管道阴极保护基本知识

合集下载

管道阴极保护原理

管道阴极保护原理

管道阴极保护原理
管道阴极保护原理是基于电化学原理的一种方法,主要通过在受保护的金属管道表面提供一个外部电流,以便减少或防止金属腐蚀。

其原理主要包括两个方面:阳极保护和阴极保护。

阳极保护是指在管道周围埋设一个阳极,并将阳极与金属管道连接起来。

阳极通常由具有较高腐蚀性的金属制成,如锌或铝。

当外部电流通过阳极流入金属管道时,阳极材料会发生电化学反应,释放出电子,并在阳极处形成一个阴极保护电流。

这个保护电流会抵消管道表面的阳极腐蚀电流,从而减少或消除金属腐蚀的发生。

阴极保护是指在管道表面施加一个外部电流源,以使管道表面成为一个阴极。

通过与阳极连接,使阳极保护电流源将电子输送到管道表面,从而在管道上形成一个保护性的电化学反应。

这个电化学反应会导致阴极处的氧还原反应,将金属的阳极腐蚀电流转化为阴极保护电流,减少了金属的腐蚀。

综上所述,管道阴极保护的原理是通过在金属管道上提供一个外部电流,使金属表面形成一个保护性的电化学反应,来减少或防止管道的腐蚀。

阳极保护和阴极保护是实现管道阴极保护的两种不同方式。

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送油气、水等液体或气体的重要通道,其保护是关系到国家能源安全和环境安全的关键问题。

阴极保护是一种有效的管道保护方法,主要是通过施加电场,使管道表面电位负化,从而减少管道金属的腐蚀速率,延长管道使用寿命。

本文将阐述长输管道的阴极保护原理、方法及故障分析。

一、阴极保护原理由于土壤中存在着各种离子,例如水、氯离子等,这些离子会形成电池,导致管道金属表面出现电位差,这种现象称为自然电位。

如果管道的自然电位低于一定的电位(通常为-0.85V),则管道处于负电位,就会发生金属的电化学腐蚀。

阴极保护的主要原理是通过施加外加电场,将管道表面电位负化,使得管道处于负电位,在靠近管道表面的电场区域内,电子从管道金属表面流向土壤中的正离子,使其发生还原反应,从而减少管道金属腐蚀速率。

1、电位调节法:通过在管道两端安装钛阳极和铁/铜阴极,以及控制钛阳极输出的电流来调节管道表面的电位,从而达到保护作用。

2、电流输出法:在管道保护系统的控制下,直接将电流输出到管道端部的阳极或在管道上部固定钛阳极来保护管道。

3、均匀分散法:通过在管道上均匀分布一定数量的阳极,使得管道表面的电位均匀调整到负电位,从而保护整个管道。

1、偏移现象:阴极保护系统在使用过程中,由于地下水流的影响,土壤的化学组成及导电性不均匀等因素,易出现管道阴极保护区域偏移的现象。

一般采用分析安装阳极的位置是否正确,调整阴阳极之间的距离和电位来解决偏移问题。

2、极化过度:在保护过程中,如果管道阴极保护电位过于负化,反而会引起金属氢化、内应力等问题,从而导致管道的损坏。

应当合理调整阴极保护的电位,避免出现极化过度的情况。

3、外来干扰:阴极保护系统如果受到外部电源干扰(例如电力系统、通信设备等),会导致保护系统失效,出现管道腐蚀。

一般应在设计阴极保护系统时,选取合适的接地点,采取防雷、防电磁干扰等措施来预防外来干扰。

综上所述,长输管道阴极保护技术是一项重要的保护措施,可有效减少管道的金属腐蚀速率,延长管道寿命。

长输管道阴极保护技术全解

长输管道阴极保护技术全解
长输管道阴极保护技术:
长输管道阴极保护技术:
主要应用于高电阻率土壤、淡水及空间狭窄局部场合,如套管内
牺牲阳极种类及应用范围: 带状牺牲阳极::
长输管道阴极保护技术:
3、牺牲阳极种类及应用范围: (2)镁合金牺牲阳极:
镁合金牺牲阳极相对密度小,电极电位很负,极化率低,对铁的驱动电压大。因其具有很负的开路电位等性能,广泛地应用于土壤、海水、海泥及工业水环境中。
长输管道阴极保护技术:
阴极保护的起源
其他科学家的研究工作: 1890年,美国发明家爱迪生试验了外加电流法对船的保护方法,由于没有合适的外加电源和阳极材料而未获成功。1902年科恩采用直流电机首次实现了强制电流阴极保护的实际应用。1906年盖波建立了第一个管道阴极保护系统。用一台容量为10V/12A的直流发电机保护地下300m长的煤气管道。并获得专利。
长输管道阴极保护检测技术:
铜—饱合硫酸铜电极(CSE)制作材料和使用的要求:
铜电极采用紫铜丝或棒(纯度不小于99.7%)
01
硫酸铜为化学纯,用蒸馏水配制饱和硫酸铜溶液
02
五、长输管道阴极保护检测技术:
长输管道阴极保护检测技术:
主要测试仪表和电极的选用: 主要测试仪表和电极 直流电压表 (V) 直流电流表 (A) 接地电阻测量仪(ZC-8) 辅助阳极 牺牲阳极 铜—饱合硫酸铜电极(CSE)
长输管道阴极保护检测技术:
测试仪表的选用: 基本要求是: 满足测试要求的显示速度、准确度 携带方便、耗电小 有较好的环境适应性 一般选用数字式仪表。
适用范围广,尤其是中短距离和复杂的管网 阳极输出电流小,发生阴极剥离的可能性小 随管道安装一起施工时,工程量较小 运行期间,维护工作简单。 阳极输出电流不能调节,可控性较小

燃气管道牺牲阳极的阴极保护原理

燃气管道牺牲阳极的阴极保护原理

燃气管道牺牲阳极的阴极保护原理1. 引言:我们身边的“隐形保护”嘿,朋友们,今天咱们聊聊一个可能不太“引人注目”的话题——燃气管道的保护问题。

你知道吗,咱们每天都在享受天然气带来的便利,可是这些燃气管道可不是铁打的,时间一长,它们就容易生锈、腐蚀。

为了让这些管道在地下安安稳稳地呆着,不受腐蚀的困扰,科学家们想出了一个妙招,叫做“阴极保护”。

而其中,牺牲阳极可是个大英雄哦!是不是听着就觉得神秘又有趣?1.1 牺牲阳极的角色那么,牺牲阳极到底是什么鬼呢?想象一下,你的朋友被一群调皮捣蛋的小孩围住了,而你为了保护他,毅然决然地站出来,成为“替罪羊”。

牺牲阳极就是这么一个“牺牲”的角色。

它通常由一些像锌、镁这些金属制成,安静地“牺牲”自己,去吸引腐蚀,而不是让管道本身受损。

简而言之,牺牲阳极就像个勇敢的骑士,甘愿为保护公主(也就是我们的燃气管道)而献身,真是太感人了!1.2 腐蚀的“幕后黑手”在讲牺牲阳极之前,咱们得先了解腐蚀这位“幕后黑手”。

腐蚀就像个无形的敌人,趁着管道老迈之际,悄无声息地侵袭。

当水分、氧气和土壤中的离子聚集在一起时,哗啦啦,腐蚀就来了。

就像一场突如其来的暴风雨,把本来平静的生活搅得天翻地覆。

为了抵御这场“暴风雨”,我们需要一种有效的防护手段,而阴极保护就是应运而生的。

2. 阴极保护的工作原理2.1 阴极与阳极的较量阴极保护的原理其实很简单。

咱们的管道就像是一场“战争”,管道本身是阴极,而牺牲阳极则是阳极。

当两个金属放在电解液中时,阳极会失去电子,而阴极则会接受这些电子。

这样一来,牺牲阳极的金属就会“咔嚓咔嚓”地逐渐溶解,变得越来越小,而管道则安然无恙。

简而言之,阳极牺牲自己,让阴极获得“保护”,真是义无反顾,令人感动。

2.2 持续的“奉献精神”不过,朋友们,牺牲阳极的“奉献精神”可不是一劳永逸的。

随着时间的推移,牺牲阳极会逐渐被消耗掉。

就像人们常说的“好事多磨”,这种保护也需要定期检查和更换。

管道阴极保护基本知识

管道阴极保护基本知识

管道阴极保护基本知识内容提要:◆阴极保护系统管理知识一、阴保护系统管理知识(一)阴极保护得原理自然界中,大多数金属就是以化合状态存在得,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态就是金属固有本性。

我们把金属与周围得电解质发生反应、从原子变成离子得过程称为腐蚀。

每种金属浸在一定得介质中都有一定得电位, 称之为该金属得腐蚀电位(自然电位),腐蚀电位可表示金属失去电子得相对难易、腐蚀电位愈负愈容易失去电子, 我们称失去电子得部位为阳极区,得到电子得部位为阴极区、阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。

阴极保护得原理就是给金属补充大量得电子,使被保护金属整体处于电子过剩得状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液、有两种办法可以实现这一目得,即牺牲阳极阴极保护与外加电流阴极保护。

1、牺牲阳极法将被保护金属与一种可以提供阴极保护电流得金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率得方法。

在被保护金属与牺牲阳极所形成得大地电池中,被保护金属体为阴极,牺牲阳极得电位往往负于被保护金属体得电位值,在保护电池中就是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极得被保护金属体得防护,如图1—3。

牺牲阳极材料有高钝镁,其电位为—1。

75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0、8V(相对于饱与硫酸铜参比电极)。

2、强制电流法(外加电流法)将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率得方法、其方式有:恒电位、恒电流、恒电压、整流器等。

如图1-4示。

图1—4恒电位方式示意图外部电源通过埋地得辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化得氧化反应,使腐蚀受到抑制。

而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。

阴极保护培训讲义图文

阴极保护培训讲义图文

THANKS
感谢观看
参比电极
参比电极用于测量被保护结构的电 位,为调整保护电流提供参考依据。
阴极保护系统的设计
确定保护范围
确定电流密度和保护电位
根据被保护结构的材质、尺寸、使用 环境等因素,确定阴极保护系统的保 护范围。
根据被保护结构的材质和需求,确定 合适的电流密度和保护电位。
选择阳极和埋设方式
根据实际情况选择合适的阳极材料和 埋设方式,确保阳极能够有效地向被 保护结构提供电流。
模型预测法
利用数学模型预测管道的腐蚀速率,评估阴极保 护效果。
05
阴极保护的常见问题与解 决方案
阴极保护系统失效的原因分析
电源故障
电源设备出现故障,如电源线断裂、电源开 关损坏等。
杂散电流干扰
外界杂散电流干扰导致阴极保护电流流失或 干扰保护效果。
电流分布不均
由于管道防腐层质量差或破损,导致电流在 管道上分布不均。
03
阴极保护材料
常用的阴极保护材料
锌合金
锌合金作为阳极材料, 通过电化学反应保护金
属不受腐蚀。
镁合金
镁合金作为阳极材料, 适用于土壤和淡水环境
中的金属保护。
镀锌钢
镀锌钢作为阳极材料, 广泛用于钢铁结构的阴
极保护。
钛和锆合金
适用于高腐蚀环境的金 属保护,如海洋环境。
阴极保护材料的性能与选择
01
02
栏等金属结构的防腐。
在建筑行业中,阴极保护用于 地下室、水池、冷却塔等混凝
土结构中的钢筋防腐。
02
阴极保护系统
阴极保护系统的组成
阳极系统
阳极是阴极保护系统的关键组成 部分,通常采用石墨、硅钢等材 料制成,负责向被保护结构提供

管道阴极保护知识阴极保护参数

管道阴极保护知识阴极保护参数

第13页/共18页
在工程实际中也可采用通电情况下管道对 地电位较自然电位向负偏移300mV以上的指标。 选用这个偏移指标时应考虑以下因素:
(1)本指标不能提供完全的保护,但在无 杂散电流环境下,对裸露或防腐层质量低劣的 管道则是切实可行的手段:
第14页/共18页
(2)在具有良好防腐绝缘层的管道或受到杂散 电流干扰的管道上,使用本指标是浪费的或错误 的;
第3页/共18页
三、最大保护电位
管道通人阴极电流后,管道电位变负,当 其负电位提高到一定程度时,H+在阴极表面还 原,使得管道表面会析出氢气,减弱甚至破坏 防腐层的粘结力。所以必须将通电点电位控制 在比析氢电位稍正一些的位置。这个电位称为 最大保护电位。最大保护电位应经过试验,考 虑防腐层的种类及环境来确定,以不损坏防腐 层的粘结力为准。
本指标用于管道表面是均匀极化而又没有 杂散电流干扰的情况ቤተ መጻሕፍቲ ባይዱ,判定阴极保护效果是 相当准确的。在具有中断电流测量手段时,推 荐采用这个指标。
第12页/共18页
(二)特殊条件的考虑
(1)对于裸钢表面或涂敷不良的管道,在 预先确定的电流排放点(阳极区)确定净电流 是 从电解质流向管道表面。
(2)当土壤或水中含有硫酸盐还原菌,且 硫酸根含量大于0.5%(质量百分数)时,通 电保护电位应达到一950mV或更负。
第9页/共18页
五、阴极保护准则
SY/T 0036--2000提出的阴极保护准则 有以下内容。
(一)埋地钢质管道阴极保护准则
(1)在施加阴极电流的情况下,测得管地电位 为一850mV(CSE)或更负。测量中必须排除附加电 压降(IR降)的影响。
该指标是一个被广泛接受的参数,大量试验

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送天然气、石油等能源资源的重要设施,其安全运行对于国家经济发展具有至关重要的意义。

长输管道在运行过程中会受到各种外部环境和内部因素的影响,其中阴极保护系统的设计和故障分析是保障长输管道安全运行的关键问题之一。

本文将围绕长输管道的阴极保护及故障分析展开讨论,以期对长输管道的安全运行提供指导和保障。

一、长输管道阴极保护的作用长输管道在运行中常受到土壤电化学环境的影响,其中的电化学腐蚀是导致管道金属材料损坏的主要原因之一。

而阴极保护是一种有效的控制管道金属材料腐蚀的措施,其基本原理是通过外加电流使管道维持在一个负电位,从而抑制管道金属的腐蚀过程。

阴极保护系统主要由阳极、电源和控制系统三部分组成,其中阳极的材料一般选用锌、铝、镁等,电源一般选用直流电源,控制系统则根据管道的具体情况进行设计。

1.抑制金属腐蚀:阴极保护系统通过外加电流维持管道在负电位,使得管道金属处于稳定的电化学环境中,从而抑制了金属的腐蚀。

2.延长管道使用寿命:有效的阴极保护系统可以有效地延长长输管道的使用寿命,降低了管道的维护成本和更换频率。

3.提高管道安全性:良好的阴极保护系统可以有效地提高管道的安全性,减少因金属腐蚀引起的事故发生的概率,保障管道的安全运行。

二、阴极保护系统的故障分析尽管阴极保护系统可以有效地保护长输管道的金属材料不被腐蚀,但在实际运行中也会出现各种故障情况,这些故障如果得不到及时发现和处理,就会对长输管道的安全运行造成严重的影响。

下面我们将针对阴极保护系统的故障进行分析,并提出相应的处理措施。

1.阳极失效:阳极是阴极保护系统中最为关键的部件之一,一旦阳极失效,就会导致管道金属材料的腐蚀。

阳极失效的原因主要包括材料腐蚀、磨损、电流分布不均等,因此在实际运行中要定期对阳极进行检查,并根据检查结果进行维修或更换。

2.电源故障:阴极保护系统的电源是维持管道在负电位的关键组成部分,一旦电源出现故障就会导致管道金属处于阳极保护的状态,从而失去了有效的防腐功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管道阴极保护基本知识内容提要:◆阴极保护系统管理知识◆阴极保护系统测试方法◆恒电位仪的基本操作一、阴保护系统管理知识(一)阴极保护的原理自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。

我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。

每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。

腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。

阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。

阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。

有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。

1、牺牲阳极法将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。

在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。

牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。

2、强制电流法(外加电流法)将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。

其方式有:恒电位、恒电流、恒电压、整流器等。

如图1-4示。

图1-4恒电位方式示意图外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。

而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。

阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。

两种方法的差别只在于产生保护电流的方式和“源”不同。

一种是利用电位更负的金属或合金,另一种则利用直流电源。

强制电流阴极保护驱动电压高,输出电流大,有效保护范围广,适用于被保护面积大的长距离、大口径管道。

牺牲阳极阴极保护不需外部电源,维护管理经济,简单,对邻近地下金属构筑物干扰影响小,适用于短距离、小口径、分散的管道。

(二)外加电流阴极保护系统的组成1、恒电位仪:珠三角管道采用的是IHF系列数控高频开关恒电位仪,它的主要作用是向管道输出保护电流。

2、阳极地床:由若干支辅助阳极(高硅铸铁)组成,通过辅助阳极把保护电流送入土壤,经土壤流入被保护的管道,使管道表面进行阴极极化 (防止电化学腐蚀),电流再由管道流入电源负极形成一个回路,这一回路形成了一个电解池,管道在回路中为负极处于还原环境中,防止腐蚀,而辅助阳极进行氧化反应遭受腐蚀,或是周围电解质被氧化。

阴保站的电能60%消耗在阳极接地电阻上, 故阳极材料的选择和埋设方式、场所的选择,对减小电阻节约电能是至关重要的。

珠三角管道的阳极地床辅助阳极一般为40支,阳极地床的接地电阻小于3Ω(设计要求),阳极地床与管道的垂直距离要大于50米。

3、参比电极:为了对各种金属的电极电位进行比较,必须有一个公共的参比电极,其电极电位具有良好的重复性和稳定性,构造简单,通常由饱和硫酸铜参比电极、锌电极等。

4、绝缘接头:阴极保护系统保护的是输油站外的长输管道,绝缘接头的作用是将阴极保护电流限制在两个阴极保护站之间的管道上。

5、检查片:由与管道同材质的金属制成50×100mm的挂片,检查片有两组,一组与输油管道相连,处于阴极保护状态,一组不与管道相连,处于自然腐蚀状态。

经过一定时间后将两组检查片的失重量进行比较,可分析管道的阴极保护效果。

6、测试桩:为了检测维护管道的阴极保护系统,在管道沿线设置电流及电位测试桩,电位测试桩每公里设置一个;电流测试桩每5公里设一个;套管电位测试桩每个套管处设置一个;绝缘接头电位测试桩每一绝缘处设一个。

(三)阴极保护的基本参数(1)最小保护电流密度阴极保护时,使腐蚀停止,或达到允许程度时所需的电流密度值称为最小保护电流密度。

最小保护电流密度的大小取决于被保护金属的种类、表面状况、腐蚀介质的性质、组成、浓度、温度和金属表面绝缘层质量等。

防腐绝缘层种类不同,所需要的保护电流密度也不同。

防腐绝缘层的电阻值越高,所需的保护电流密度值越小。

(2)最小保护电位为使腐蚀过程停止,金属经阴极极化后所必须达到的绝对值最小的负电位值,称之为最小保护电位。

最小保护电位也与金属的种类、腐蚀介质的组成、温度、浓度等有关。

最小保护电位值常常是用来判断阴极保护是否充分的基准。

因此该电位值是监控阴极保护的重要参数。

实验测定在土壤中的最小保护电位为-0.85V(相对饱和硫酸铜参比电极)。

(3)最大保护电位在阴极保护中,所允许施加的阴极极化的绝对值最大的负电位值,在此电位下管道的防腐层不受到破坏。

此电位值就是最大保护电位。

最大保护电位值的大小通过试验确定。

一般取-1.5V(CSE)。

阴极保护电位越大,防腐程度越高,单站保护距离也越长,但是过大的电位将使被保护管道的防腐绝缘层与管道金属表面的粘接力受到破坏,产生阴极剥离,严重时可以出现金属“氢破裂”。

同时太大的电位将消耗过多的保护电流,形成能量浪费。

(四)阴极保护投入前的准备和验收1、阴极保护投入前对被保护管道的检查管道对地绝缘的检查:从阴极保护的原理介绍, 已得知没有绝缘就没有保护。

为了确保阴极保护的正常运行,在施加阴极保护电流前,必须确保管道的各项绝缘措施正确无误。

应检查管道的绝缘接头的绝缘性能是否正常;管道沿线的阀门应与土壤有良好的绝缘;管道与固定墩、跨越塔架、穿越套管处也应有正确有效的绝缘处理措施,管道在地下不应与其它金属构筑物有"短接"等故障;管道表面防腐层应无漏敷点,所有施工时期引起的缺陷与损伤均应在施工验收时使用埋地检漏仪检测,修补后回填。

2、对阴极保护施工质量的验收(1)对阴极保护间内所有电气设备的安装是否符合《电气设备安装规程》的要求,各种接地设施是否完成,并符合图纸设计要求。

(2)对阴极保护的站外设施的选材、施工是否与设计一致。

对通电点、测试桩、阳极地床、阳极引线的施工与连接应严格符合规范要求,尤其是阳极引线接正极,管道汇流点接负极,严禁电极接反。

(3)图纸、设计资料齐全完备。

(五)阴极保护投入运行的调试1、组织人员测定全线管道自然电位、土壤电阻率、阳极地床接地电阻,同时对管道环境有一个比较详尽的了解,这些资料均需分别记录整理,存档备用。

2、阴极保护站投入运行按照恒电位仪的操作程序给管道送电,使电位保持在-1.20伏左右,待管道阴极极化一段时间(四小时以上)开始测试直流电源输出电流、电压、通电点电位、管道沿线保护电位、保护距离等。

然后根据所测保护电位,调整通电点电位至规定值,继续给管道送电使其完全极化 (通常在24小时以上)。

再重复第一次测试工作,并做好记录。

若个别管段保护电位过低,则需再适当调节通电点电位至满足全线阴极保护电位指标为止。

3、保护电位的控制各站通电点电位的控制数值, 应能保证相邻两站间的管段保护电位达到-0.85伏,同时各站通电点最负电位不允许超过规定数值。

调节通电点电位时,管道上相邻阴极保护站间加强联系,保证各站通电点电位均衡。

4、当管道全线达到最小阴极保护电位指标后,投运操作完毕,各阴极保护站进入正常连续工作阶段。

(六)阴极保护站的日常维护管理1、恒电位仪的巡检和维护。

1) 日常巡检:每天9:00和21:00对恒电位仪巡检一次,并记录输出电压、电流、保护电位数值, 与前次记录(或值班记录)对照是否有变化,若不相同应查找原因,采取相应措施使管道全线达到阴极保护。

2)每月维护:每月1日对恒电位仪进行切换使用。

改用备用的仪器时,应即时进行一次观测和维修,发现仪器故障应及时检修,保证供电。

维护内容:观察全部零件是否正常,元件有无腐蚀、脱焊、虚焊、损坏,各连接点是否可靠,电路有无故障,各紧固件是否松动,熔断器是否完好,如有熔断,需查清原因再更换。

检查接接阴极保护站的电源导线,以及接至阳极地床、通电点的导线是否完好,接头是否牢固。

定期检查工作接地和避雷器接地,并保证其接地电阻不大于10欧姆,在雷雨季节要注意防雷。

搞好站内设备的清洁卫生,注意保持室内干燥,通电良好,防止仪器过热。

2、参比电极的维护。

作为恒定电位仪信号源的埋地参比电极,在使用过程中需注意观察恒电位仪的输出数值,发现异常可检查参比电极井是否干涸,影响仪器正常工作。

3、阳极地床的维护。

阳极地床接地电阻每月测试一次,接地电阻增大至影响恒电位仪不能提供管道所需保护电流时,应该更换阳极地床或进行维修,以减小接地电阻。

4、测试桩的维护。

1) 检查接线柱与大地绝缘情况,电阻值应大于100千欧,用万用表测量,若小于此值应检查接线柱与外套钢管有无接地,若有则需更换或维修。

2) 测试桩应每年定期刷漆和编号。

3) 防止测试桩的破坏丢失,对沿线城乡居民及儿童作好爱护国家财产的宣传教育工作。

5、绝缘接头的维护。

每月检测绝缘接头两侧管地电位,若与原始记录有差异时,应对其性能好坏作鉴别。

如有漏电情况应采取相应措施。

6、阴极保护系统的管理目标(主要控制指标)1)保护率等于100%;管道总长-未达有效阴极保护管道长保护率 = ─────────────────×100%管道总长2)运行率(开机率)大于98%;全年小时数-全年停机小时数开机率 = ──────────────×100%全年小时数3)保护度大于85%;G1 / S1 -G2 / S2保护度 = ─────────×100%G1 / S1式中:G1——未施加阴极保护检查片的失重量,g;S1——未施加阴极保护检查片的裸露面积,cm2;G2——施加阴极保护检查片的失重量,g;S2——施加阴极保护检查片的裸露面积,cm2;4)管道保护电位:一般为-0.85V~-1.5V,当土壤或水中含有硫酸盐还原菌且硫酸根含量大于0.5%时为-0.95V或更负(应考虑IR降的影响)。

(七)阴极保护系统常见故障的分析1、保护管道绝缘不良,漏电故障的危害在阴极保护站投入运行,或牺牲阳极保护投产一段时间后,出现了在规定的通电点电位下, 输出电流增大,管道保护距离却缩短的现象,或者在牺牲阳极系统中,牺牲阳极组的输出电流量增大,其值已超过管道的保护电流需要,但保护电位仍达不到规定指标的现象。

相关文档
最新文档