糖脂代谢稳态调控的分子机制

合集下载

糖代谢的生物化学调节

糖代谢的生物化学调节

糖代谢的生物化学调节糖代谢是生物体内一个重要的代谢过程,通过一系列的生物化学反应,将摄入的碳水化合物转化为能量和存储形式。

这一过程涉及多个关键酶的调节,以保持机体内部代谢平衡。

本文将探讨糖代谢的生物化学调节机制。

1. 糖代谢的基本过程糖代谢的基本过程主要包括糖的吸收、储存、释放和利用。

当我们进食含糖食物时,消化系统中的酶将复杂的糖类分解为单糖,如葡萄糖。

这些单糖通过细胞膜转运蛋白进入细胞内,并在细胞质中进行代谢。

2. 葡萄糖调节机制葡萄糖是糖代谢的主要物质,其浓度在血液中需要维持在一定的范围内。

当血糖浓度过高时,胰岛素释放,促进葡萄糖的摄入和利用。

胰岛素通过激活葡萄糖转运蛋白和糖原合成酶,促使葡萄糖转化为糖原储存起来。

当血糖浓度过低时,胰岛素的分泌减少,肝细胞将糖原分解为葡萄糖释放到血液中,以维持血糖水平。

3. 糖原和糖酵解的调节糖原是一种储存在肝脏和肌肉中的多糖,能够释放葡萄糖以满足机体能量需求。

糖原的合成受到胰岛素的促进,而其分解则受到胰高血糖素和肾上腺素的调节。

当机体需要能量时,肾上腺素的分泌增加,激活糖原磷酸化酶,使得糖原分解为葡萄糖。

4. 糖酵解调节糖酵解是将葡萄糖分解为乳酸或丙酮酸的过程,产生少量的ATP。

当氧气供应不足时,糖酵解是细胞的主要能源来源。

糖酵解的过程中,多个关键酶受到调节,如磷酸果糖激酶、葡萄糖激酶和磷酸三磷酸异构酶等。

这些酶的活性可以通过磷酸化、糖酮-糖磷酸酯循环以及底物浓度等因素进行调节。

5. 糖异生的调节糖异生是指在机体无法通过摄入糖类满足能量需求时,通过非糖类物质合成葡萄糖。

糖异生主要发生在肝细胞中,其中多糖、脂肪和氨基酸是糖异生的补给物。

多个酶参与糖异生的调节,其中磷酸烯醇式还原酶和磷酸果糖-6-磷酸酶是关键酶,其活性受到内分泌激素和底物浓度的调控。

总结:糖代谢的生物化学调节涉及多个酶的活性调控,其中胰岛素和肾上腺素是重要的调节激素。

胰岛素在血糖浓度高时促进糖的储存和利用,而肾上腺素则在能量需求增加时促进糖原分解和糖酵解。

低氧运动介导miRNAs影响糖代谢:预防控制糖代谢异常的新认识

低氧运动介导miRNAs影响糖代谢:预防控制糖代谢异常的新认识

结果:
(1)在低氧运动中 miRNAs 可以用 作单个分子或联合治疗;
(2)整合有关 miRNAs 对胰岛素信 号传导途径;
(3)用来开发新的 miRNAs 相关诊 断和治疗方法;
(4)以望在不久的将来解决 2 型糖 尿病的治疗问题
蒋涵,女,1996 年生,山 东省济宁市人,汉族,曲 阜师范大学在读硕士,主 要从事低氧运动、糖代谢、 运动损伤及运动康复研 究。
高胰岛素血症,以维持血糖的稳定。胰岛素抵抗易导致代谢综合征和 2 型糖尿病。20 世纪 50 年代 Yallow 等应用放射免疫分析技术测定血浆胰岛素浓度,发现血浆胰岛素水平较低的患者胰岛素敏感性较高,而血浆
胰岛素较高的人对胰岛素不敏感,由此提出了胰岛素抵抗的概念。
摘要 背景:研究结果表明,miRNAs 与肥胖和糖尿病关系密切,miRNAs 可能成为糖尿病诊断和预后的潜在生物 标志物。 目的:通过综述 miRNAs 促进胰岛素的敏感性、控制胰岛素的合成以及调控胰岛素抵抗等在低氧运动方面的 作用,探讨低氧运动介导 miRNAs 调控糖代谢的机制。 方法:检索 PubMed、CNKI 和万方数据库等数据库关于低氧运动、糖代谢及 miRNAs 的相关研究,检索词为 “低氧运动”“糖代谢”及“miRNAs”“Low oxygen movement”“Hypoxic exercise”“hypoxia-mediated” “Sugar metabolism”“Glucose metabolism”等。检索时限为 2007 年至 2019 年,按照纳入标准和排除标 准对搜索文献进行筛选。 结果与结论:研究表明,miRNAs 调控靶基因的表达进而影响糖代谢的稳态,调节胰岛素信号的传导途径主 要来自蛋白质级联表达的潜力。在低氧运动中 miRNAs 可以用作单个分子或联合治疗,整合有关 miRNAs 对胰岛素信号传导途径,用来开发新的 miRNAs 相关诊断和治疗方法,以望在不久的将来解决 2 型糖尿病的 治疗问题。在低氧运动中 miRNAs 对糖代谢的影响机制不仅可以为科学降糖、控体质量提供理论依据,还可 以将低氧运动作为糖代谢紊乱相关疾病的预防与控制的干预手段,从而为治疗糖代谢异常引起的疾病提供新 的治疗途径。 关键词: miRNAs;糖代谢;2 型糖尿病;胰岛素;胰岛素抵抗;低氧运动 中图分类号:R496;R446;R318 基金资助: 中 国 博 士 后 科 学 基 金 面 上 项 目 (2017M622161) , 项 目 负 责 人 : 朱 磊 ; 山 东 省 研 究 生 教 育 创 新 计 划 (SDYY16089),项目负责人:朱磊

糖代谢与调控机制

糖代谢与调控机制

糖代谢与调控机制糖代谢是维持生物体能量平衡的重要过程。

通过摄入食物,人体获得葡萄糖等糖类物质,这些糖类物质在机体内被分解、合成和储存,以提供能量和维持各种生物功能。

糖类物质的代谢过程受到多个调控机制的影响,以确保能量平衡和正常生理功能的维持。

糖的消化和吸收食物中的淀粉和蔗糖等多糖在消化系统中被酶水解为葡萄糖。

这些葡萄糖分子进入肠道绒毛上皮细胞,通过转运蛋白进入细胞内,并进一步通过转运蛋白进入血液循环。

糖的分解和合成在细胞内,葡萄糖经过糖酵解途径被分解为乳酸或丙酮酸。

这些代谢产物进一步参与能量产生的过程。

此外,葡萄糖也可以通过糖异生途径转化为葡萄糖酮体,以供应特定组织的能量需求。

糖的储存多余的葡萄糖可以在肝脏和肌肉中以糖原的形式储存起来。

当机体需要能量时,糖原会被分解为葡萄糖,并通过糖酵解途径供给能量。

糖代谢的调控机制糖代谢的调控主要由激素、酶活性和细胞信号传导等机制完成。

1. 激素调控:胰岛素和胰高血糖素是体内最重要的糖代谢调控激素。

胰岛素促进葡萄糖的摄取、利用和储存,而胰高血糖素则有利于血糖的升高和糖原的分解。

2. 酶活性调控:糖代谢酶的调节也是糖代谢调控的重要机制。

例如,磷酸果糖激酶和磷酸果糖醛酸酯酶是糖酵解途径中的速率限制酶,它们的活性受到多种信号的调节。

3. 细胞信号传导调控:糖代谢还受到细胞内信号传导通路的调控,如AMP激活蛋白激酶、PI3K/Akt通路等。

这些糖代谢和调控机制相互作用,共同维持机体内糖类物质的平衡和能量供给的适应性。

深入了解糖代谢与调控机制有助于我们更好地理解糖类物质对人体健康的影响,并为疾病的预防和治疗提供理论基础。

葡萄糖代谢的分子调控机制

葡萄糖代谢的分子调控机制

葡萄糖代谢的分子调控机制葡萄糖是人体能量的重要来源之一,它的代谢是生物体体内许多关键代谢途径的基础。

在细胞内,葡萄糖与其他分子通过多种酶催化的化学反应相互作用,最终产生能够驱动细胞工作的三磷酸腺苷(ATP)。

在这个复杂的过程中,有许多蛋白质和信号分子参与其中,完成对葡萄糖代谢的分子调控。

下面我们将重点介绍葡萄糖代谢的分子调控机制。

首先,我们需要了解葡萄糖从进入细胞到代谢释放能量的整个过程。

葡萄糖在细胞膜上通过GLUT(葡萄糖转运蛋白)转运体进入细胞质,再通过磷酸化和底物级调节等多种机制被代谢成乳酸或乙酸等代谢产物,最终被到线粒体内的三羧酸循环中氧化产生ATP。

这个过程中,涉及到的蛋白质和信号分子有哪些,他们之间的相互作用如何协调完成这个过程,需要我们细分说明。

GLUT转运蛋白是葡萄糖进入细胞膜的门卫,它的稳定表达与调控是维持葡萄糖代谢的基础。

研究发现,GLUT的蛋白质结构及其基因表达在不同组织和生理状态中呈现差异,不同的组织内的GLUT isoform(同一基因不同剪切产生的多种同源蛋白)表达量和分布也不一样,这意味着GLUT调控机制的多样性和复杂性。

GLUT调控除了从基因表达上进行,还有从细胞膜表面上进行。

磷酸化是其中重要的一种,通过磷酸化可以改变GLUT的空间构型,影响其转运速率。

例如,糖尿病患者药物metformin(丁酸格列汀)通过抑制三磷酸腺苷(ATP)/腺苷酸激活蛋白激酶(AMPK)抑制GLUT4磷酸化,提高其在细胞膜表面的长期稳定性和能量代谢能力。

机体内GLUT的上调和下调也常由信号分子如insulin,insulin-like growth factor-1等介导。

葡萄糖代谢途径中,肝脏和肾脏的代谢过程更为复杂。

肝脏可以通过糖异生(产生葡萄糖)和异酸生成(代谢酮体)等途径,在不同生理和病理状态中调节血糖水平;肾脏中的代谢则与水钠平衡和酸碱平衡密切相关。

糖异生和异酸生成中的多种酶、转录因子如磷酸果糖激酶、糖原合成酶、糖皮质激素受体等参与其中,并受到一系列分子的调节。

糖脂代谢稳态调控的分子机制

糖脂代谢稳态调控的分子机制

项目名称:糖脂代谢稳态调控的分子机制首席科学家:林圣彩厦门大学起止年限:2011.1至2015.8依托部门:教育部二、预期目标1. 总体目标确定机体和细胞在不同生理状况和环境因素下维持糖脂代谢稳态的分子机制,阐明在细胞生长和应激反应中起重要作用的调节因子调控细胞代谢的信号通路网络,为糖脂代谢紊乱造成的肥胖、脂肪肝、糖尿病和癌症的早期诊断和治疗提供理论依据。

2. 五年预期目标(1) 建立对实验动物代谢相关的生理生化指标分析的技术平台,发现相关基因敲除或转基因小鼠造成糖脂代谢紊乱的信号通路。

(2) 较系统地描述在逆境下机体和细胞调控糖脂代谢的分子网络以及调控过程中关键蛋白质和蛋白质复合体的动态调控机制。

(3) 发现新的参与代谢调控的基因,为代谢性疾病和肿瘤的防治提供新的分子靶标。

(4) 培养高质量博士研究生20-30名,培养3-5名享有国际知名度的专家和5-8名中青年学术带头人。

(5) 在国际重要刊物发表SCI论文15-25篇,其中争取在Cell、Nature、Science或其子刊等影响因子10以上杂志发表研究论文5-10篇,申请发明专利3-5项。

三、研究方案1. 总体研究方案细胞能量代谢是细胞最基本、最重要的活动之一,与细胞的繁殖、分化、凋亡、运动、信号转导及多种重要疾病的发生密切相关,是生命科学的一个重要领域。

细胞要通过能量感应系统随时监测其能量水平状态,在不同的物质和能量状态下要不断地通过细胞内的代谢调控途径来调节其代谢水平以达到一种稳态。

同时,细胞在面对内外界一些不良因素时也会做出相应的代谢变化,这些应激反应对细胞正常的生长和功能是极其重要的。

如果这些应激反应失调,就会使细胞代谢发生异变,导致如前所述的多种人类重大疾病的发生。

本项目的总体研究方案拟利用我们在蛋白质科学、细胞代谢、细胞信号转导等研究领域的研究优势和技术手段,结合细胞生物学、动物生理学等学科的研究方法,集中力量多层次、多角度地研究与细胞代谢调控相关的信号通路网络,分离和鉴定参与细胞代谢调控的新的基因和信号通路,探讨各个信号通路之间的动态调控机制,并研究细胞异常代谢的信号通路,揭示代谢异常与糖尿病、肿瘤等重大疾病的关系。

酵母菌对糖代谢的调控机制

酵母菌对糖代谢的调控机制

酵母菌对糖代谢的调控机制酵母菌广泛应用于生物学研究和工业生产中,其糖代谢调控机制是研究的热点之一。

糖代谢是细胞生命活动的重要组成部分,酵母菌通过调节糖代谢可以适应不同的生存环境。

本文将从糖的运输、糖的调控以及ATP能量供应等方面,探讨酵母菌对糖代谢的调控机制。

一、糖的运输酵母菌利用多种载体蛋白将外源糖从环境中吸收入细胞内部进行代谢。

其中,主要的载体蛋白有Hxt、Gal2、Stl1等。

这些载体蛋白担负着将外源糖通过细胞膜扩散到胞质中的重要任务。

Hxt是葡萄糖、果糖、甘露糖等单糖的共同载体蛋白,其表达水平和糖浓度相关。

当糖的浓度较低时,Hxt的表达水平较高;当糖浓度较高时,Hxt的表达水平下降。

Gal2是氧化型半乳糖和D-半乳糖的载体蛋白,其表达受到Gal3和Gal80的共同调节。

Stl1是L-松针糖和D-木糖的载体蛋白,其表达和糖浓度和ATP水平相关。

通过调节这些载体蛋白的表达水平,酵母菌可以有效控制外源糖物质的吸收入细胞的速度以及代谢产物的积累。

二、糖的调控酵母菌中的糖分解途径主要有两条通路,即酵母菌糖(YP)途径和磷酸戊糖(EMP)途径,它们分别通过碳源和酶的来源不同,对细胞代谢产生不同的影响。

糖的代谢调控主要依赖于以下几个方面:1. 糖信号通路酵母菌中的糖信号通路主要通过六种糖酵解产物参与,它们分别是葡萄糖-6-磷酸(G6P)、二磷酸甘露醇(F-2,P)、香豆酸(U)、3-磷酸甘油(PGA)、丙酮酸(PYR)和乳酸(LAC)。

其中,G6P和F-2,P被认为是主要的糖信号分子,通过信号转导途径逐渐转化为细胞内部的信号代表物,参与调控与糖代谢相关的基因表达和酶活性。

2. Grr1蛋白相关机制Grr1蛋白是酵母细胞中的一种RWD(RING finger and WD40 domain-containing protein)型蛋白,与Ubiquitin连接酶一起参与酵母中糖代谢调控。

Grr1蛋白可以与一系列与糖代谢相关的蛋白结合,包括Hxt1/3/4、Glc7、Hxk2等,从而参与调控这些蛋白的降解和稳定性。

瘦素在糖脂代谢中的调控作用

瘦素在糖脂代谢中的调控作用

第 10 期
王春炅等: 瘦素在糖脂代谢中的调控作用
897
细胞因子的陆续发现, 人们开始认识到脂肪组织也 是一个巨大的内分泌腺体, 其分泌大量的细胞因子 广泛地参与了机体的各种生理过程.
1 瘦素及其受体基本结构
1. 1 OB 基因的结构 小鼠 OB 基因定位于第 6 号染色体, 包括 3 个
外显子和 2 个内含子. 人类 OB 基因定位于第 7 号 染色体, 包括 3 个外显子和 2 个内含子. OB 基因有 高度的保守性, 小鼠、大鼠和人的同源性达 84% . ob ob 小鼠则是因为 OB 基因编码区 105 位密码子发生 点突变, 使精氨酸密码子转变为终止密子, 致使小 鼠缺乏有活性的瘦素, 最终导致严重的肥胖发生. 1. 2 瘦素的结构功能关系
( 北京大学医学部基础医学院生理与病理生理学系, 北京大学糖尿病中心, 北京 100191)
摘要 瘦素( leptin) 是 OB 基因的编码产物, 由脂肪细胞分泌, 具有广泛的生理学功能. 瘦素可通过 作用于中枢神经系统与外周组织等途径在糖脂代谢调控、能量代谢、生殖发育及免疫调节过程中起 重要作用. 不同剂量、不同作用时间, 也可导致瘦素产生不同的生理学作用. 近年来, 随着肥胖及糖 尿病在全球范围内成为流行病, 瘦素在糖脂代谢中的调控作用引起了人们的广泛关注. 现有的研究 已发现, 瘦素抵抗与胰岛素抵抗之间具有重要的关联性, 揭示瘦素功能异常在肥胖诱发的糖脂代谢 紊乱过程中起着重要的作用. 本文将对瘦素在机体糖脂代谢中的调控作用进行综述和讨论. 关键词 瘦素; 糖尿病; 瘦素抵抗; 胰岛素抵抗 中图分类号 Q518 1
肥胖( obesity, OB) 正严重危害着人类身体健康, 它能引发糖尿病、高血压、高血脂以及心脏病等, 在 世界范围内已成为最主要的致死因素之一. ob ob 小 鼠和 db db 小鼠为两种遗传上有缺陷的肥胖小鼠, 均多吃、少动、肥胖, 并最终发展为糖尿病. 上世纪 60 和 70 年代, Jackson 实验室 Coleman 等对 ob ob 小 鼠与正常小鼠, ob ob 小鼠与 db db 小鼠, db db 小鼠 和正常小鼠进行联体共生实验, 观察到了以下现象: 1) ob ob 小鼠与正常小鼠相联, ob ob 小鼠进食减少, 体重 减轻, 正 常小鼠无变化; 2) db db 小鼠 与 ob ob 小鼠相联, ob ob 小鼠进食减少, 体重下降, db db 小 鼠无变化; 3) db db 小鼠与正常小鼠相联, db db 小鼠 无变化, 正常小鼠饥饿死亡. Coleman 等据此提出假 设: ob ob 小鼠体内缺乏一种可以调节食欲和代谢的 血源性因子, 而 db db 小鼠体内很可能缺乏 这种因

多糖调节脂代谢的机制

多糖调节脂代谢的机制

多糖调节脂代谢的机制
多糖调节脂代谢的机制涉及多个方面。

首先,多糖能够增加肝糖原的合成,这有助于维持血糖稳定,减少脂肪的合成和堆积。

其次,多糖能够调节肠道菌群,增加肠道中有益菌的数量,减少有害菌的数量,从而改善肠道环境,减少脂肪的吸收和堆积。

此外,多糖还能够提高抗氧化能力,改善脂质过度氧化,从而改善脂代谢。

具体来说,多糖调节脂代谢的机制可以包括以下几个方面:
抑制脂肪的吸收:多糖在肠道内可以形成一种粘稠的物质,减少脂肪的吸收和转运,从而降低血浆中的脂肪含量。

促进脂肪的分解和代谢:多糖可以促进脂肪细胞内脂肪的分解和代谢,加速脂肪的消耗和排出,从而减少脂肪的堆积。

调节脂肪合成相关基因的表达:多糖可以调节脂肪合成相关基因的表达,减少脂肪的合成和堆积。

改善胰岛素抵抗:多糖可以改善胰岛素抵抗,增加胰岛素的敏感性和含量,从而改善糖脂代谢。

总之,多糖调节脂代谢的机制涉及多个方面,包括抑制脂肪的吸收、促进脂肪的分解和代谢、调节脂肪合成相关基因的表达以及改善胰岛素抵抗等。

这些机制共同作用,从而发挥多糖对脂代谢的调节作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目名称:糖脂代谢稳态调控的分子机制首席科学家:林圣彩厦门大学起止年限:2011.1至2015.8依托部门:教育部二、预期目标1. 总体目标确定机体和细胞在不同生理状况和环境因素下维持糖脂代谢稳态的分子机制,阐明在细胞生长和应激反应中起重要作用的调节因子调控细胞代谢的信号通路网络,为糖脂代谢紊乱造成的肥胖、脂肪肝、糖尿病和癌症的早期诊断和治疗提供理论依据。

2. 五年预期目标(1) 建立对实验动物代谢相关的生理生化指标分析的技术平台,发现相关基因敲除或转基因小鼠造成糖脂代谢紊乱的信号通路。

(2) 较系统地描述在逆境下机体和细胞调控糖脂代谢的分子网络以及调控过程中关键蛋白质和蛋白质复合体的动态调控机制。

(3) 发现新的参与代谢调控的基因,为代谢性疾病和肿瘤的防治提供新的分子靶标。

(4) 培养高质量博士研究生20-30名,培养3-5名享有国际知名度的专家和5-8名中青年学术带头人。

(5) 在国际重要刊物发表SCI论文15-25篇,其中争取在Cell、Nature、Science或其子刊等影响因子10以上杂志发表研究论文5-10篇,申请发明专利3-5项。

三、研究方案1. 总体研究方案细胞能量代谢是细胞最基本、最重要的活动之一,与细胞的繁殖、分化、凋亡、运动、信号转导及多种重要疾病的发生密切相关,是生命科学的一个重要领域。

细胞要通过能量感应系统随时监测其能量水平状态,在不同的物质和能量状态下要不断地通过细胞内的代谢调控途径来调节其代谢水平以达到一种稳态。

同时,细胞在面对内外界一些不良因素时也会做出相应的代谢变化,这些应激反应对细胞正常的生长和功能是极其重要的。

如果这些应激反应失调,就会使细胞代谢发生异变,导致如前所述的多种人类重大疾病的发生。

本项目的总体研究方案拟利用我们在蛋白质科学、细胞代谢、细胞信号转导等研究领域的研究优势和技术手段,结合细胞生物学、动物生理学等学科的研究方法,集中力量多层次、多角度地研究与细胞代谢调控相关的信号通路网络,分离和鉴定参与细胞代谢调控的新的基因和信号通路,探讨各个信号通路之间的动态调控机制,并研究细胞异常代谢的信号通路,揭示代谢异常与糖尿病、肿瘤等重大疾病的关系。

项目总体研究方案如下图1:图1. 项目总体研究方案2.技术路线由于代谢调控常常涉及多种组织、器官乃至整个机体,因此利用基因敲除小鼠模型来确证基因在代谢过程中的生理功能已成为“金标准”。

本项目组已经拥有或正在构建各种基因敲除小鼠和转基因小鼠模型,包括TNKS2、PTEN、CKIP-1、cideb、p53、Lkb1、Tip60基因敲除小鼠以及cidea转基因小鼠。

我们将利用这些小鼠模型,比较研究代谢调控在正常生理状况以及不同内外因素的刺激下细胞能量代谢的变化及其调控的信号通路网络。

同时,我们也将借助体外细胞培养,特别是比较研究正常细胞以及肿瘤细胞在低氧状况下和目前常规培养状况下代谢调控的异同,并与机体内生理条件下代谢调控的情况相比较,寻找适合代谢调控研究的细胞培养模型。

在此基础上验证从动物模型得到的结果,并在分子水平上进一步深入研究影响细胞代谢的信号通路网络和调控机制。

此外,我们将通过酵母双杂交、分子筛层析、免疫共沉淀和质谱等等蛋白质研究手段捕捉并鉴定与代谢调控相关的蛋白质复合体及其组份,从而为阐明代谢调控中各种蛋白质复合体的动态组装奠定基础。

同时,利用蛋白质结构解析来揭示各种蛋白质复合体中蛋白质的相互作用关系。

故,项目的总体技术路线如图2:图2. 项目的总体技术路线3. 创新与特色本项目拟利用已有或正在进行的各种基因敲除小鼠模型,在动物个体的基础上阐明代谢调控的机理和生理作用。

同时,借助我们在脂质组学、代谢组学、蛋白质组学、功能基因组学方面的研究基础和优势,对调控糖脂代谢稳态的分子机制进行研究,探索细胞在不同逆境(低氧、缺氧、高脂等)下的代谢方式的转变及其调控信号通路网络的动态变化,特别是深入探讨细胞生长和应激反应的重要调节因子对细胞代谢的调控作用,将在分子水平、细胞水平以及动物个体水平上增进我们对代谢调控以及异常代谢与细胞异常增殖之间的关系的认识。

为最终阐明细胞糖脂代谢稳态调控的分子机制和相关重大疾病的防治提供理论基础。

4.课题设置课题1 糖脂转运及其稳态调控的的分子机制研究内容:细胞内糖脂代谢的稳态调控是维持细胞或机体基本生命活动的基础,糖脂代谢的紊乱与糖尿病、肥胖、脂肪肝、心血管疾病、细胞异常增殖以及癌症的发生和发展密切相关。

本课题将在分子、细胞和基因敲除小鼠水平上研究Axin、AMPK、TNKS2、PTEN、Cideb、Cidea等基因对葡萄糖转运、脂肪合成和储存、脂滴的形成等代谢途径的调节作用及其与肥胖症、脂肪肝和细胞异常增殖的关系。

从细胞学的角度来看,肥胖的发生是由于脂肪细胞数量的增加以及脂肪细胞中脂滴变大两个方面引起的。

研究表明,伴随着脂滴的变大,脂肪细胞变大,导致细胞炎症因子分泌的变化,例如resistin、TNFα和游离脂肪酸等分泌的增加,最终导致机体内胰岛素抵抗和糖尿病的发生。

因此,对脂滴的形成过程的研究,不仅有助于我们了解脂滴的生物学功能,而且对肥胖及肥胖引起的其它代谢综合症疾病,有深远意义。

课题1拟开展以下几个方面的研究:1. 糖代谢的稳态调控通过前期工作,我们发现Axin和AMPK 能相互作用并增强AMPK响应能量缺失的刺激,即A MPKα的第172位苏氨酸的磷酸化。

Axin敲低的细胞在受到低糖刺激的情况下,AMPKa的第172位苏氨酸的磷酸化水平增加幅度与正常细胞相比大幅降低。

这表明Axin是应对糖稳态变化的重要因子,且在AMPK活性调控的过程中扮演了重要角色。

我们拟进行以下实验,深入阐明Axin、AMPK 和糖稳态调控的关系:(1) 研究Axin调控AMPK活性的分子机制研究Axin调节AMPK的激活是通过影响AMPK上游激酶与AMPK的相互作用还是影响了AMPK三个亚基之间的相互作用。

(2) 应用小鼠模型研究Axin缺失或突变导致的AMPK活性的变化利用腺病毒感染系统特异性地敲低小鼠肝脏或肌肉中的Axin,或利用条件性基因敲除技术敲除小鼠肝脏或肌中的Axin,对这些小鼠施以饥饿等影响能量水平的刺激,观察动物体内AMPK活性的变化。

(3) 应用小鼠模型研究Axin缺失或突变导致的糖稳态平衡的改变对上述小鼠进行糖代谢相关生化指标的测定以及AMPK参与糖代谢相关基因的表达水平的检测。

(4) 研究Aurora在Axin调控AMPK活性中的作用Aurora是在生长中起重要作用的激酶,能调控Axin在中心粒上的定位,因此,我们拟研究Aurora是否在Axin调控AMPK活性中也起作用。

2. 研究葡萄糖转运和脂肪细胞生成的分子机制以及糖脂代谢异常与肥胖和胰岛素抵抗的关系(1) 研究Axin和TNKS2对葡萄糖转运的调节机理我们通过酵母双杂交实验发现Axin能与TNKS2相互作用;TNKS2与Kif3a之间相互作用;Axin与Kif3a 之间也存在相互作用。

Kif3是由Kif3a、Kif3b和KAP3构成的异源三聚体。

它是一种依赖于微管的马达动力蛋白质复合体,可以向微管正极定向移动,在细胞内承担膜性细胞器或生物大分子复合物的运输功能。

已有的研究表明在3T3-L1脂肪细胞中Kif3参与胰岛素调节的Glut4向细胞膜的转运。

TNKS2与GSV (Glut4 storage vesicle)上的IRAP有相互作用。

我们将通过免疫荧光实验确定Kif3a、TNKS2、Axin和Glut4之间是否有共定位,而且在胰岛素刺激下是否有向细胞膜共转移的现象。

同时,我们将用siRNA 干扰C2C12细胞中TNKS2、Axin及Kif3a的表达,观察细胞对胰岛素刺激下葡萄糖吸收的反应。

另外,用TNKS2抑制剂XA V939(由厦门大学生命科学学院沈月毛教授合成)刺激C2C12细胞,观察该抑制剂是否能降低胰岛素刺激引起的葡萄糖的吸收。

通过上述实验我们将证明Kif3a、TNKS2、Axin是否通过形成复合体来调控胰岛素刺激的Glut4的转运,从而调节葡萄糖的吸收。

(2) 分离TNKS2的新的蛋白质复合体为了更全面的找到以TNKS2为核心的调节糖脂代谢的分子网络,我们拟构建TNKS2不同片段的饵,使其覆盖TNKS2全蛋白质序列,进行大规模的酵母双杂交实验。

另一方面,我们拟以小鼠的肌肉、脂肪组织为原料,采用以高效液相色谱为核心的生化分离手段结合蛋白质谱分析技术,分离鉴定出不同生理水平下TNKS2复合体中的蛋白质组份,并用免疫共沉淀、免疫荧光共定位及GST- pulldown等方法进一步验证这些蛋白质与TNKS2的相互作用。

(3) 研究TNKS2的多聚ADP核糖化酶活性在调节葡萄糖转运及脂肪细胞生成中的作用。

首先我们将通过质谱手段检测胰岛素是否调控TNKS2的翻译后修饰,进而研究该修饰是否影响TNKS2的多聚ADP核糖化酶的活性及TNKS2和其相互作用蛋白质的结合。

此外,由于TNKS2具有多聚ADP核糖化酶的活性,我们将考察TNKS2是否介导与其相互作用的蛋白质的多聚ADP核糖化修饰。

在此基础上我们将构建TNKS2的多聚ADP核糖化酶活性缺失的表达载体,研究其形成复合体的能力及调节葡萄糖转运和脂肪细胞生成的作用。

(4) 在动物水平上研究调控葡萄糖转运及脂肪细胞生成的分子机制。

全面分析TNKS2基因敲除小鼠与代谢相关的表型,包括小鼠在不同生长时期、不同生长条件(饥饿或饱食、缺氧等)下的体重、体温、不同部位脂肪组织的重量和脂肪细胞的数量、内脏器官的重量等。

同时测定小鼠血液中血糖、甘油三酯、不饱和脂肪酸、胰岛素、胰高血糖素及瘦素的含量;脂肪组织中脂肪的含量;肝脏和肌肉中糖原的含量等。

此外,对小鼠进行葡萄糖耐受试验、丙酮酸耐受试验及胰岛素耐受试验,测定小鼠脂肪和肌肉的葡萄糖吸收效率。

由于腺病毒感染系统可以特异性地攻击肝脏和肌肉,我们将利用该系统在小鼠的肝脏和肌肉中导入针对Axin及上述新发现的TNKS2的复合体的组份的siRNA,测定小鼠与代谢相关的表型,确定这些分子及其复合体在调控葡萄糖转运及脂肪细胞生成中的作用。

同时,我们将建立上述基因的条件性敲除或敲入小鼠,分析这些小鼠与糖脂代谢相关的表型,为分子及细胞水平的研究结果提供生理证据。

另一方面,我们拟与厦门大学附属第一医院合作,在肥胖症、糖尿病等代谢相关疾病的病人中检测脂肪组织中TNKS2的表达及基因突变情况,以期为代谢相关性疾病的早期分子诊断提供依据。

3. 脂代谢稳态调控的机制研究Cide家族蛋白质(Cidea,Cideb 和Fsp27),PTEN和AMPK在脂肪细胞和肝细胞中脂代谢稳态包括脂储存,脂分解和分泌中的作用,运用转基因和基因敲除模型在动物水平上研究脂代谢与脂肪肝发生,肝组织纤维化,炎症反应,细胞异常增殖之间关系。

相关文档
最新文档