第4讲 平面向量的线性运算及基本定理
平面向量基本定理(教案)

平面向量基本定理(教案)教案章节一:向量的概念回顾1.1 向量的定义向量是有大小和方向的量,通常用箭头表示。
向量可以用坐标形式表示,例如在二维空间中,向量可以表示为(a, b)。
1.2 向量的加法向量的加法是指在同一平面内,将两个向量首尾相接,形成的第三个向量。
向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
教案章节二:平面向量的基本定理2.1 定理的定义平面向量的基本定理是指在平面内,任何两个不共线的向量可以作为平面的基底。
基底是线性无关的向量组,可以通过线性组合表示平面内的任意向量。
2.2 基底的性质基底是线性无关的,即不存在非零的线性组合使得向量组的和为零。
基底可以任意选择,但选择不同的基底会导致向量的坐标不同。
教案章节三:向量的线性组合3.1 线性组合的定义向量的线性组合是指将向量与实数相乘后相加的结果。
例如,a u + b v 表示将向量u 乘以实数a,向量v 乘以实数b,将两个结果相加。
3.2 线性组合的性质线性组合满足分配律,即(a u + b v) + c w = a (u + c w) + b v。
线性组合的系数可以是任意实数,包括正数、负数和零。
教案章节四:向量的坐标表示4.1 坐标系的建立坐标系是由两个或多个轴组成的,用于表示向量的位置和方向。
在二维空间中,通常使用x 轴和y 轴作为坐标轴。
4.2 向量的坐标表示向量可以用坐标形式表示,即(x, y),其中x 表示向量在x 轴上的投影,y 表示向量在y 轴上的投影。
向量的长度可以用勾股定理计算,即|u| = √(x^2 + y^2)。
教案章节五:向量的线性相关性5.1 线性相关的定义向量组线性相关是指存在一组不全为零的实数,使得向量组的和为零。
例如,向量组(u, v, w) 线性相关,当存在不全为零的实数a, b, c,使得a u +b v +c w = 0。
5.2 线性相关性的性质如果向量组线性相关,其中任意一个向量都可以表示为其他向量的线性组合。
平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。
平面向量的概念及线性运算

平面向量的概念及线性运算【考点梳理】1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 【考点突破】考点一、平面向量的有关概念【例1】给出下列四个命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( )A .②③B .①②C .③④D .②④ [答案] A[解析] ①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC →|,AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →.③正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③. 【类题通法】1.相等向量具有传递性,非零向量的平行也具有传递性.2.共线向量即为平行向量,它们均与起点无关.3.向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.4.非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量. 【对点训练】 给出下列六个命题:①若|a |=|b |,则a =b 或a =-b ; ②若AB →=DC →,则ABCD 为平行四边形; ③若a 与b 同向,且|a |>|b |,则a >b ; ④λ,μ为实数,若λa =μb ,则a 与b 共线; ⑤λa =0(λ为实数),则λ必为零;⑥a ,b 为非零向量,a =b 的充要条件是|a |=|b |且a ∥b . 其中假命题的序号为________. [答案] ①②③④⑤⑥[解析] ①不正确.|a |=|b |.但a ,b 的方向不确定,故a ,b 不一定是相等或相反向量;②不正确.因为AB →=DC →,A ,B ,C ,D 可能在同一直线上,所以ABCD 不一定是四边形.③不正确.两向量不能比较大小.④不正确.当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线.⑤不正确.当λ=1,a =0时,λa =0.⑥不正确.对于非零向量a ,b ,a =b 的充要条件是|a |=|b |且a ,b 同向.考点二、平面向量的线性运算【例2】(1) 设D 为△ABC 所在平面内一点,AD →=-13AB →+43AC →,若BC →=λDC →(λ∈R ),则λ=( )A .2B .3C .-2D .-3(2)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.[答案] (1)D (2)12 -16[解析] (1)由AD →=-13AB →+43AC →,可得3AD →=-AB →+4AC →,即4AD →-4AC →=AD →-AB →,则4CD →=BD →,即BD →=-4DC →,可得BD →+DC →=-3DC →,故BC →=-3DC →,则λ=-3.(2)由题中条件得,MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,所以x =12,y =-16.【类题通法】1.解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.2.用几个基本向量表示某个向量问题的基本技巧:(1)观察各向量的位置;(2)寻找相应的三角形或多边形;(3)运用法则找关系;(4)化简结果.【对点训练】1.已知D 为三角形ABC 边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.[答案] -2[解析] 因为D 是BC 的中点,则AB →+AC →=2AD →.由P A →+BP →+CP →=0,得BA →=PC →. 又AP →=λPD →,所以点P 是以AB ,AC 为邻边的平行四边形的第四个顶点,因此AP →=AB →+AC →=2AD →=-2PD →,所以λ=-2.2.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.[答案] 12[解析] DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,∵DE →=λ1AB →+λ2AC →,∴λ1=-16,λ2=23,因此λ1+λ2=12.考点三、共线向量定理的应用【例3】(1)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线 D .B ,C ,D 三点共线(2)已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( )A .1B .-12C .1或-12 D .-1或-12[答案] (1) B (2) B[解析] (1)∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →, ∴BD →,AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B.(2)由于c 与d 共线反向,则存在实数k 使 c =k d (k <0),于是λa +b =k [a +(2λ-1)b ]. 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎨⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.【类题通法】 共线向量定理的应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB →=λAC →,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值. 【对点训练】1.向量e 1,e 2不共线,AB →=3(e 1+e 2),CB →=e 2-e 1,CD →=2e 1+e 2,给出下列结论:①A ,B ,C 共线;②A ,B ,D 共线;③B ,C ,D 共线;④A ,C ,D 共线,其中所有正确结论的序号为________.[答案] ④[解析] 由AC →=AB →-CB →=4e 1+2e 2=2CD →,且AB →与CB →不共线,可得A ,C ,D 共线,且B 不在此直线上.2.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. [答案] 12[解析] ∵λa +b 与a +2b 平行,∴λa +b =t (a +2b ),即λa +b =t a +2t b ,∴⎩⎨⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.。
平面向量的概念及其线性运算

答案 ②③
12
探究提高 关键. 关键.
(1)正确理解向量的相关概念及其含义是解题的 正确理解向量的相关概念及其含义是解题的
(2)相等向量具有传递性,非零向量的平行也具有传递性. 相等向量具有传递性,非零向量的平行也具有传递性 . 相等向量具有传递性 (3)共线向量即为平行向量,它们均与起点无关. 共线向量即为平行向量,它们均与起点无关. 共线向量即为平行向量 (4)向量可以平移,平移后的向量与原向量是相等向量.解 向量可以平移,平移后的向量与原向量是相等向量. 向量可以平移 题时,不要把它与函数图象移动混为一谈. 题时, 不要把它与函数图象移动混为一谈. a a (5)非零向量 a 与 的关系是: 是 a 方向上的单位向量. 的关系是: 方向上的单位向量. 非零向量 |a| |a|
Page 17
17
→ =2AB, → 变式训练 2 △ ABC 中,AD 3 DE∥BC 交 AC 于 E,BC 边上的中 ∥ , 线 AM 交 DE 于 N.设AB= a,AC= b, 设→ ,→ , 用 a、b 表示向量 → 、BC、DE、DN、 、 表示向量AE → → → → → AM、AN.
Page 6
6
基础自测 → 的结果等于________. → 1.化简 → - QP+MS-MQ的结果等于 OS .化简OP → → .
→ → → → → → → → 解析 OP-QP+MS-MQ=OP+PQ-(SM+MQ) → → → → → =OQ-SQ=OQ+QS=OS.
2.下列命题:①平行向量一定相等;②不相等的向量一定 不平行;③平行于同一个向量的两个向量是共线向量;
记作 0 非零向量 a 的单位向 a 量为± 量为 |a| 0 与任一向量平行或
平面向量讲义

平面向量第一节 平面向量的概念及线性运算一、基础知识1.向量的有关概念(1)向量的定义及表示:既有大小又有方向的量叫做向量.以A 为起点、B 为终点的向量记作AB ―→,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.(2)向量的长度(模):向量AB ―→的大小即向量AB ―→的长度(模),记为|AB ―→|. 2.几种特殊向量单位向量有无数个,它们大小相等,但方向不一定相同;与向量a 平行的单位向量有两个,即向量a |a |和-a|a |.3.向量的线性运算❷多个向量相加,利用三角形法则,应首尾顺次连接,a+b+c表示从始点指向终点的向量,只关心始点、终点.4.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . 只有a ≠0才保证实数λ的存在性和唯一性.二、常用结论(1)若P 为线段AB 的中点,O 为平面内任一点,则OP ―→=12(OA ―→+OB ―→).(2)OA ―→=λOB ―→+μOC ―→(λ,μ为实数),若点A ,B ,C 三点共线,则λ+μ=1. 考点一 平面向量的有关概念[典例] 给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.[解析] ①正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c . ②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→,又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. [解题技法] 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线. [题组训练] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零; ③λ,μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为( ) A .0 B .1C .2 D .3解析:①错误,两向量共线要看其方向而不是起点或终点.②错误,当a =0时,不论λ为何值,λa =0.③错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.故错误的命题有3个,故选D.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( )A .0B .1C .2D .3解析:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.考点二 平面向量的线性运算[典例] (1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( ) A.34AB ―→-14AC ―→ B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D.14AB ―→+34AC ―→ (2)如图,在直角梯形ABCD 中,DC ―→=14AB ―→,BE ―→=2EC ―→, 且AE ―→=r AB ―→+s AD ―→,则2r+3s =( )A .1B .2C .3D .4[解析] (1)作出示意图如图所示.EB ―→=ED ―→+DB ―→=12AD ―→+12CB ―→=12×12(AB ―→+AC ―→)+12(AB ―→-AC ―→)=34AB ―→-14AC ―→.故选A. (2)根据图形,由题意可得AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23(BA ―→+AD ―→+DC ―→)=13AB ―→+23(AD ―→+DC ―→)=13AB ―→+23⎝⎛⎭⎫AD ―→+14AB ―→=12AB ―→+23AD ―→. 因为AE ―→=r AB ―→+s AD ―→,所以r =12,s =23,则2r +3s =1+2=3.[解题技法] 向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解. (3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.(4)与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[题组训练]1.设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( )A .AD ―→=-13AB ―→+43AC ―→ B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→ D .AD ―→=43AB ―→-13AC ―→解析: 由题意得AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13AC ―→-13AB ―→=-13AB ―→+43AC ―→.2.在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ―→=λAM ―→+μAN ―→,则实数λ+μ=________. 解析:如图,∵AM ―→=AB ―→+BM ―→=AB ―→+12BC ―→=DC ―→+12BC ―→,①AN ―→=AD ―→+DN ―→=BC ―→+12DC ―→,②由①②得BC ―→=43AN ―→-23AM ―→,DC ―→=43AM ―→-23AN ―→,∴AC ―→=AB ―→+BC ―→=DC ―→+BC ―→=43AM ―→-23AN ―→+43AN ―→-23AM ―→=23AM ―→+23AN ―→,∵AC ―→=λAM ―→+μAN ―→,∴λ=23,μ=23,λ+μ=43.考点三 共线向量定理的应用[典例] 设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 同向.[解] (1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→,∴AB ―→,BD ―→共线. 又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的非零向量,∴⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1, 又∵λ>0,∴k =1.1.向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.[题组训练]1.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形C .梯形 D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.2.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与向量b 共线,则( ) A .λ=0 B .e 2=0C .e 1∥e 2 D .e 1∥e 2或λ=0解析:选D 因为向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,又因为向量a 和b 共线,存在实数k ,使得a =k b ,所以e 1+λe 2=2k e 1,所以λe 2=(2k -1)e 1,所以e 1∥e 2或λ=0.3.已知O 为△ABC 内一点,且AO ―→=12(OB ―→+OC ―→),AD ―→=t AC ―→,若B ,O ,D 三点共线,则t =( )A.14B.13C.12D.23解析:选B 设E 是BC 边的中点,则12(OB ―→+OC ―→)=OE ―→,由题意得AO ―→=OE ―→,所以AO ―→=12AE ―→=14(AB ―→+AC ―→)=14AB ―→+14t AD ―→,又因为B ,O ,D 三点共线,所以14+14t =1,解得t =13,故选B.4.已知O ,A ,B 三点不共线,P 为该平面内一点,且OP ―→=OA ―→+AB―→|AB ―→|,则( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上解析:由OP ―→=OA ―→+AB ―→|AB ―→|,得OP ―→-OA ―→=AB ―→|AB ―→|,∴AP ―→=1|AB ―→|·AB ―→,∴点P 在射线AB 上,故选D.第二节 平面向量基本定理及坐标表示一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→. [解] ∵BA ―→=OA ―→-OB ―→=a -b ,BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b ,∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→=23OD ―→=23a +23b ,∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则P Q―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 解析:由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b .2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→ (0<λ<1),由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知,m +n =-2λ,所以m +n ∈(-2,0).考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b , (1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c ,∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18). [变透练清]1.(变结论)本例条件不变,若a =m b +n c ,则m =________,n =________.解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.2.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解. 2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分. 考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1),∴k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3),BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→,∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb . 2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b )∥(a -3b ),则实数k 的取值为( ) A .-13 B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2).a -3b =(1,2)-3(-3,2)=(10,-4), 则由(k a +b )∥(a -3b )得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→. 设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π].当θ=0时,两向量a ,b 共线且同向;当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a ||b | cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫做向量b 在向量a 的方向上的投影,|a |cos θ叫做向量a 在向量b 的方向上的投影.(2)a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律(1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:(a +b )·c =a ·c +b ·c .向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e ·a =a ·e =|a |cos θ.(2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a||b|;当a 与b 反向时,a ·b =-|a||b|. 特别地,a ·a =|a|2或|a|=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a |=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a ·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2;(2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( ) A .0 B .4C .-92D .-172(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12,∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)法一:如图,连接MN .∵BM ―→=2MA ―→,CN ―→=2NA ―→,∴AM AB =AN AC =13.∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→).∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2)=3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0.故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解. [题组训练]1.已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1C.6D .2 2 解析:选B 设AB ―→=a ,AD ―→=b ,则a ·b =0,∵|a |=2,|b |=1,∴AC ―→·CB ―→=(a +b )·(-b )=-a ·b -b 2=-1.2.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( ) A.55 B .-55C .-255 D .-355解析:由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2, ∴a ·b =-3,∴向量b 在a 方向上的投影为a ·b |a |=-355.3.在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→(λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0,∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14.考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)已知非零向量a ,b 满足a ·b =0,|a |=3,且a 与a +b 的夹角为π4,则|b |=( )A .6B .32C .2 2D .3(2)已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1 B.12C.34 D.32[解析] (1)∵a ·b =0,|a |=3,∴a ·(a +b )=a 2+a ·b =|a ||a +b |cos π4,∴|a +b |=32,将|a +b |=32两边平方可得,a 2+2a ·b +b 2=18,解得|b |=3,(2)∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)·a ·b +t 2b 2,∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32,考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________. [解析] (1)因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |= 3.又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b |cos 〈a ,b 〉=-3,又|a |=12+(3)2=2,所以a ·b =|a ||b |cos 〈a ,b 〉=-6,又a ·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b |=32+(-33)2=6,所以cos 〈a ,b 〉=a ·b|a ||b |=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3.考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a |=223|b |,(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ) A .-4 B .-3C .-2 D .-1解析: ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B. 2.已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12B .1C. 2 D .2 解析: ∵非零向量a ,b 的夹角为60°,且|b |=1,∴a ·b =|a |×1×12=|a |2,∵|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,∴4|a |2-2|a |=0,∴|a |=12,故选A.3.已知向量a ,b 满足|a |=1,|b |=2,a +b =(1,3),记向量a ,b 的夹角为θ,则t a n θ=________. 解析:∵|a |=1,|b |=2,a +b =(1,3),∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =1+3,∴a ·b =-12,∴cosθ=a ·b|a |·|b |=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴t a n θ=sin θc os θ=-15. 第四节 平面向量的综合应用 考点一 平面向量与平面几何[典例] 在平行四边形ABCD 中,|AB ―→|=12,|AD ―→|=8.若点M ,N 满足BM ―→=3MC ―→,DN ―→=2NC ―→,则AM ―→·NM ―→=( )A .20B .15C .36D .6[解析] 法一:由BM ―→=3MC ―→,DN ―→=2NC ―→知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM ―→=AB ―→+BM ―→=AB ―→+34AD ―→,AN ―→=AD ―→+DN ―→=AD ―→+23AB ―→,所以NM ―→=AM ―→-AN ―→=AB ―→+34AD ―→-⎝⎛⎭⎫AD ―→+23AB ―→=13AB ―→- 14AD ―→,所以AM ―→·NM ―→=⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫13AB ―→-14AD ―→=13⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫AB ―→-34AD ―→= 13⎝⎛⎭⎫AB ―→2-916AD ―→2=13⎝⎛⎭⎫144-916×64=36,故选C.法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM ―→=(12,6),NM ―→=(4,-2),所以AM ―→·NM ―→=12×4+6×(-2)=36,故选C.[题组训练]1.若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形C .正三角形 D .等腰直角三角形解析:选A 由(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,得CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→, ∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形.2.已知P 为△ABC 所在平面内一点,AB ―→+PB ―→+PC ―→=0,|AB ―→|=|PB ―→|=|PC ―→|=2,则△ABC 的面积等于( )A. 3 B .23C .3 3 D .4 3解析:由|PB ―→|=|PC ―→|得,△PBC 是等腰三角形,取BC 的中点D ,连接PD (图略),则PD ⊥BC ,又AB ―→+PB ―→+PC ―→=0,所以AB ―→=-(PB ―→+PC ―→)=-2PD ―→,所以PD =12AB =1,且PD ∥AB ,故AB ⊥BC ,即△ABC 是直角三角形,由|PB ―→|=2,|PD ―→|=1可得|BD ―→|=3,则|BC ―→|=23,所以△ABC 的面积为12×2×23=2 3.3.如图,在扇形OAB 中,OA =2,∠AOB =90°,M 是OA 的中点,点P 在弧AB 上,则PM ―→·PB ―→的最小值为________.解析:如图,以O 为坐标原点,OA ―→为x 轴的正半轴,OB ―→为y 轴的正半轴建立平面直角坐标系,则M (1,0),B (0,2),设P (2cos θ,2sin θ),θ∈⎣⎡⎦⎤0,π2,所以PM ―→·PB ―→=(1-2cos θ,-2sin θ)·(-2cos θ,2-2sin θ)=4-2cos θ- 4sin θ=4-2(cos θ+2sin θ)=4-25sin(θ+φ)⎝⎛⎭⎫其中sin φ=55,c os φ=255,所以PM ―→·PB ―→的最小值为4-2 5.答案:4-2 5考点二 平面向量与解析几何[典例] 已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. [解] (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .则t a n x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎫x +π6≤32. 于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.[题组训练]1.已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.解析:∵AB ―→=OB ―→-OA ―→=(4-k ,-7),BC ―→=OC ―→-OB ―→=(6,k -5),且AB ―→∥BC ―→,∴(4-k )(k -5)+6×7=0,解得k =-2或k =11.由k <0,可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.2.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ―→·FP ―→的最大值为________.解析:由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 20=3⎝⎛⎭⎫1-x 204,因为FP ―→=(x 0+1,y 0),OP ―→=(x 0,y 0),所以OP ―→·FP ―→=x 0(x 0+1)+y 20=x 20+x 0+3⎝⎛⎭⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2,因为-2≤x 0≤2,故当x 0=2时,OP ―→·FP ―→取得最大值224+2+3=6.考点三 平面向量与三角函数[典例] 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A ―→+PB ―→+PC ―→|的最大值为( )A .6B .7C .8D .9[解析] 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,知线段AC 为圆的直径,设圆心为O ,故P A ―→+PC ―→=2PO ―→=(-4,0),设B (a ,b ),则a 2+b 2=1且a ∈[-1,1],PB ―→=(a -2,b ),所以P A ―→+PB ―→+PC ―→=(a -6,b ).故|P A ―→+PB ―→+PC ―→|=-12a +37,所以当a =-1时,|P A ―→+PB ―→+PC ―→|取得最大值49=7.[解题技法]平面向量与三角函数的综合问题的解题思路(1)若给出的向量坐标中含有三角函数,求角的大小,解题思路是运用向量共线或垂直的坐标表示,或等式成立的条件等,得到三角函数的关系式,然后求解.(2)若给出的向量坐标中含有三角函数,求向量的模或者向量的其他表达形式,解题思路是利用向量的运算,结合三角函数在定义域内的有界性或基本不等式进行求解.[题组训练]1.已知a =(cos α,sin α),b =(cos(-α),sin(-α)),那么a ·b =0是α=k π+π4(k ∈Z)的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵a ·b =cos α·cos(-α)+sin α·sin(-α)=cos 2α-sin 2α=cos 2α,若a ·b =0,则cos 2α=0,∴2α=2k π±π2(k ∈Z),解得α=k π±π4(k ∈Z).∴a ·b =0是α=k π+π4(k ∈Z)的必要不充分条件.故选B.2.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n = (cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3解析:选C 由m ⊥n ,得m ·n =0,即3cos A -sin A =0,由题意得cos A ≠0,∴t a n A =3,又A ∈(0,π),∴A =π3.又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c (R 为△ABC 外接圆半径),且a cos B +b cos A =c sin C ,所以c =c sin C ,所以sin C =1,又C ∈(0,π),所以C =π2,所以B =π-π3-π2=π6.。
平面向量的线性运算

平面向量的线性运算【学习目标】1.能熟练运用三角形法则和平行四边形法则,作出几个向量的和、差向量. 2.能结合图形进行向量的计算.3.能准确表达向量加法的交换律和结合律,并能熟练地进行向量计算. 4.理解实数与向量的积的意义,会利用实数与向量的积的运算律进行计算. 5.掌握向量共线的条件. 【要点梳理】要点一:向量加法的三角形法则与平行四边形法则 1.向量加法的概念及三角形法则已知向量,a b r r ,在平面内任取一点A ,作,AB a BC b ==u u u r r u u u r r,再作向量AC u u u r ,则向量AC u u u r 叫做a r 与b r 的和,记作a b +r r ,即a b AB BC AC +=+=r r u u u r u u u r u u u r.如图本定义给出的向量加法的几何作图方法叫做向量加法的三角形法则. 2.向量加法的平行四边形法则已知两个不共线向量,a b r r ,作,AB a AD b ==u u u r r u u u r r ,则,,A B D 三点不共线,以,AB AD u u u r u u u r为邻边作平行四边形ABCD ,则对角线AC a b =+u u u r r r.这个法则叫做两个向量求和的平行四边形法则.求两个向量和的运算,叫做向量的加法.对于零向量与任一向量a r ,我们规定00a a a +=+=r r r r r.要点诠释:两个向量的和与差仍是一个向量,可用平行四边形或三角形法则进行运算,但要注意向量的起点与终点. 要点二:向量求和的多边形法则及加法运算律 1.向量求和的多边形法则的概念已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的起点为起点,第n 个向量的终点为终点的向量叫做这n 个向量的和向量.这个法则叫做向量求和的多边形法则.112231n n n A A A A A A A A -=++⋅⋅⋅+u u u u r u u u u r u u u u r u u u u u u r特别地,当1A 与n A 重合,即一个图形为封闭图形时,有1223110n n n A A A A A A A A -++⋅⋅⋅++=u u u u r u u u u r u u u u u u r u u u u r r2.向量加法的运算律(1)交换律:a b b a +=+r r r r ;(2)结合律:()()a b c a b c ++=++r r r r r r要点三:向量的三角形不等式 由向量的三角形法则,可以得到(1)当,a b r r 不共线时,||||||a b a b +<+r r u u r r ;(2)当,a b r r 同向且共线时,,,a b a b +r r r r 同向,则||||||a b a b +=+r r u u r r ;(3) 当,a b r r 反向且共线时,若||||a b >u u r r ,则a b a +r r r 与同向,||||||a b a b +=-r r u u r r ;若||||a b <u u r r,则a b b +r r r 与同向,||||||a b b a +=-r r u u r r . 要点四:向量的减法 1.向量的减法(1)如果b x a +=r r r ,则向量x r 叫做a r 与b r 的差,记作a b -r r,求两个向量差的运算,叫做向量的减法.此定义是向量加法的逆运算给出的.相反向量:与向量a r 方向相反且等长的向量叫做a r的相反向量.(2)向量a r 加上b r 的相反向量,叫做a r 与b r 的差,即()a b a b -=+-r r r r.求两个向量差的运算,叫做向量的减法,此定义是利用相反向量给出的,其实质就是把向量减法化为向量加法.要点诠释:(1)两种方法给出的定义其实质是一样的.(2)对于相反向量有()0a a +-=r r r ;若a r ,b r 互为相反向量,则,0a b a b =-+=r r r r r.(3)两个向量的差仍是一个向量. 2.向量减法的作图方法(1)已知向量a r ,b r ,作,OA a OB b ==u u u r r u u u r r ,则BA a b =-u u u r r r =OA OB -u u u r u u u r ,即向量BA u u u r等于终点向量(OA u u u r )减去起点向量(OB uuu r).利用此方法作图时,把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始点的,被减向量的终点为终点的向量.(2)利用相反向量作图,通过向量加法的平行四边形法则作出a b -r r .作,,OA a OB b AC b ===-u u u r r u u u r r u u u r r,则()OC a b =+-u u u r r r,如图.由图可知,一个向量减去另一个向量等于加上这个向量的相反向量.要点五:数乘向量 1.向量数乘的定义实数与向量的积:实数λ与向量a ρ的积是一个向量,记作:a λr(1)||||||a a λλ=r r;(2)①当0>λ时,a ρλ的方向与a ρ的方向相同;②当0<λ时.a ρλ的方向与a ρ的方向相反;③当0=λ时,0ρρ=a λ.2.向量数乘的几何意义由实数与向量积的定义知,实数与向量的积a ρλ的几何意义是:a ρλ可以由a r同向或反向伸缩得到.当||1λ>时,表示向量a r的有向线段在原方向(0λ>)或反方向(0λ<)上伸长为原来的||λ倍得到a ρλ;当0||1λ<<时,表示向量a r的有向线段在原方向(0λ>)或反方向(0λ<)上缩短为原来的||λ倍得到a ρλ;当1λ=时,a ρλ=a r ;当1λ=-时,a ρλ=-a r ,与a r互为相反向量;当0λ=时,a ρλ=0r .实数与向量的积得几何意义也是求作向量a ρλ的作法.3.向量数乘的运算律 设λμ、为实数结合律:()()a a λμλμ=r r;分配律:a a a ρρρμλμλ+=+)(,b a b a ρρρρλλλ+=+)(要点六:向量共线的条件 1.向量共线的条件(1)当向量0a =r r 时,a r 与任一向量b r共线.(2)当向量0a ≠r r 时,对于向量b r .如果有一个实数λ,使b a λ=r r,那么由实数与向量的积的定义知br 与a r共线.反之,已知向量b r 与a r (0a ≠r r )共线且向量b r 的长度是向量a r 的长度的λ倍,即||||b a λ=r r,那么当br 与a r 同向时,b a λ=r r ;当b r 与a r 反向时,b a λ=-r r.2.向量共线的判定定理a ρ是一个非零向量,若存在一个实数λ,使b a λ=r r ,则向量b r 与非零向量a ρ共线.3.向量共线的性质定理若向量b r 与非零向量a ρ共线,则存在一个实数λ,使b a λ=r r .要点诠释:(1)两个向量定理中向量a ρ均为非零向量,即两定理均不包括0r 与0r 共线的情况;(2)0a ≠r r 是必要条件,否则0a =r r ,0b ≠r r时,虽然b r 与a r 共线但不存在λ使b a λ=r r ; (3)有且只有一个实数λ,使b a λ=r r.(4)//(0)a b a b b λ⇔=≠r r r r r r是判定两个向量共线的重要依据,其本质是位置关系与数量关系的相互转化,体现了数形结合的高度统一. 【典型例题】类型一:向量的加法运算例1.如图所示,已知三个向量r a 、b r 、r c ,试用三角形法则和平行四边形法则分别作向量r a +b r +rc . 【解析】 利用三角形法则作r a +b r +r c ,如图1所示,作=u u u r r OA a ,以A 为起点,作=u u u r rAB b ,再以B 为起点,作=u u u r r BC c ,则=+=++=++u u u r u u u r u u u r u u u r u u u r u u u r r r r OC OB BC OA AB BC a b c .利用平行四边形法则作r a +b r +r c ,如图2所示,作=u u u r r OA a ,=u u u r r OB b ,=u u u r r OC c ,以OA u u u r、OB uuu r 为邻边作平行四边形OADB ,则=+u u u r r r OD a b ,再以OD u u u r 、OC u u u r为邻边作平行四边形ODEC ,则=+=++u u u r u u u r u u u r r r r OE OD OC a b c .【总结升华】题中,要求作三个向量的和,首先求作两个向量的和,因为这两个向量的和仍为一个向量,然后求这个向量与另一个向量的和,方法是多次使用三角形法则或平行四边形法则. 举一反三:【变式1】已知任意四边形ABCD ,E 为AD 的中点,F 为BC 的中点,求证:EF EF AB DC +=+u u u r u u u r u u u r u u u r.【证明】如图所示,在四边形CDEF 中,0EF FC CD DE +++=u u u r u u u r u u u r u u u r r, 所以EF FC CD DE CF DC ED =---=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r .在四边形ABFE 中,0EF FB BA AE +++=u u u r u u u r u u u r u u u r r ,所以EF BF AB EA =++u u u r u u u r u u u r u u u r.所以()()()EF EF CF DC ED BF AB EA CF BF ED EA AB DC +=+++++=+++++u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .因为E 、F 分别是AD 、BC 的中点,所以0ED EA +=u u u r u u u r r ,0CF BF +=u u u r u u u r r .所以EF EF AB DC +=+u u u r u u u r u u u r u u u r.【总结升华】本题主要应用了封闭图形中所有向量依次相加之和为零向量的知识. 类型二:向量的减法运算例2.(1)在平面内任画两个非零向量r a 、b r ,求作r a -b r;(2)如图,已知不共线的两个非零向量r a 、b r ,求作向量r a ―b r ,b r ―r a .【解析】 (1)①当r a 、b r 共线时,若r a 、b r 同向,如下图甲.任取一点A ,作=u u u r r AB a ,=-u u u r rBC b ,则=-u u u r r r AC a b .若r a 、b r 反向,如上图乙.任取一点,作=u u u r r AB a ,=-u u u r r BC b ,则()=-=+-u u u r r r r r AC a b a b .②当r a 、b r 不共线时,如下图(左).在平面内任取一点O ,作=u u u r r OA a ,=u u u r r OB b ,则. ()=+=+-=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r r r BA BO OA OA OB OA OB a b .(2)作=u u u r r OA a ,=u u u r r OB b ,则=-u u u r r r BA a b ,=-u u u r r rAB b a ,如图(右).【总结升华】(1)题中,需要根据不同的情况分别求解.紧扣向量减法的定义是解决问题的关键. (2)题中,求两个向量的加法、减法要注意三角形法则和平行四形法测的应用,求两个向量的减法可以转化为向量的加法来进行,也可以直接用向量减法的三角形法则,即把两向量的起点重合,则两向量的差就是连接两向量的终点,且指向被减向量的终点.举一反三:【变式1】O 为正六边形ABCDEF 的中心,设OA a =u u u r r ,OB b =u u u r r ,则DE u u u r等于( ). (A)a b +r r (B)a b -r r (C)b a -r r (D)a b --r r【答案】B【高清课堂:向量的线性运算 395568 例2】【变式2】化简 ()()AC DB AB DC +-+u u u r u u u r u u u r u u u r【解析】原式=()()0AC AB DB DC BC CB -+-=+=u u u r u u u r u u u r u u u r u u u r u u u r r.类型三:与向量的模有关的问题例3.(1)已知r a 、b r 、r c 的模分别为1、2、3,求|r a +b r +rc |的最大值;(2)如图所示,已知矩形ABCD 中,||43AD =u u u r,设=u u u r r AB a ,=u u u r r BC b ,=u u u r r BD c ,试求|r a +b r +r c |的大小.【思路点拨】(1)利用向量的三角形不等式求解;(2)构造平行四边形求向量模的长度.【解析】(1)∵|r a +b r +r c |≤|r a |+|b r |+|r c |=1+2+3=6, ∴|r a +b r +rc |的最大值为6.(2)过点D 作AC 的平行线,交BC 的延长线于E ,如图所示. ∵DE ∥AC ,AD ∥BE ,∴四边形ADEC 为平行四边形,∴DE AC =u u u r u u u r ,CE AD =u u u r u u u r ,于是2++=++=+=+==+=r r r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r uu u r u u u r a b c AB BC BD AC BD DE BD BE AD AD AD , ∴||2||83++==r r r u u u ra b c AD .【总结升华】 求若干个向量的和的模(或最值)问题通常按下列方法进行:寻找或构造平行四边形——借助已知长度的向量表示待求模的向量来求模(或利用向量的和的模的性质). 举一反三:【变式1】已知非零向量r a ,b r 满足||71=+r a ,||71=-rb ,且|r a -b r |=4,求|r a +b r |的值.【解析】 如图,=u u u r r OA a ,=u u u r r OB b ,则||=-u u u r r rBA a b . 以OA 与OB 为邻边作平行四边形OACB ,则||||=+u u u r r rOC a b .由于222(71)(71)4++-=.故222||||||OA OB BA +=u u u r u u u r u u u r ,所以△OAB 是∠AOB 为90°的直角三角形,从而OA ⊥OB ,所以Y OACB 是矩形.根据矩形的对角线相等有||||4OC BA ==u u u r u u u r,即|r a +b r |=4.类型四:向量的数乘运算 例4.(2016 安徽合肥月考)计算下列各式:(1)3(2)2(43)a b a b ---r r r r ;(2)113(43)(3)322a b a b b +--+rr r r r ;(3)2(34)3(23)a b c a b c -+-+-r r r r r r.【答案】(1)23a b -+r r ;(2)136a b -+rr ;(3)1111b c -+r r .【解析】(1)3(2)2(43)638623a b a b a b a b a b ---=--+=-+r r r r r r r r r r;(2)11343131(43)(3)332232226a b a b b a b a b b a b +--+=+-++=-+r r r r r r r r r r rr ;(3)2(34)3(23)6826391111a b c a b c a b c a b c b c -+-+-=-+--+=-+r r r r r r r r r r r r r r.【总结升华】数乘向量与数乘数不同,前者结果是一个向量,后者结果是一个数,λ>0时,λr a 与ra 同向;λ<0时,λr a 与r a 反向;λ=0时,λr a =0;故λr a 与ra 一定共线.应用实数与向量的积的运算律时,应联想数与数乘积运算的有关知识,加深对数乘向量运算律的理解.举一反三:【变式1】计算:(1)6(3r a ―2r b )+9(―2r a +rb );(2)127137(32)236276⎡⎤⎡⎤⎛⎫+---++ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦rr r r r r r a b a b a b a ;(3)6(r a ―r b +r c )―4(r a ―2r b +r c )―2(―2r a +r c ). 【解析】 (1)原式=18r a ―12r b ―18r a +9r b =―3rb .(2)127137(32)236276⎡⎤⎡⎤⎛⎫+---++ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦rr r r r r r a b a b a b a12711332236227⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭r rr r r r r a a b b a a b 17732367⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭r r r r a b a b 717106262a b a b =+--=r r r r r . (3)原式=6r a ―6r b +6r c ―4r a +8r b ―4r c +4r a ―2rc =(6r a ―4r a +4r a )+(8r b ―6r b )+(6r c ―4r c ―2r c ) =6r a +2r b .例5.(2015春 山西运城期中)在边长为1的正△ABC 中,2BC BD =u u u r u u u r ,3AC EC =u u u r u u u r,AD 与BE 相交于点F .(1)求AD BE ⋅u u u r u u u r的值;(2)若AF FD λ=u u u r u u u r,求实数λ的值.【思路点拨】(1)通过题意可得AD ⊥BC ,设AB a =u u u r r ,AC b =u u u r r ,利用23AE AC =u u u r u u u r,代入计算即可;(2)通过计算可得22(1)2(1)BF BA AF AB AC λλλλ+=+=-+++u u u r u u u r u u u r u u u r u u ur ,记BF BE μ=u u u r u u u r ,通过计算可得2()3BF AB AE AB AC μμμ=-+=-+u u u r u u u r u u u r u u u r u u u r,根据平面向量的基本定量计算即得结论.【解析】(1)由题意,D 为BC 的中点, 而△ABC 为正三角形,∴AD ⊥BC ,设AB a =u u u r r ,AC b =u u u r r ,又3AC EC =u u u r u u u r ,则1()()2AD BE AB AC AE AB ⋅=+⋅-u u u r u u u r u u u r u u u r u u u r u u u r12()()23a b b a =+⋅-r r r r 22111326b a a b =--⋅r r r r 14=-;(2)根据题意:1BF BA AF AB AD λλ=+=-++u u u r u u u r u u u r u u u r u u ur()2(1)AB AB AC λλ=-+++u u u r u u u r u u u r 22(1)2(1)AB AC λλλλ+=-+++u u u r u u u r 记BF BE μ=u u u r u u u r ,则2()3BF AB AE AB AC μμμ=-+=-+u u u r u u u r u u u r u u u r u u u r,根据平面向量的基本定理可得:22(1)22(1)3λμλλμλ+⎧-=-⎪+⎪⎨⎪=⎪+⎩解得:λ=4.【总结升华】用已知向量来表示另外一些向量是用向量解题的基本功,除利用向量加、减法、数乘向量外,还应充分利用平面几何的一些定理,因此在求向量时要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相连的向量,运用向量加、减法运算及数乘运算来求解,既充分利用相等向量、相反向量和线段的比例关系,运用加法三角形、平行四边形法则,运用减法三角形法则,充分利用三角形的中位线,相似三角形对应边成比例的平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.举一反三:【高清课堂:向量的线性运算 395568 例6】【变式1】如图,已知ABC ∆三边中点为D E F 、、,求证:0AD BE CF ++=u u u r u u u r u u u r r.【解析】AD BE CF ++u u u r u u u r u u u r =3()2AG BG CG ++u u u r u u u r u u u r=3()2GA GB CG ⎡⎤-++⎣⎦u u u r u u u r u u u r =322GF CG ⎡⎤-+⎣⎦u u u r u u u r =302⋅r =0r【变式2】如图,四边形OADB 是以向量=u u u r r OA a ,=u u u r rOB b 为邻边的平行四边形,又13=u u u u r u u u r BM BC ,13=u u u r u u u rCN CD ,试用向量r a 、r b 表示OM u u u u r ,ON u u u r ,MN u u u u r .【解析】 ∵1111()()3666===-=-u u u u r u u u r u u u r u u u r u u u r r rBM BC BA OA OB a b ,∴11156666=+=+-=+u u u u r u u u r u u u u r r r r r r OM OB BM b a b a b ,∵1136CN CD OD ==u u u r u u u r u u u r ,∴11222()()26333=+=+==+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r r ON OC CN OD OD OD OA OB a b ,21511()36626=-=+--=-u u u u r u u u r u u u u r r r r r r r MN ON OM a b a b a b .类型五:共线向量与三点共线问题例6.设两非零向量1e u r 和2e u u r不共线,(1)如果121212,28,3(),AB e e BC e e CD e e =+=+=-u u u r u r u u r u u u r u r u u r u u u r u r u u r求证D B A ,,三点共线.(2)试确定实数k ,使12ke e +u r u u r 和12e ke +u r u u r共线.【思路点拨】 要证明D B A ,,三点共线,须证存在λ使12()BD e e λ=+u u u r u r u u r 即可.而若12ke e +u r u u r 和12e ke +u r u u r共线,则一定存在λ,使1212()ke e e ke λ+=+u r u u r u r u u r.【解析】(1)证明 12121212,283()5()5,AB e e BD BC CD e e e e e e AB =+=+=++-=+=u u u r u r u u r u u u r u u u r u u u r u r u u r u r u u r u r u u r u u u rQ,AB BD ∴u u u r u u u r共线,又有公共点B , ∴D B A ,,三点共线.(2)解 ∵12ke e +u r u u r 和12e ke +u r u u r共线,∴存在λ,使1212()ke e e ke λ+=+u r u u r u r u u r,则12()(1),k e k e λλ-=-u r u u r 由于1e u r 和2e u u r不共线,只能有⎩⎨⎧=-=-010k k λλ 则1k =±.【总结升华】本题充分地运用了向量共线的充要条件,即,a b r r共线⇔存在λ使b a λ=r r (正用与逆用)举一反三:【变式1】(2015秋 安徽滁州月考)(1)设两个非零向量1e u r ,2e u u r 不共线,如果1223AB e e =+u u u r u r u u r,12623BC e e =+u u u r u r u u r ,1248CD e e =-u u u r u r u u r,求证:A ,B ,D 三点共线.(2)设1e u r ,2e u u r 是两个不共线的向量,已知122AB e ke =+u u u r u r u u r ,123CB e e =+u u u r u r u u r ,122CD e e =-u u u r u r u u r,若A ,B ,D 三点共线,求k 的值. 【答案】(1)略;(2)-8【解析】(1)证明:∵121210155(23)5BD BC CD e e e e AB =+=+=+=u u u r u u u r u u u r u r u u r u r u u r u u u r ,∴BD u u u r 与AB u u u r共线,又它们有公共点B ,∴A 、B 、D 三点共线;(2)121212(2)(3)4BD CD CB e e e e e e =-=--+=-u u u r u u u r u u u r u r u u r u r u u r u r u u r ,∵A 、B 、D 三点共线,∴AB u u u r 与BD u u u r 共线,则AB BD λ=u u u r u u u r ,即12122(4)e ke e e λ+=-u r u u r u r u u r,所以24k λλ=⎧⎨=-⎩,解得k =-8.类型六:向量的综合应用例7.已知A 、B 、C 是不共线的三点,O 是△ABC 内一点,若0OA OB OC ++=u u u r u u u r u u u r,证明O 是△ABC的重心.【思路点拨】 要证明O 是△ABC 的重心,即证O 是△ABC 各边中线的交点,可联系重心的性质证之.【证明】 ∵0OA OB OC ++=u u u r u u u r u u u r,∴()OA OB OC =-+u u u r u u u r u u u r,即OB OC +u u u r u u u r 是与OA u u u r 方向相反且长度相等的向量. 如图所示,以OB 、OC 为相邻两边作Y OBDC ,则OD OB OC =+u u u r u u u r u u u r , ∴OD OA =-u u u r u u u r .在Y OBDC 中,设BC 与OD 相交于E ,则BE EC =u u u r u u u r ,OE ED =u u u r u u u r, ∴AE 是△ABC 的BC 边上的中线,且||2||OA OE =u u u r u u u r.根据平面几何知识,知O 是△ABC 的重心.【总结升华】若AB CD λ=u u u r u u u r且直线AB 与直线CD 不重合,则AB ∥CD .若AB CD =u u u r u u u r且直线AB 与直线CD 不重合,则以A 、B 、C 、D 为顶点的四边形是平行四边形.举一反三:【变式1】如图,已知任意平面四边形ABCD 中,E 、F 分别是AD 、BC 的中点,求证:1()2EF AB DC =+u u u r u u u r u u u r . 证明:取以点A 为起点的向量,应用三角形法则求,如图.∵E 是AD 的中点,∴12AE AD =u u u r u u u r . ∵F 是BC 的中点,∴1()2AF AB AC =+u u u r u u u r u u u r , 又∵AC AD DC =+u u u r u u u r u u u r ,∴1()2AF AB AD DC =++u u u r u u u r u u u r u u u r 11()22AB DC AD =++u u u r u u u r u u u r . ∴1111()()2222EF AF AE AB DC AD AD AB DC =-=++-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 【总结升华】 掌握向量的线性运算是关键,利用封闭图形的依次各向量之和为零向量进行变形而得到. 例8. 2009年8月份,南方遭遇暴雨袭击,在某小镇的一次营救中,小汽艇在静水中的速度是12 km / h ,水流的速度是6 km / h .如果小汽艇向着垂直河岸的方向行驶,则小汽艇在河水中的实际运动速度是多大?方向怎样?此时,必须到河正对岸去营救一人,要使小汽艇沿垂直方向到达对岸,船头方向该怎样?【解析】如图(1)所示,AB u u u r 为汽艇在静水中的速度,AD u u u r 为水流速度,由平行四边形法则可知,小汽艇在实际速度为AC AB AD =+u u u r u u u r u u u r ,在Rt △ADC 中,||6AD =u u u r ,||||12DC AB ==u u u r u u u r ,||6513.4AC =≈,∠CAD ≈63°43′.即小汽艇在河水中的速度大小约为13.4 km / h ,方向与水流速度的夹角约为63°43′.如图(2)所示,欲使小汽艇垂直河岸方向到达对岸码头,设小汽艇实际速度为AC u u u r ,则AC AB BC =+u u u r u u u r u u u r .在Rt △ABC 中,||12AB =u u u r ,||6BC =u u u r ,从而∠BAC=30°,∠BAE=60°,即小汽艇应沿与河岸成60°角的方向逆水行驶,才能沿垂直河岸方向到达对岸.【总结升华】用向量加法解决简单的实际问题其步骤为:先用向量表示相关物理量(如速度等),再进行向量运算,然后归结到实际问题去解决.举一反三:【变式1】在湘江的某渡口处,江水以12.5 km / h 的速度向北流去,渡船的速度是25 km / h ,现渡船要垂直地渡过湘江,问:其航向应该怎样确定?【解析】设AB u u u r 表示水流速度,AD u u u r 表示船的速度,AC u u u r 表示渡船实际垂直过江的速度,现以AB 为一边,以AC 为对角线作Y ABCD ,则AD 就是船的速度(如图).在Rt △ACD 中,∠ACD=90°,||||12.5DC AB ==u u u r u u u r ,||25AD =u u u r ,所以∠CAD=30°.故其航向应该调整为东偏南30°.。
高中数学必修四《平面向量的基本定理》PPT

第二章 平面向量
想一想 1.判断两个向量能否作为基底的关键是什么? 提示:判断两个向量能否作为基底的关键是看它们是否共 线,若共线,则不能作为基底,否则可以作为基底.
栏目 导引
第二章 平面向量
2.两向量的夹角与垂直
(1)夹角:已知两个__非__零__向__量___a 和 b,作O→A=a,O→B =b,则∠__A_O__B__=θ 叫做向量 a 与 b 的夹角.
【答案】 30° 60°
栏目 导引
第二章 平面向量
【名师点评】 两向量夹角的实质和求解 (1)明确两向量夹角的定义,实质是从同一起点出发的两 个非零向量构成的不大于平角的角,结合平面几何知识 加以解决. (2)求两个向量的夹角关键是利用平移的方法使两个向量 起点重合,作出两个向量的夹角,按照“一作二证三 算”的步骤求出.
栏目 导引
第二章 平面向量
跟踪训练
2.如图所示,已知等边三角形 ABC. (1)求向量A→B与向量B→C的夹角; (2)若 E 为 BC 的中点,求向量A→E与E→C的夹角.
栏目 导引
第二章 平面向量
解:(1)∵△ABC 为正三角形, ∴∠ABC=60°.延长 AB 至点 D,使|A→B|=|B→D|, ∴A→B=B→D, ∴∠DBC 为向量A→B与B→C的夹角,且∠DBC=120°. (2)∵E 为 BC 的中点,∴AE⊥BC, ∴A→E与E→C的夹角为 90°.
已知向量 a 与 b 的夹角为 60°,则向量-3a 和-12b 的夹 角为________.
答案:60°
栏目 导引
第二章 平面向量
典题例证技法归纳
题型探究
题型一 对基底概念的理解 例1 设e1,e2是不共线的两个向量,给出下列四组向量:
人教版高中数学必修四平面向量的基本定理及坐标表示课件 (3)

填要点·记疑点
单位向量
xi+yj
有序数对(x,y)
a=(x,y)
2.平面向量的坐标运算(1)若a=(x1,y1),b=(x2,y2),则a+b= ,即两个向量和的坐标等于这两个向量相应坐标的和.
(x,y)
(x2-x1,y2-y1)
(x1+x2,y1+y2)
反思与感悟 选定基底之后,就要“咬定”基底不放,并围绕它做中心工作,千方百计用基底表示目标向量.要充分利用平面几何知识,将平面几何知识中的性质、结论与向量知识有机结合,具体问题具体分析,从而解决问题.
反思与感悟 用基底表示向量的关键是利用三角形或平行四边形将基底和所要表示的向量联系起来.解决此类题时,首先仔细观察所给图形.借助于平面几何知识和共线向量定理,结合平面向量基本定理解决.
跟踪训练3 如图,已知△ABC是等边三角形.
解 (1)∵△ABC为等边三角形,∴∠ABC=60°.
如图,延长AB至点D,使AB=BD,
∵∠DBC=120°,
解 ∵E为BC的中点,∴AE⊥BC,
当堂测·查疑缺
1
2
3
4
1.等边△ABC中, 与的夹角是( )A.30° B.45° C.60° D.120°
D
1
2
3
4
2.设e1、e2是不共线的两个向量,给出下列四组向量:①e1与e1+e2;②e1-2e2与e2-2e1;③e1-2e2与4e2-2e1;④e1+e2与e1-e2.其中能作为平面内所有向量的一组基底的序号是_________.(写出所有满足条件的序号)解析 对于③4e2-2e1=-2e1+4e2=-2(e1-2e2),∴e1-2e2与4e2-2e1共线,不能作为基底.
思考2 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如图,向量i、j是两个互相垂直的单位向量,向量a与i的夹角是30°,且|a|=4,以向量i、j为基底,向量a如何表示?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
16a-16b,������������
=
【答案】 C
知识梳理
典例变式
基础训练
能力提升
(2) 因为������������ = ������������ − ������������=a-b,
������������
=
1 6
������������
=
16a-16b,所以������������
=
知识梳理
典例变式
基础训练
能力提升
变式训练一
1.设 D 为△ABC 所在平面内一点,������������=3������������,则
A.������������ =-13
������������
+
4 3
������������
C.������������
=
4 3
������������
+
1 3
−
4 3
������������
C.������������
=
4 3
������������
+
1 3
������������
D.������������
=
4 3
������������
−
1 3
������������
(2)设 D、E 分别是△ABC 的边 AB、BC 上的点,AD=12AB,BE=23BC.若������������=λ1������������+λ2������������(λ1、
所以������������ = ������������ − ������������ = 23a+23b-16a-56b=12a-16b.
答案:(1)C (2)������������ = 16a+56b,������������ = 23a+23b,������������ = 12a-16b.
=
1 3
������������ ,
������������
=
1 3
������������,用
a,������ 表示
������������, ������������, ������������.
知识梳理
典例变式
基础训练
能力提升
【解析】(1)∵������������ =a,������������ =b,∴������������
λ(μ a) =(λ μ)a; (λ+μ)a=λa+μa; λ(a+b) =λa+λb
知知识识梳梳理理
典例变式
基础训练
能力提升
3.平面向量共线定理 向量 b 与 a(a≠0)共线的充要条件是有且只有一个实数 λ,使得 b=λa. 4.平面向量基本定理 如果 e1,e2 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 a,有且只 有一对实数 λ1,λ2,使 a=λ1e1+λ2e2. 其中,不共线的向量 e1,e2 叫做表示这一平面内所有向量的一组基底. 5.向量的夹角
C.-13
������������
+
4 3
������������
B.13
������������
+
4 3
������������
D.-13
������������
−
4 3
������������
【解析】
������������ = ������������ + ������������
∴������������ =-13
������������
+
4 3
������������ .故选
A.
(2)
������������
=
������������
+
������������
=
1 2
������������
+
2 3
������������
=
12AB+23 (������������
+
������������)=-16 ������������
知识梳理
典例变式
基础训练
能力提升
变式训练二
1.如图,已知������������
=
4 3
������������,用������������,
������������ 表示������������ ,则������������ 等于
(C )
A.13
������������
−
4 3
������������
������������
+
������������
=
16a+56b.
因为������������ =a+b,
所以������������
=
������������
+
1 3
������������
=
1 2
������������
+
1 6
������������
=
2 3
������������
=
23a+23b,
知识梳理
典例变式
基础训练
能力提升
题型一 向量的线性运算
【例 1】 (1)设 D 为△ABC 所在平面内一点,������������=3������������,则( )
A.AD=-13
������������
+
4 3
������������
B.������������
=
1 3
������������
+
1 3
������������
=
������������
+
1 3
(������������
−ห้องสมุดไป่ตู้
������������ )=-13
������������
+
4 3
������������ .故选
A.
法二:∵������������=3������������,∴������������ − ������������=3(������������ − ������������),
+
2 3
������������ ,
所以 λ1=-16,λ2=23,即 λ1+λ2=12.
【答案】 (1)A (2)12
知识梳理
典例变式
基础训练
能力提升
【规律方法】平面向量线性运算问题的常见类型及解题策略 (1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则. (2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求 首尾相连向量的和用三角形法则. (3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较 求参数的值. 【注意】注意应用初中平面几何的知识如平行线分线段成比例定理、相似三角形的 性质等,可以简化运算.
=
������������
+
������������
=
1 2
������������
+
1 2
������������
=
12a+12b.因为
E
是
OD
的中点,∴||������������������������|| = 13,∴|DF|=13|AB|.
∴������������
=
1 3
������������
2.向量的线性运算
向
量 运
定义
算
法则(或几何意义)
加 求两个向量和的运 法算
减 求 a 与 b 的相反向 法 量-b 的和的运算
运算律
交换律: a+b=b+a; 结合律: (a+b)+c=a+(b+c)
a-b=a+(-b)
数 求实数 λ 与向量 a 乘 的积的运算
|λa|=|λ||a|, 当 λ>0 时,λa 与 a 的方向相同;当 λ<0 时,λa 与 a 的 方向相反;当 λ=0 时,λa=0
������������ .故选
A.
知识梳理
典例变式
基础训练
能力提升
2.在△ABC 中,点 M,N 满足������������=2������������, ������������ = ������������.若������������=x������������+y������������,则
知识梳理
典例变式
基础训练
能力提升
【规律方法】平面向量基本定理应用的实质和一般思路 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行 向量的加、减或数乘运算. (2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结 论表示成向量的形式,再通过向量的运算来解决. 【注意】在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用 平面几何的一些性质定理.
延长线与 CD 交于点 F.若������������=a,������������=b,则������������=
()
A.14a+12b
B.12a+14b
C.23a+13b
D.13a+23b
(2)如图,以向量������������=a,������������=b
为邻边作▱OADB,������������