO =0,则△ABC 的内角A 等于( ) A .30° B .60° C .90°D .120°解析:由OA +OB +CO =0得OA +OB =OC ,由O 为△ABC 外接圆的圆心,结合向量加法的几何意义知四边形OACB 为菱形,且∠CAO =60°. 答案:A 二、填空题8.已知平面上不共线的四点O ,A ,B ,C ,若OA -3OB +2OC =0,则|AB ||BC |=________.解析:由OA -3OB +2OC =0,得OA -OB =2(OB -OC ),即BA =2CB ,于是|AB ||BC |=2. 答案:29.给出下列命题:①向量AB→的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个有公共终点的向量,一定是共线向量;⑤向量AB→与向量CD →是共线向量,则点A 、B 、C 、D 必在同一条直线上.其中不正确的个数为________.解析 ①中,∵向量AB→与BA →为相反向量,∴它们的长度相等,此命题正确.②中若a 或b 为零向量,则满足a 与b 平行,但a 与b 的方向不一定相同或相反,∴此命题错误.③由相等向量的定义知,若两向量为相等向量,且起点相同,则其终点也必定相同,∴该命题正确.④由共线向量知,若两个向量仅有相同的终点,则不一定共线,∴该命题错误.⑤∵共线向量是方向相同或相反的向量,∴若AB →与CD →是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,∴该命题错误. 答案 310.已知向量,a b 夹角为45︒ ,且1,210a a b =-=;则_____b =. 解析答案 3211.若M 为△ABC 内一点,且满足AM →=34AB →+14AC →,则△ABM 与△ABC 的面积之比为________.解析 由题知B 、M 、C 三点共线,设BM →=λBC →,则:AM →-AB →=λ(AC →-AB →), ∴AM→=(1-λ)AB →+λAC →,∴λ=14, ∴S △ABM S △ABC =14. 答案 1412.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为________.解析 (等价转化法)OB →+OC →-2OA →=OB →-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →, ∴|AB→+AC →|=|AB →-AC →|. 故A ,B ,C 为矩形的三个顶点,△ABC 为直角三角形. 答案 直角三角形【点评】 本题采用的是等价转化法,将△ABC 的三个顶点转化到相应矩形中,从而判断三角形形状.本题也可用两边平方展开得出结论. 三、解答题13.如图所示,△ABC 中,AD →=23AB →,DE ∥BC 交AC 于E ,AM 是BC 边上的中线,交DE 于N .设AB→=a ,AC →=b ,用a ,b 分别表示向量AE →,BC →,DE →,DN →,AM→,AN →.解析 AE →=23b ,BC →=b -a ,DE →=23(b -a ),DN →=13(b -a ), AM →=12(a +b ),AN →=13(a +b ). 14.设a ,b 是两个不共线的非零向量,若a 与b 起点相同,t ∈R ,t 为何值时,a ,t b ,13(a +b )三向量的终点在一条直线上 解析 设a -t b =λ⎣⎢⎡⎦⎥⎤a -13a +b (λ∈R ), 化简整理得⎝ ⎛⎭⎪⎫23λ-1a +⎝ ⎛⎭⎪⎫t -13λb =0,∵a 与b 不共线,∴由平面向量基本定理有 ⎩⎪⎨⎪⎧ 23λ-1=0,t -λ3=0,∴⎩⎪⎨⎪⎧λ=32,t =12.故t =12时,a ,t b ,13(a +b )的终点在一条直线上.15.如图所示,在△ABC 中,D 、F 分别是BC 、AC 的中点,AE =23AD ,AB =a ,AC =b .(1)用a ,b 表示向量AD 、AE 、AF 、BE 、BF ; (2)求证:B 、E 、F 三点共线. 解析:(1)延长AD 到G , 使AD =12AG ,连结BG 、CG ,得到▱ABGC , 所以AG =a +b , AD =12AG =12(a +b ), AE =23AD =13(a +b ), AF =12AC =12b ,BE =AE -AB =13(a +b )-a =13(b -2a ), BF =AF -AB =12b -a =12(b -2a ). (2)证明:由(1)可知BE =23BF , 所以B 、E 、F 三点共线.16.已知O ,A ,B 三点不共线,且OP →=mOA →+nOB →,(m ,n ∈R ).(1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1.证明 (1)m ,n ∈R ,且m +n =1, ∴OP→=mOA →+nOB →=mOA →+(1-m )OB →, 即OP→-OB →=m (OA →-OB →). ∴BP→=mBA →,而BA →≠0,且m ∈R . 故BP→与BA →共线,又BP →,BA →有公共点B . ∴A ,P ,B 三点共线.(2)若A ,P ,B 三点共线,则BP →与BA →共线,故存在实数λ,使BP →=λBA →,∴OP →-OB→=λ(OA →-OB →). 即OP→=λOA →+(1-λ)OB →. 由OP→=mOA →+nOB →. 故mOA→+nOB →=λOA →+(1-λ)OB →. 又O ,A ,B 不共线,∴OA →,OB →不共线.由平面向量基本定理得⎩⎨⎧m =λ,n =1-λ.∴m +n =1.。
平面向量练习题及答案

平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。
答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。
答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。
答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。
答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。
答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。
答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。
答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。
答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。
答案:两个向量相互垂直的条件是a·b = 0。
计算得到a·b = 14,因此向量a和向量b不相互垂直。
(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。
答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。
平面向量的概念及线性运算专题训练

平面向量的概念及线性运算专题训练一、选择题1.已知下列各式:①AB →+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+CO →;④AB →-AC →+BD →-CD →,其中结果为零向量的个数为( )A.1B.2C.3D.42.设a 是非零向量,λ是非零实数,下列结论中正确的是( )A.a 与λa 的方向相反B.a 与λ2a 的方向相同C.|-λa |≥|a |D.|-λa |≥|λ|·a3.如图,在正六边形ABCDEF 中,BA →+CD →+EF →=( )A.0B.BE →C.AD →D.CF →4.设a 0为单位向量,下述命题中:①若a 为平面内的某个向量,则a =|a |a 0; ②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A.0B.1C.2D.35.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM →B.2OM →C.3OM →D.4OM →6.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c 7. 设a ,b 不共线,AB →=2a +pb ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( )A.-2B.-1C.1D.28.如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A.a -12bB.12a -bC.a +12bD.12a +b 二、填空题9.如图,点O 是正六边形ABCDEF 的中心,在分别以正六边形的顶点和中心为始点和终点的向量中,与向量OA →相等的向量有________个.10.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.11.向量e 1,e 2不共线,AB →=3(e 1+e 2),CB →=e 2-e 1,CD →=2e 1+e 2,给出下列结论:①A ,B ,C 共线;②A ,B ,D 共线;③B ,C ,D 共线;④A ,C ,D 共线,其中所有正确结论的序号为________.12.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =________.13.设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=ke 1+e 2,CD →=3e 1-2ke 2,若A ,B ,D 三点共线,则k 的值为( )A.-94B.-49C.-38D.不存在14.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则( )A.点P 在线段AB 上B.点P 在线段AB 的反向延长线上C.点P 在线段AB 的延长线上D.点P 不在直线AB 上15.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足:OP→=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( )A.外心B.内心C.重心D.垂心 16.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为________.平面向量的概念及线性运算专题训练答案一、选择题1.已知下列各式:①AB →+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+CO →;④AB →-AC →+BD →-CD →,其中结果为零向量的个数为( )A.1B.2C.3D.4 解析 由题知结果为零向量的是①④,故选B.答案 B2.设a 是非零向量,λ是非零实数,下列结论中正确的是( )A.a 与λa 的方向相反B.a 与λ2a 的方向相同C.|-λa |≥|a |D.|-λa |≥|λ|·a解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反,B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.答案 B3.如图,在正六边形ABCDEF 中,BA →+CD →+EF →=( )A.0B.BE →C.AD →D.CF →解析 由题图知BA →+CD →+EF →=BA →+AF →+CB →=CB →+BF →=CF →. 答案 D4.设a 0为单位向量,下述命题中:①若a 为平面内的某个向量,则a =|a |a 0; ②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A.0B.1C.2D.3 解析 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.答案 D5.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM →B.2OM →C.3OM →D.4OM →解析 OA →+OB →+OC →+OD →=(OA →+OC →)+(OB →+OD →)=2OM →+2OM →=4OM →.故选D.答案 D6.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c 解析 ∵BD →=2DC →,∴AD →-AB →=BD →=2DC →=2(AC →-AD →),∴3AD →=2AC →+AB →,∴AD →=23AC →+13AB →=23b +13c . 答案 A8. 设a ,b 不共线,AB →=2a +pb ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( )A.-2B.-1C.1D.2解析 ∵BC →=a +b ,CD →=a -2b ,∴BD →=BC →+CD →=2a -b .又∵A ,B ,D 三点共线,∴AB →,BD →共线.设AB →=λBD →,∴2a +pb =λ(2a -b ),∴2=2λ,p =-λ,∴λ=1,p =-1. 答案 B8.如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A.a -12bB.12a -b C.a +12b D.12a +b解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a . 答案 D二、填空题9.如图,点O 是正六边形ABCDEF 的中心,在分别以正六边形的顶点和中心为始点和终点的向量中,与向量OA →相等的向量有________个.解析 根据正六边形的性质和相等向量的定义,易知与向量OA →相等的向量有CB →,DO →,EF →,共3个.答案 310.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 因为ABCD 为平行四边形,所以AB →+AD →=AC →=2AO →,已知AB →+AD →=λAO →,故λ=2.答案 211.向量e 1,e 2不共线,AB →=3(e 1+e 2),CB →=e 2-e 1,CD →=2e 1+e 2,给出下列结论:①A ,B ,C 共线;②A ,B ,D 共线;③B ,C ,D 共线;④A ,C ,D 共线,其中所有正确结论的序号为________.解析 由AC →=AB →-CB →=4e 1+2e 2=2CD →,且AB →与CB →不共线,可得A ,C ,D 共线,且B 不在此直线上.答案 ④12.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析 由已知条件得MB →+MC →=-MA →,如图,延长AM 交BC 于D 点,则D 为BC 的中点.延长BM 交AC 于E 点,延长CM 交AB 于F 点,同理可证E ,F 分别为AC ,AB的中点,即M 为△ABC 的重心,∴AM →= 23AD →=13(AB →+AC →),即AB →+AC →=3AM →,则m =3. 答案 313. 设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=ke 1+e 2,CD →=3e 1-2ke 2,若A ,B ,D 三点共线,则k 的值为( )A.-94B.-49C.-38D.不存在解析 由题意,A ,B ,D 三点共线,故必存在一个实数λ,使得AB →=λBD →. 又AB →=3e 1+2e 2,CB →=ke 1+e 2,CD →=3e 1-2ke 2,所以BD →=CD →-CB →=3e 1-2ke 2-(ke 1+e 2)=(3-k )e 1-(2k +1)e 2,所以3e 1+2e 2=λ(3-k )e 1-λ(2k +1)e 2,所以⎩⎨⎧3=λ(3-k ),2=-λ(2k +1),解得k =-94. 答案 A14.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则( )A.点P 在线段AB 上B.点P 在线段AB 的反向延长线上C.点P 在线段AB 的延长线上D.点P 不在直线AB 上解析 因为2OP →=2OA →+BA →,所以2AP →=BA →,所以点P 在线段AB 的反向延长线上,故选B.答案 B15.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足:OP→=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( ) A.外心 B.内心 C.重心 D.垂心 解析 作∠BAC 的平分线AD .∵OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|, ∴AP →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|=λ′·AD →|AD →|(λ′∈[0,+∞)), ∴AP →=λ′|AD →|·AD →,∴AP →∥AD →.∴P 的轨迹一定通过△ABC 的内心.答案 B16.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为________.解析 OB →+OC →-2OA →=(OB →-OA →)+(OC →-OA →)=AB →+AC →,OB →-OC →=CB →=AB →-AC →,∴|AB →+AC →|=|AB →-AC →|.故A ,B ,C 为矩形的三个顶点,△ABC 为直角三角形.答案 直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§平面向量的线性运算
重难点:灵活运用向量加法的三角形法则和平行四边形法则解决向量加法的问题,利用交换律和结合律进行向量运算;灵活运用三角形法则和平行四边形法则作两个向量的差,以及求两个向量的差的问题;理解实数与向量的积的定义掌握实数与向量的积的运算律体会两向量共线的充要条件.
考纲要求:①掌握向量加法,减法的运算,并理解其几何意义. ②掌握向量数乘的运算及其意义。
理解两个向量共线的含义. ③了解向量线性运算的性质及其几何意义.
经典例题:如图,已知点,,D E F 分别是ABC ∆三边,,AB BC CA 的中点, 求证:0EA FB DC ++=.
当堂练习:
1.a 、b 为非零向量,且+=+||||||a b a b ,则 ( ) A .a 与b 方向相同 B .a =b
C .a =-b
D .a 与b 方向相反
2.设+++=()()AB CD BC DA a ,而b 是一非零向量,则下列各结论:①//a b ;②
+=a b a ;③+=a b b ;④+<+a b a b ,其中正确的是 ( )
A .①②
B .③④
C .②④
D .①③
3.3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于
( ) A .O
B .MD 4
C .MF 4
D .M
E 4
4.已知向量b a 与反向,下列等式中成立的是
( )
A .||||||b a b a -=-
B .||||b a b a -=+
C .||||||b a b a -=+
D .||||||b a b a +=+
5.若a b c =+化简3(2)2(3)2()a b b c a b +-+-+ ( ) A .a
B .b
C .c
D . 以上都不对
6.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A 、C ),则AP =( ) A .().(0,1)AB AD λλ+∈ B .2
().(0,
)AB BC λλ+∈ C . ().(0,1)AB AD λλ-∈
D . 2().(0,
)2
AB BC λλ-∈ 7.已知==||||3OA a ,==||||3OB b ,∠AOB=60︒,则+=||a b __________。
8.当非零向量a 和b 满足条件 时,使得+平分和间的夹角。
9.如图,D 、E 、F 分别是∆ABC 边AB 、BC 、CA 上的 中点,则等式: ①+-=FD DA AF 0 ②+-=FD DE EF 0 ③+-=DE DA BE 0
④+-=AD BE AF 0
10.若向量x 、y 满足+=-=23,32x y a x y b ,a 、b 为已知向量,则x =__________;
y =___________.
11.一汽车向北行驶3 km ,然后向北偏东60︒方向行驶3 km ,求汽车的位移.
12.如图在正六边形ABCDEF 中,已知:→
AB =a , →
AF = b ,试用a 、b 表示向量→
BC ,
→CD , →AD ,→
BE .
§向量的线性运算
经典例题:
证明:连结,,DE EF FD .因为,,D E F 分别是ABC ∆三边的中点,所以四边形ADEF 为平行四边形.由向量加法的平行四边形法则,得ED EF EA +=(1),同理在平行四边形
BEFD 中,FD FE FB +=(2),在平行四边形CFDE 在中,DF DE DC +=(3)
F
E D C
B
将(1)(2) (3)相加,得
EA FB DC ED EF FD FE DE DF
++=+++++()()()EF FE ED DE FD DF =+++++
0=
当堂练习:
; ; ; ; ; ; 7. 3; 8. |||a =; 9. ③,④; 10. (1), (2), (3)不存在 (4)d a ,,;
11. 北偏东30°方向,大小为.
12.b a AF AB BO AB AO BC +=+=+==;
b AF CD ==; ()
b a BC AD +==22; b AF BE 22==。