二重积分对称性定理的证明与应用
二重积分积分区域的对称性

情形一:积分区域关于坐标轴对称定理4设二元函数在平面区域连续,且关于轴对称,则1)当(即就是关于得奇函数)时,有、2)当(即就是关于得偶函数)时,有、其中就是由轴分割所得到得一半区域.例5 计算,其中为由与围成得区域。
解:如图所示,积分区域关于轴对称,且即就是关于得奇函数,由定理1有、类似地,有:定理5设二元函数在平面区域连续,且关于轴对称,则其中就是由轴分割所得到得一半区域。
例6 计算其中为由所围。
解:如图所示,关于轴对称,并且,即被积分函数就是关于轴得偶函数,由对称性定理结论有:、定理6设二元函数在平面区域连续,且关于轴与轴都对称,则(1)当或时,有、(2)当时,有其中为由轴与轴分割所得到得1/4区域。
9例7 计算二重积分,其中: 、解:如图所示,关于轴与轴均对称,且被积分函数关于与就是偶函数,即有,由定理2,得其中就是得第一象限部分,由对称性知,,故、情形二、积分区域关于原点对称定理7 设平面区域,且关于原点对称,则当上连续函数满足1)时,有2)时,有、例8 计算二重积分,为与所围区域、解:如图所示,区域关于原点对称,对于被积函数,有,有定理7,得、情形三、积分区域关于直线对称定理8 设二元函数在平面区域连续,且,关于直线对称,则1);、2)当时,有、3)当时,有、例9 求,为所围、解:积分区域关于直线对称,由定理8,得,故、类似地,可得:定理9设二元函数在平面区域连续,且,关于直线对称,则(1)当,则有;(2)当,则有、例10 计算,其中为区域:, 、解:如图所示,积分区域关于直线对称,且满足,由以上性质,得:、注:在进行二重积分计算时,善于观察被积函数得积分区域得特点,注意兼顾被积函数得奇偶性与积分区域得对称性,恰当地利用对称方法解题,可以避免繁琐计算,使二重积分得解答大大简化。
对称性在积分计算中的应用

㊀㊀㊀137㊀数学学习与研究㊀2022 17对称性在积分计算中的应用对称性在积分计算中的应用Һ姚晓闺㊀陈俊霞㊀丁小婷㊀(陆军炮兵防空兵学院基础部数学教研室,安徽㊀合肥㊀230031)㊀㊀ʌ摘要ɔ在数学范围内,特别是在积分方面,对称性的应用极为普遍.在研究和计算积分类的问题时,对称性的应用对简化解题过程㊁优化计算步骤的作用十分显著,这也使其成为积分计算中一种不可或缺的手段.利用对称性计算积分主要包括两方面:一是积分区域关于坐标面㊁坐标轴和原点对称的情况下被积函数具有奇偶性的积分;二是积分区域关于积分变量具有轮换对称性的情况下的积分.本文通过对各类积分的对称性进行归纳总结,使读者能够有效理解和掌握.ʌ关键词ɔ对称性;积分区域;被积函数;积分计算;积分一㊁定积分的对称性及其应用定理㊀若f(x)在[-a,a]上可积,则(1)当f-x()=-f(x)时,ʏa-af(x)dx=0;(2)当f-x()=f(x)时,ʏa-af(x)dx=2ʏa0f(x)dx.例㊀求ʏπ0xsinx1+cos2xdx.解㊀令x=π2+t,则原式=ʏπ2-π2π2+t()cost1+sin2tdt=ʏπ2-π2tcost1+sin2tdt+π2ʏπ2-π2cost1+sin2tdt=0+πʏπ20cost1+sin2tdt=πarctansintπ20=π24.二㊁重积分的对称性及其应用1.二重积分的对称性原理二重积分具有以下对称性:定理1㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴对称,则1)当f(x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0}.当D关于y轴对称时,也有类似结论.定理2㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴和y轴都对称,则1)当f(x,-y)=-f(x,y)或f-x,y()=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f-x,y()=f(x,y)时,∬Df(x,y)dxdy=4∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0,yȡ0}.定理3㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于原点对称,则1)当f(-x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(-x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.定理4㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于直线y=x对称,则1)∬Df(x,y)dxdy=∬Df(y,x)dxdy;2)当f(y,x)=-f(x,y)时,有∬Df(x,y)dxdy=0;3)当f(y,x)=f(x,y)时,有∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.当D1,D2关于直线y=-x对称时,也有类似结论.例1㊀求∬D(|x|+|y|)dxdy,其中D={(x,y)|x|+|y|ɤ1}.解㊀易知题中被积函数|x|+|y|为x,y的偶函数,且D区域具有对称性.记D1={(x,y)|x|+|y|ɤ1,且xȡ0,yȡ0},于是㊀㊀㊀㊀㊀138数学学习与研究㊀2022 17∬D(|x|+|y|)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=2ʏ101-x2()dx=43.例2㊀求∬Dx1+yf(x2+y2)[]dxdy,其中D为y=x3㊁y=1㊁x=-1所围区域,f是连续函数.解㊀此题积分区域D关于坐标轴不具有对称性,根据积分区域的特点,做辅助曲线y=-x3,将D分为D1和D2,它们分别关于y轴和x轴对称,而xyf(x2+y2)关于x是奇函数,关于y也是奇函数.故∬Dxyf(x2+y2)dxdy=∬D1xyf(x2+y2)dxdy+∬D2xyf(x2+y2)dxdy=0.原式=∬Dx1+yf(x2+y2)[]dxdy=∬Dxdxdy=ʏ0-1dxʏ-x3x3xdy=-25.2.三重积分的对称性原理定理1㊀设f(x,y,z)在区域Ω上可积,Ω关于xOy面对称,Ω1是Ω在xOy面上方部分,则有∭Ωf(x,y,z)dV=0,f(x,y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(x,y,-z)=f(x,y,z).当Ω关于其他坐标面对称时,也有类似结论.定理2㊀设f(x,y,z)在区域Ω上可积,Ω关于原点对称,Ω1是Ω位于过原点O的平面一侧的部分.则有∭Ωf(x,y,z)dV=0,f(-x,-y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(-x,-y,-z)=f(x,y,z).例㊀计算三重积分∭Ω(x+z)2dV,其中Ω为区域{(x,y,z)x2+y2+z2ɤ1,zȡ0}.解㊀设Ω1表示开球{(x,y,z)x2+y2+z2ɤ1},注意到Ω关于yOz面对称,而Ω1关于三个坐标面都是对称的,所以∭Ω(x+z)2dV=∭Ωx2+2xz+z2()dV=∭Ωx2+z2()dV=12∭Ω1x2+z2()dV=13∭Ωx2+y2+z2()dV=13ʏ2π0dθʏπ0sinφdφʏ10r4dr=415π.三㊁对弧长的曲线积分的对称性及其应用定理㊀设L是平面上分段光滑的曲线,且P(x,y)在L上连续.1)若L关于x轴对称,则ʏLP(x,y)ds=0,P(x,-y)=-P(x,-y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(x,-y)=P(x,-y).其中L1是L在上半平面的部分.当L关于y轴对称时,也有类似结论.2)若L关于原点对称,则ʏLP(x,y)ds=0,P(-x,-y)=-P(x,y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(-x,-y)=P(x,y).其中L1是L在右半平面或上半平面部分.例㊀计算ʏL3x2+2xy+4y2()ds,其中曲线L是椭圆x24+y23=1,其周长为a.解㊀由于L关于x轴对称且2xy是关于y的奇函数,故ʏL2xyds=0,则ʏL3x2+2xy+4y2()ds=ʏL3x2+4y2()ds+ʏL2xyds=ʏL3x2+4y2()ds=ʏL12ds=12ʏL1㊃ds=12a.四㊁对面积的曲面积分的对称性及其应用定理[2]㊀设有界光滑或分片光滑曲面 关于xOy平面对称,f(x,y,z)为曲面 上的连续函数,则∬ f(x,y,z)dS=0,f(x,y,-z)=-f(x,y,z);∬f(x,y,z)dS=2∬ 1f(x,y,z)dS,f(x,y,-z)=f(x,y,z).其中 1:z=z(x,y)ȡ0.㊀㊀㊀139㊀数学学习与研究㊀2022 17当 关于yOz面㊁zOx面对称时,也有类似结论.五㊁积分区域关于积分变量具有轮换对称性情况下的积分定义㊀设ΩɪR3,如果(x,y,z)ɪΩ时,都有(z,x,y),(y,z,x)ɪΩ,,则称区域Ω关于变量x,y,z具有轮换对称性.定理1[3]㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x,y,z)dV=∭Ωf(z,x,y)dV=∭Ωf(y,z,x)dV=13∭Ω[f(x,y,z)+f(z,x,y)+f(y,z,x)]dV.推论㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x)dV=∭Ωf(z)dV=∭Ωf(y)dV.定理2㊀设积分区域D关于变量x,y具有轮换对称性,则有∬Df(x,y)dσ=∬Df(y,x)dσ=12∬D[f(x,y)+f(y,x)]dσ.对于第一类曲线积分和曲面积分,同理可得到如下定理:定理3㊀设曲线Γ关于变量x,y,z具有轮换对称性,则有ʏΓf(x,y,z)ds=ʏΓf(z,x,y)ds=ʏΓf(y,z,x)ds=13ʏΓ[f(x,y,z)+f(z,x,y)+f(y,z,x)]ds.定理4㊀设曲面 关于变量x,y,z具有轮换对称性,则有∬f(x,y,z)dS=∬f(z,x,y)dS=∬f(y,z,x)dS=13∬[f(x,y,z)+f(z,x,y)+f(y,z,x)]dS.例1㊀计算二重积分∬Daf(x)+bf(y)f(x)+f(y)dσ,其中D={(x,y)x2+y2ɤ4,xȡ0,yȡ0},f(x)为D上的正值连续函数,a,b为常数.解㊀易知积分区域D关于变量x,y具有轮换对称性,由定理2,得∬Daf(x)+bf(y)f(x)+f(y)dσ=12∬Daf(x)+bf(y)f(x)+f(y)+af(y)+bf(x)f(y)+f(x)éëêêùûúúdσ=12(a+b)∬Ddσ=12(a+b)ˑ14πˑ22=(a+b)2π.例2㊀计算曲线积分ɥΓ(y2+z2)ds,其中Γ:x2+y2+z2=a2,x+y+z=0.{解㊀因为积分区域Γ关于变量x,y,z具有轮换对称性,由定理3,得ɥΓy2ds=ɥΓz2ds=13ɥΓ(x2+y2+z2)ds=13a2ɥΓds=13a2ˑ2πa=23πa3,所以,ɥΓ(y2+z2)ds=2ɥΓy2ds=43πa3.六㊁结束语本文通过实际例题有力地说明了对称性方法对计算效率的提高和优化是切实可行的.通过各类积分综合题的计算回顾了对称性的相关知识点,较好地说明了对称性在积分计算中的应用.与其他解题方法相比较,对称性由于其显著的优化作用和简单易用,在积分领域一骑绝尘,得到了广泛的应用,使读者在领略数学独特魅力的同时,还激发人们无尽的想象力,使对称性的应用充满无限的可能.ʌ参考文献ɔ[1]同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,2007:80-86.[2]胡纪华,王静先.对称性在曲线积分及曲面积分计算中的应用[J],江西科学,2012(1):1-4.[3]秦勇.轮换对称性在积分中的应用[J].常州工学院学报,2015(3):68-71.[4]张锴.对称性在物理问题中的应用[J].科技信息,2011(35):895-896.[5]刘洁,戴长城.对称性在积分计算中的应用[J].邵阳学院学报,2008(4):28-32.[6]曹斌,孙艳.对称性在积分计算中的应用[J].吉林师范大学学报,2012(3):130-133.[7]张东,张宁.对称性在物理学中的应用研究[J].北京联合大学学报,2006(1):21-24.[8]费时龙,张增林,李杰.多元函数中值定理的推广及应用[J].安庆师范学院学报,2011(1):88-89.。
关于重积分_曲线积分_曲面积分的对称性定理的应用

dxdy = 2∫∫ sin ye− x − y dxdy 。因此选 A。
2 2
D1
在第一型曲线、曲面积分中,也有与重积分完全类似的对称性定理。 定理二:第一型曲线积分、曲面积分的对称性定理 1.奇偶对称性:若 f(x,y,z)关于 x 为奇函数(或偶函数) ,积分区域 L 或 S 关于 oyz 面对称,则对第一型曲线积分有 (L1 为 L 的一半) :
(1)
2.如果积分域 D 关于 y 轴对称,f(x,y)为 x 的奇(或偶)函数,D2 为 D 中 x ≥ 0 的部分,则:
∫∫
D
(2)
3.如果积分域 D 关于原点对称,f(x,y)同时为 x,y 的奇(或偶)函数,D1 为 D 中 y ≥ 0 的部分,则:
∫∫ f ( x, y)dσ = ⎨2∫∫ f ( x, y)dσ ,
S
CHINA EDUCATION RESEARCH ANALECTS
·155·
中国教育研究论丛(2006)
∫∫ xyds = 0
2 ∫∫ x ds = 2 S S
,S 关于 Oyz 对称,f(x,y,z)= xy 关于 x 为奇函数。
S I{ x ≥ 0}
∫∫
x 2 ds = 2
⎛ ∂x ⎞ ⎛ ∂x ⎞ ( R 2 − y 2 − z 2 ) ⋅ 1 + ⎜ ⎟ + ⎜ ⎟ dydz >0 ∫∫ ⎝ ∂y ⎠ ⎝ ∂z ⎠ y2 + z2 ≤ R2
D
⎧0 , ⎪ ⎪ ⎩
D1
f (− x, − y) = − f ( x, y) f (− x, − y) = f ( x, y)
(3)
4.如果积分域 D 是轮换区域,即 D 关于直线 y = x 对称,则有:
对称性在定积分及二重积分计算中的应用

173
φ1 ( x) φ2 ( x) φ2 ( x) φ1 ( x)
2
π
2
∫
0
dx =2 2 - co s x
∫
0 +∞ 0
+∞
1 +t 2 dt = 1 - t 2 2 1 +t 1 1 +t
2 +∞
2
4
dt = 4 ∫ ∫ 1 - t 1 + 3t 2 2 2 0
dt
2
=
1 +t
4
1 3
a rc tan 3 t
f ( x, y ) d x d y = 0 ;
当函数 f ( x, y ) 是关于 y 的偶函数 ,即
f ( x, - y ) = f ( x, y ) 时 , f ( x, y ) d x d y = 2 f ( x, y ) d x d y。 κ κ
D 1
D
当函数 f ( x, y ) 是关于 x 的偶函数 ,即 f ( - x, y ) =
f ( x, y ) 时 : f ( x, y ) d x d y = 2 f ( x, y ) d x d y。 κ κ
D 2
D
证明 设 f ( x, y ) 在 D1 为 x 型 区 域 , 其 中 φ1 ( x ) ,φ2 ( x ) 在区间 ≤φ2 ( x ) , 则
D
a, b 上连续 , 不妨设 φ 1 ( x)
a b a b a b a
b
dx
f ( x, - t) d ( - t) +
2
2
[5]
。
κ
2
x + y d x。
2
积分的对称性问题

例 1:求积分 ∫(∫ 2x + y)2dxdy x2 + y 2 ≤1
分析: ∫(∫ 2x + y)2dxdy = ∫∫ (4x2 + y2 + 4xy)dxdy = 4 ∫∫ x2 + ∫∫ y2 + 4 ∫∫ xy 。
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y2 ≤1
43
L
分析:xy 关于 x 为奇函数,曲线 L 关于 Oyz 面对称。
∫ ∫ ∫ ∴ 2xyds = 0 ,原积分 = 12 ( x2 + y2 )ds = 12 ds = 12a。
L
L4 3
L
上面的结论还可推广到第二型曲面积分,但第二型曲面积分的奇偶对称性定理与第一型积分及重积分的奇偶对称性定理
相反。
D1UD2
D3UD4
D
∫∫ 而在 D3∪D4 上, f (x, y) = sin ye−x2 −y2 是关于 y 的奇函数,所以 sin ye−x2−y2dxdy = 0 。
D3UD4
∫∫ ∫∫ 在 D1∪D2 上, f (x, y) = sin ye−x2 −y2 是关于 x 的偶函数,所以 sin ye−x2−y2 dxdy = 2 sin ye−x2−y2dxdy 。因此选 A。
x2+ y2≤1
x2 + y2≤1
(-1,1)
y
∫∫ ∫∫ ∫ ∫ 所以:原积分 = 5 y2dσ = 5 (x2 + y2)dσ = 5 2π dθ 1r3dr = 5π 。
D
2D
20
0
4
对称性在积分中应用

对称性在积分中的应用摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系, 小到分子原子.根据对称性, 我们就可以把复杂的东西简单化,把整体的东西部分化. 本文介绍运用数学中的对称性来解决积分中的计算问题, 主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性, 从而简化定积分、重积分、曲线积分、曲面积分的计算方法. 另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算. 积分的计算是高等数学教学的难点, 在积分计算时, 许多问题用“正规” 的方法解决,反而把计算复杂化, 而善于运用积分中的对称性,往往能使计算简捷, 达到事半功倍的效果.关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称目录一、引言二、相关对称的定义(一)区域对称的定义(二)函数对称性定义(三)轮换对称的定义三、重积分的对称性(一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性(一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性(一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结参考文献引言积分的对称性包括重积分、曲线积分、曲面积分的对称性•在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果•下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨•本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义•二、相关的定义定义1:设平面区域为D ,若点(x, y) • D= (2a-x,y),则D关于直线x = a对称,对称点(x,y)与(2a - x,y)是关于x = a的对称点•若点(x, y) € D = (x,2b-y)-D(x, y),则D关于直线y二b对称,称点(x, y)与(x,2b - y)是关于y = b的对称(显然当a =0,b = 0对D关于y , x轴对称).定义2:设平面区域为D ,若点(x, y) • D = (y—a,x-a),则D y二x,a对称,称点(x, y)与(y - a, x - a)是关于y 二x • a 的对称点.若点(x, y) • D = (a - y,a - x)-D,贝U D关于直线y 对称.注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线对称;平面曲面以平行于坐标面对称,也有以上类似的定义.空间对称区域.定义3: (1)若对-(x, y, z^ 1,点(x,y,-z)・1 ,则称空间区域门关于xoy面对称;利用相同的方法,可以定义关于另外两个坐标面的对称性.⑵ 若对P(x, y, z)匕0 ,二点(x, y,—z)匕O ,则称空间区域0关于z轴对称;利用相同的方法,可以定义关于另外两个坐标轴的对称性.(3)若对_(x, y, z^ 1 1, -J点(-x,-y,-z) • 11,则称空间区域门关于坐标原点对称.⑷ 若对一(x, y,z) •门,T点(y,乙x),(z, x, 1 1 ,则称空间区域门关于x, y, z具有轮换对称性.定义4:若函数f(x)在区间- a,a上连续且有f(x-a) = f(x • a),则f(x)关于x二a对称当且仅当a = 0时f (-x)二f (x),则f (x)为偶函数.若f (a - x) =-f (a x),则f(x)为关于a,0中心对称.当且仅当a=0时有f(_x)-_f(x)则f(x)为奇函数.若f (x -a) = f (x • a)且f (a -x) = - f (a x)则f (x)既关于x = a对称,又关于a,0 中心对称.定义5 若n元函数f(X i,X2,…,X n)三f (X i,X i 1,…,X n,X i,…,x:丄),(i =1,2,…,n ), 则称n元函数f (X i,X2,…,X n)关于X i,X2,…,X n具有轮换对称性•定义6:若- p(X i,X2, ,X n) D n R n( n N)有P i(X i,X i 1, ,X n,X i,厶J D n(i =1,2,…,n)成立,则称D n关于p(X i,X2,…,X n)具有轮换对称性.三、重积分的对称性(一)对称性在定积分中的应用利用函数图形的对称性可简化定积分的计算■在特殊情况下,甚至可以求出原函数不是初等函数的定积分■因此掌握对称性在积分中的方法是必要的■下面首先给出一个引理,由此得出一系列的结论,并通过实例说明这是结论的应用■引理设函数f (x)在a - h, a h上连续,则有f (x)dx = f (a x) f (a - x) dx (1)证令x二a t,有a h h hf(x)dx f(a t)dt f(a t)dta -h ' -h 0令t u,则0 0 hf (a t)dt = f (a -u)du = i f (a - u)du•山h 0将( 3)式带入(2)式,并将积分变量统一成x ,则(x)dx = ° f (a x) f (a - x)dx dx特别地,令a =0,就得公式:f(x)dx= :〔f(x) f (-x)d x由函数奇偶性的定义及上式,易知定理1设函数f (x)在[- h, h上连续,那么h h2)若 f(x)为偶函数,则f(x)dx=2 f(x)dx■_hoh3)若f(x)为奇函数,则 』f(x)dx=O次结论有广泛的应用,如能恰当地使用,对简化定积分的计算有很大的帮助,是奇函数,后一部分是偶函数,运用定理1的结论简化其计算.2一 : cosxdx 2_ cosxdx匕x 21 2 2cosxdx=2注:而对于任 意区间上的定积分问题,可以平移 到对称区间Lh,h 1上求解。
对称性及相对奇偶性在二重积分计算中的应用

被 积 函数 是 ,y的奇 函数 ,sinye 是
6,
D
的偶 函数 ,是Y的奇函数。原积分 区域无对称
性 ,为 构 造 对 称 性 ,作 直 线),=一 ,将 D分 成 4个
区域 ,故D=D,+D'+
y
\
、
、 、
、
D2
、
、
D3 、、、
D +D4,由对 称 性 知 在D,uD,上 及 D u
于 轴和 轴均对称 ,而被积函数 y关于 (或,, 使用合理的情况下 ,对称性 能极大 的减少计
轴)为奇函数则有:』戈ydxdy=O
算 量 。
2 关 于 不 对 称 区域
'
’ ,
(2)由 ‘ ‘)‘= 围成 的 区域 对 称 于 原
前 面讨 论 中积 分 区域 均是 具有 对 称 性 的
(A)2 0(sinye一)d ̄dy (B)2 0xydxdy
J ;,),)d =J 『/ )d (轮换对称性) 1
(c)4 +si
D
(D)0
一 37 —
第 34卷
保 山 学 院 学报 2015
第Байду номын сангаас5期
解 :积分 区域D如图3所示 ,
+), )d ̄dy :
+
+ xrf (x2+y2)d ̄dy+
当积分 区域不具 有 对称 性 时 ,我们 可 以尝 试着将 区域划分为几个部分 ,使其每个部分都 具有对称性 ,这样就可以根据积分的性质及其
得r==、/ 五 且由 >o,知 r2 in20>o
之前总结的对称方法来简化每一部分的计算 ,
从 而 到达 简化 整个积 分计 算 的 目的 。
二重积分的对称性-二重积分对称性

偶函数的定义
偶函数是满足条件f(x) = f(-x)的函数。偶函数具有关于y轴对称的特点,图形 在y轴上是对称的。
偶函数的性质
偶函数具有一些特殊的性质,比如在定义域内关于y轴对称、在定义域内积分结果为偶数等。
奇函数的定义
奇函数是满足条件f(x) = -f(-x)的函数。奇函数具有关于坐标原点对称的特点, 图形在原点对称。
图形的面积计算
图形的面积计算是一个重要的数学问题。通过利用对称性,我们可以简化面 积计算,并减少计算错误的可能性。
区域的对称性
区域的对称性主要体现在区域的形状和面积上。通过利用区域的对称性,我 们可以计算出相等大小的对称区域的面积。
矩形区域的对称性
矩形区域是最基本的平面图形之一。矩形具有上下对称、左右对称和中心对称的特点,面积相等。
三角形区域的对称性
三角形是常见的平面图形之一。三角形具有一些特殊的对称性,比如高线对 称、中位线对称等。
大小相等的对称区域的面积相等
如果两个对称区域的大小相等,则它们的面积也相等。这是对称积分的一个重要性质。
对称积分的定义
对称积分是指在具有对称性的图形上进行的积分计算。通过利用对称性,我 们可以简化对称函数的积分计算。
对称积分的计算方法
对称积分的计算方法包括变量代换、分部积分和对称性的性质等。这些方法可以帮助我们简化计算过程,提高 效率。
对称函数的性质
对称函数具有一些特殊的性质,比如偶函数和奇函数。这些性质对于理解对 称积分和解析图形具有重要的作用。
矩形对称性的例子
1 上下对称
矩形图形关于x轴对称, 面积相等。
2 左右对称
矩形图形关于y轴对称, 面积相等。
,面积相等。
线性对称性的例子
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
2.5积分区域 同时关于坐标轴和坐标原点对称
推论2若区域 关于坐标轴、原点全对称,则二重积分 ,
其中 为 位于第一象限部分.
例8计算二重积分 ,其中区域 :
解由于积分区域 关于坐标轴、原点全对称,由上述定理得
.
结束语
本文给出了二重积分对称性定理在不同条件下的证明以及应用,利用二重积分积分域 的对称性及被积函数 的奇偶性,一方面可减少计算量,另一方面可避免出差错,仅当积分域 的对称性与被积函数 的奇偶性两者兼得时才能用对称性定理.
解 是关于 的偶函数,且区域 关于 轴对称,
所以
.
2.2积分区域D关于坐标区域内任意直线对称
将积分区域 关于坐标轴对称的情况推广到积分区域 关于坐标区域内任意直线对称,则有下面定理:
定理4如果积分域 关于直线 对称,则二重积分
其中 为 在以直线 为轴的右半平面部分
图3
证明若区域 对称于直线 ,不妨设 ,即倾斜角 为锐角.
其中 为 以 为对称点的右半平面部分.
图7
证明若区域 对称于点 图7 ,平移坐标轴
,
即
.
坐标面内区域 在 坐标面内对应的区域 关于其坐标原点 对称.
面内任意点 ,对应 面内点 ,它关于 对称点为 . 面内点 对应 面内点 .由此, 面内点 关于点 的对称点为 .雅可比行列式为
,
于是
.
由定理5的证明知
2.3积分区域 关于坐标原点对称
定理5如果积分域 关于原点对称, 同时为 , 的奇偶函数,则二重积分
,
其中 为 的上半平面部分.
图5
证明若区域 对称于原点 图5 ,对任意 ,对称点 ,
, ,令
,
则区域 变换为 坐标平面内区域 ,雅可比行列式
,
所以
,
代入
,
得
.
例7计算
其中 是由 , , 以及 所围成的闭区域
,
其中 为 在 轴的上半平面部分.
证明
(1)
若区域 对称于 轴 图 ,对任意 ,其对称点
, ,令
,
则 变换为 坐标面上的 ,且雅可比行列式
.
故
,
于是,代入(1)式得:
.
例1计算 ,其中区域 :
解 是关于 的奇函数且 关于 轴对称,
所以
.
例2计算 ,其中区域 :
解因为 是关于 的偶函数,且 关于 轴对称,
图6
解如 图6 , , 、 关于原点对称,但被积函数不满足 ,也不满足 ,故不能直接用定理来计算,
但若记
,
对 和 分别应用定理5,则
,
,
故
.
2.4积分区域 关于坐标区域内任意一点对称
将积分区域 关于原点对称的情况推广到积分区域 关于坐标区域内任意一点对称,则有下面定理:
定理6如果积分域 关于点 对称,则二重积分 ,
结束语…………………………………………………………………………………….12
参考文献……………………………………………………………………………...….13
二重积分对称性定理的证明及应用
摘要:本文归纳利用对称性来计算二重积分的方法,给出了二重积分对称性定理的证明并举出了相应例题.
关键词:对称性;积分区城;被积函数
2.2积分区域 关于坐标区域内任意直线对称…………………………………….….5
2.3积分区域 关于坐标原点对称………………………………………………….……9
2.4积分区域 关于坐标区域内任意一点对称…………………………………...……11
2.5积分区域 同时关于坐标轴和坐标原点对称………………………………..…….12
理1 若二重积分 满足
(1)区域 可分为对称的两部分 和 ,对称点 , ;
(2)被积函数在对称点的值 与 相同或互为 ;
则
.
其中 的坐标根据 的对称性的类型而确定.
2.1积分区域 关于坐标轴对称
2.1.1积分域 关于x轴对称, 为 上的连续函数
定理2如果积分域 关于 轴对称, 为 的奇偶函数,则二重积分
所以
2.1.2积分域 关于 轴对称, 为 上的连续函数
定理3如果积分域 关于 轴对称, 为 的奇偶函数,则二重积分 ,
其中 为 在 轴的右半平面部分.
证明若区域 对称于 轴 图2 ,对任意 ,对称点 ,类似定理2的证明可得
.
例3计算 ,其中 :
解 ,
,
且区域D关于 轴对称,所以
.
例4计算 ,其中区域 :
将 代入,化简得:
.
因此, 面内点 关于直线 的对称点为
,
雅可比行列式为
,
于是
.
由定理2知
即
例5计算 二重积分 ,
其中 是抛物线 , 及直线 所围成的区域
图4
解由于积分区域 关于直线 对称,被积函数中 在区域 上关于 为奇函数, 在区域 上关于 为偶函数,见 图4 ,由定理4,
得:
.
当积分域 关于直线 轴对称时,有下面推论:
[2]王玮,张素玲.对称区域上二重积分的计算[J].河南:焦作大学学报,1999.
[3]方耀.二重积分对称性的应用[J].河北:河北自学考试,2001.
[4]张振强.对称性在二重积分计算中的应用[J].广西:南宁师范高等专科学校学报,2002.
[5]汪秀羌.二重积分的对称性问题[J].安徽:工科数学,1996.
摘要…………………………………………………………………………………...…1
关键词…………………………………………………………………………………..……..1
Abstract………………………………………………………………………………..…1
Keywords………………………………………………………………………………….1
1预备知识
对于二重积分 的计算,我们总是将其化为二次定积分来完成的,而在定积分的计算中,若遇到对称区间,则有下面非常简洁的结论:
当 在区间上为连续的奇函数时, .
当 在区间上为连续的偶函数时, .
这个结论,常可简化计算奇、偶函数在对称于原点的区间上的定积分.
在计算二重积分时,若积分区域具有某种对称性,是否也有相应的结论呢?回答是肯定的.下面,我们将此结论类似地推广到二重积分.
首先,平移坐标轴,得坐标系 ,如 图3
,
即
.(2)
其次,将坐标系 沿逆时针方向旋转,旋转角为 ,使 轴与直线 重合.得新坐标系 :
(3)
由 得
,
即
.
坐标面内对称于直线 的区域 ,在新坐标系 内对应的区域 关于 轴对称. 面内任意点 ,在 面内对应点 .
, ,
点 关于 轴对称点 , 在 面内对应点为 ,
The
Abstract:It is introduced in the thesis some ways of how to calculate double integral with the application of symmetry. It is also put forward in it how to simplify the calculating methods with symmetry.
Keywords:Symmetry;Integral region;Integrated function
前言
利用对称性计算二重积分,不但可以使计算简化,有时还可以避免错误.在一般情况下,必须是积分区域 具有对称性,而且被积函数对于区域 也具有对称性,才能利用对称性来计算.在特殊情况下,虽然积分区域 没有对称性,或者关于对称区域 被积函数没有对称性,但经过技巧性的处理,化为能用对称性来简化计算的积分.这些都是很值得我们探讨的问题.
当对称区域位于平面上任意位置时,对称点的坐标往往比较复杂,导致定理中某些条件难以检验.但如果 ,那么无论对称区域位于何处,总有 ,定理恒成立.这就是为什么在求面积、体积时,总可以用对称性化简的原因.
参考文献
[1]隋梅真.对称区域上二重积分可以简化的条件和方法[J].山东:山东建筑工程学院学报,1995.
推论1 如果积分域 关于直线 轴对称,则二重积分
.
例6设 为恒正的连续函数,计算积分
解由于积分区域 关于 对称,所以由推论2,可得:
,
于是
.
故
.
当积分区域关于 对称时,被积分函数的两个变量可以互换位置的特殊性质可以使二重积分计算化简.
类似的,若积分区域关于直线 对称且满足 ,则
,
或满足 ,则有
.
(其中 为 的一半)
前言………………………………………………………………………………………...1
1.预备知识……………………………………………………………………………….1
2.二重积分对称性定理在不同条件下的证明及其应用…………………….…2
2.1积分区域 关于坐标轴对称………………………………………………………….2