银行客户数据分析
银行业数据分析报告顾客满意度及客户转化率分析

银行业数据分析报告顾客满意度及客户转化率分析一、引言随着科技的快速发展以及金融市场的不断扩大,银行业在过去几十年中一直在稳步发展。
通过对银行客户的数据分析,可以更好地了解顾客需求,提高顾客满意度和客户转化率,因此,本报告将对银行业的数据进行分析,以供银行业界参考。
二、顾客满意度分析1.顾客反馈数据搜集通过搜集顾客反馈数据,银行可以更好地了解顾客的需求和意见。
为了了解顾客的满意度,本次分析中,我们选择采用在线问卷的形式,向一定比例的顾客群体发出问卷,以收集有关顾客满意度的数据。
2.分析顾客反馈数据通过对收集到的顾客反馈数据进行分析,可以了解顾客对银行的服务满意度及改进建议。
数据分析结果发现,银行的顾客满意度平均得分为7.5分(满分为10分),其中,排名前三的服务项目依次为:(1)银行柜台、(2)网上银行、(3)手机银行。
而排名最后三位的服务项目依次是:(1)信用卡申请、(2)理财产品咨询、(3)客服热线服务。
3.改进措施针对顾客反馈数据分析结果中排名最后三位的服务项目,银行需要进行相应的改进,比如更改信用卡申请流程、提高理财产品咨询服务的满意度和提高客服热线服务的质量等等,以提高顾客满意度并增强客户忠诚度。
三、客户转化率分析1.数据采集为了进行客户转化率分析,需要收集银行的客户增长数、客户流失数和客户保留数,数据采集一般有以下两种方式:(1)调查法,通过对客户进行问卷调查,了解客户增长数、客户流失数和客户保留数;(2)内部数据分析法,通过分析银行的内部数据来获取客户转化率。
2.客户转化率分析根据数据采集的结果,进行客户转化率的分析。
客户转化率指的是客户数量的变化。
一般情况下,客户转化率可以分为两种类型:(1)增长率,即增长量除以初始量的比值;(2)流失率,即流失量除以初始量的比值。
银行可以通过分析客户转化率数据,了解银行业务的发展状况以及顾客对银行的认知度。
3.改进措施通过客户转化率数据的分析以及对银行内部业务发展的了解,银行可以寻找客户留住的策略,提高客户保留率。
银行行业客户数据分析与应用方案

银行行业客户数据分析与应用方案第1章客户数据采集与整合 (4)1.1 数据采集方法与途径 (4)1.1.1 客户信息采集 (4)1.1.2 数据采集途径 (4)1.2 数据整合与清洗 (4)1.2.1 数据整合 (4)1.2.2 数据清洗 (4)1.3 数据质量评估与监控 (5)1.3.1 数据质量评估 (5)1.3.2 数据监控 (5)第2章客户画像构建 (5)2.1 客户基本信息分析 (5)2.1.1 性别与年龄分布 (5)2.1.2 职业与教育程度 (5)2.1.3 地域分布 (5)2.2 客户消费行为分析 (5)2.2.1 消费特征分析 (6)2.2.2 消费偏好分析 (6)2.2.3 消费趋势分析 (6)2.3 客户风险偏好分析 (6)2.3.1 风险承受能力分析 (6)2.3.2 风险偏好类型划分 (6)2.3.3 风险偏好与金融产品匹配 (6)2.4 客户生命周期分析 (6)2.4.1 客户生命周期划分 (6)2.4.2 生命周期各阶段特征分析 (6)2.4.3 生命周期管理与金融服务策略 (6)第3章客户细分与市场定位 (7)3.1 客户细分方法与策略 (7)3.1.1 客户特征细分 (7)3.1.2 客户需求细分 (7)3.1.3 数据挖掘与智能分析 (7)3.2 市场定位与目标客户群体 (7)3.2.1 市场定位策略 (7)3.2.2 目标客户群体 (7)3.3 客户价值评估与潜力挖掘 (8)3.3.1 客户价值评估体系 (8)3.3.2 客户潜力挖掘 (8)第四章信用风险评估与管理 (8)4.1 信用风险建模与验证 (8)4.1.1 数据准备与预处理 (8)4.1.3 信用风险建模 (9)4.1.4 模型验证与优化 (9)4.2 信用评分与信用额度 (9)4.2.1 信用评分 (9)4.2.2 信用额度 (9)4.3 逾期预测与催收策略 (9)4.3.1 逾期预测 (9)4.3.2 催收策略 (9)4.3.3 催收策略优化 (9)第5章营销策略制定与优化 (9)5.1 营销活动数据分析 (9)5.1.1 客户细分 (9)5.1.2 营销活动数据挖掘 (10)5.2 营销策略制定与实施 (10)5.2.1 确定营销目标 (10)5.2.2 制定针对性营销策略 (10)5.2.3 营销策略实施 (10)5.3 营销效果评估与优化 (10)5.3.1 营销效果评估指标 (10)5.3.2 营销效果分析 (10)5.3.3 营销策略优化 (11)第6章客户关系管理 (11)6.1 客户满意度分析 (11)6.1.1 客户满意度调查方法 (11)6.1.2 客户满意度评价指标 (11)6.1.3 客户满意度数据分析 (11)6.1.4 提升客户满意度的策略 (11)6.2 客户忠诚度分析 (11)6.2.1 客户忠诚度评价指标 (11)6.2.2 客户忠诚度影响因素 (11)6.2.3 客户忠诚度数据分析 (12)6.2.4 提升客户忠诚度策略 (12)6.3 客户流失预测与挽回策略 (12)6.3.1 客户流失预测模型 (12)6.3.2 客户流失影响因素 (12)6.3.3 客户流失预警机制 (12)6.3.4 客户挽回策略 (12)第7章个性化服务与推荐系统 (12)7.1 个性化服务设计 (12)7.1.1 客户分群 (12)7.1.2 需求分析 (13)7.1.3 服务内容定制 (13)7.1.4 服务渠道优化 (13)7.2.1 协同过滤算法 (13)7.2.2 内容推荐算法 (13)7.2.3 深度学习算法 (13)7.2.4 多模型融合推荐 (13)7.3 交叉销售与增值服务 (13)7.3.1 产品组合推荐 (13)7.3.2 生命周期管理 (14)7.3.3 增值服务设计 (14)7.3.4 客户关系维护 (14)第8章银行产品优化与创新 (14)8.1 产品需求分析 (14)8.1.1 客户需求挖掘 (14)8.1.2 市场需求分析 (14)8.1.3 产品功能需求 (14)8.2 产品优化与竞争力分析 (14)8.2.1 产品优化策略 (14)8.2.2 竞争力分析 (14)8.2.3 客户满意度评价 (14)8.3 产品创新与实验设计 (15)8.3.1 创新策略 (15)8.3.2 实验设计 (15)8.3.3 风险管理 (15)第9章风险控制与合规管理 (15)9.1 欺诈检测与防范 (15)9.1.1 欺诈行为特征分析 (15)9.1.2 欺诈检测模型构建 (15)9.1.3 欺诈防范策略 (15)9.2 合规风险监测与评估 (15)9.2.1 合规风险识别 (15)9.2.2 合规风险监测指标体系 (15)9.2.3 合规风险评估与报告 (15)9.3 风险控制策略与内控体系建设 (16)9.3.1 风险控制策略制定 (16)9.3.2 内控体系构建 (16)9.3.3 内控体系优化与持续改进 (16)第10章数据驱动决策与未来发展趋势 (16)10.1 数据驱动决策框架 (16)10.1.1 数据收集与整合 (16)10.1.2 数据分析与挖掘 (16)10.1.3 决策支持系统 (16)10.1.4 决策实施与优化 (16)10.2 数据分析与决策案例 (16)10.2.1 客户细分与精准营销 (17)10.2.3 跨界合作与数据应用 (17)10.3 银行业未来发展趋势与数据应用前景 (17)10.3.1 金融科技驱动下的银行业变革 (17)10.3.2 数据驱动的智能化服务 (17)10.3.3 开放银行与生态圈构建 (17)10.3.4 金融监管与合规要求 (17)第1章客户数据采集与整合1.1 数据采集方法与途径银行行业客户数据的采集是数据分析与应用的基础,本节将详细介绍数据采集的方法与途径。
银行客户分析报告

银行客户分析报告摘要:本报告旨在对银行客户进行深入分析,以揭示客户的行为模式、需求和潜在机会。
通过对客户数据的整理和统计,我们从不同的角度对客户进行了分类和分析。
通过这些分析,我们可以更好地了解客户的需求,提供个性化的银行服务,并根据不同客户群体的特点制定相应的市场策略。
一、引言随着金融市场的快速发展,银行竞争日益加剧。
为了保持竞争优势和增强市场占有率,银行需要深入了解客户并根据他们的需求提供个性化的服务。
因此,银行客户分析变得越来越重要。
通过对客户行为、偏好和需求的分析,银行可以更好地了解客户,并根据这些信息提供更好的产品和服务。
二、数据收集和处理为了进行银行客户分析,我们收集了大量的客户数据,包括客户的个人信息、账户活动信息、交易记录等。
通过对这些数据的清洗和整理,我们得到了一份完整的客户数据集。
然后,我们使用数据分析工具对数据进行处理,包括数据清洗、数据变换和数据统计。
通过这些步骤,我们得到了一系列的指标和模型,可以对客户进行分类和分析。
三、客户分类分析在客户分类分析中,我们使用聚类算法将客户划分为几个不同的群体。
通过研究每个群体的特点和行为模式,我们可以更好地了解客户的需求和偏好,并提供相应的银行服务。
根据我们的分析,我们将客户分为以下几个群体:1.保守型客户:这个群体的客户在投资和风险承担上非常保守。
他们更喜欢将资金存放在较低风险的储蓄账户中,并且更倾向于长期的稳定回报。
2.激进型客户:这个群体的客户愿意承担较高的投资风险,对于投资理财产品更感兴趣。
他们更乐于投资股票、基金和期权等高风险高回报的金融工具。
3.稳健型客户:这个群体的客户对于投资和风险承担有一定的平衡。
他们更倾向于将资金分散投资于低风险和中风险的金融产品,以实现持续的稳定回报。
4.新兴市场客户:这个群体的客户对于新兴市场投资非常感兴趣。
他们更倾向于投资于新兴市场的股票、债券和基金等金融产品,以追求高回报。
通过对这些客户群体的分析,我们可以为每个群体提供相应的推荐产品和服务,以满足他们的需求并提高客户满意度。
数据分析银行实例报告(3篇)

第1篇一、引言随着大数据时代的到来,数据分析已成为企业提高竞争力、优化业务流程的重要手段。
银行业作为我国金融体系的核心,其业务数据量庞大,涉及客户信息、交易记录、风险控制等多个方面。
通过对银行数据的深入分析,可以挖掘潜在价值,提升银行运营效率,优化客户服务。
本报告以某大型银行为例,对其数据分析实践进行详细阐述。
二、银行数据分析背景1. 数据来源本案例所涉及的银行数据主要来源于以下几个方面:(1)客户信息:包括客户基本信息、账户信息、信用评级等。
(2)交易记录:包括存款、贷款、理财、信用卡等业务交易记录。
(3)风险控制数据:包括不良贷款率、风险预警数据等。
(4)市场数据:包括宏观经济数据、行业数据、竞争对手数据等。
2. 数据分析目的通过对银行数据的分析,实现以下目标:(1)了解客户需求,提升客户满意度。
(2)优化业务流程,提高运营效率。
(3)控制风险,降低不良贷款率。
(4)挖掘潜在价值,实现业务增长。
三、数据分析方法1. 数据清洗对原始数据进行清洗,包括去除重复数据、处理缺失值、修正错误数据等,确保数据质量。
2. 数据集成将不同来源的数据进行整合,构建统一的数据仓库,为后续分析提供数据基础。
3. 数据分析采用多种数据分析方法,包括描述性统计、相关性分析、聚类分析、预测分析等,挖掘数据价值。
4. 数据可视化利用图表、地图等形式展示数据分析结果,便于理解和决策。
四、数据分析实例1. 客户需求分析通过对客户交易记录、账户信息等数据的分析,发现以下客户需求:(1)客户偏好理财业务,希望银行提供更多理财产品。
(2)客户对信用卡业务需求较高,希望银行提高信用卡额度。
(3)客户对线上银行服务满意度较高,希望银行继续优化线上渠道。
针对以上需求,银行可以调整业务策略,推出更多理财产品,提高信用卡额度,并优化线上银行服务。
2. 业务流程优化通过对交易记录、业务流程等数据的分析,发现以下问题:(1)部分业务流程复杂,导致客户体验不佳。
银行客户数据分析

银行客户数据分析在当今现代科技快速发展的时代,银行作为金融行业的重要组成部分,拥有大量的客户数据。
这些数据包含了各种客户的信息,如个人信息、账户信息、贷款信息等。
银行客户数据分析的目的是通过对这些数据的分析和挖掘,发现潜在的商机和改进银行服务的机会。
银行客户数据分析的重要性不容忽视。
通过合理利用和分析客户数据,银行可以更好地了解客户的需求和行为,针对性地提供个性化的金融产品和服务。
同时,通过对客户数据的分析,银行可以更好地管理和预测风险,提高业务的效率和盈利能力。
在进行银行客户数据分析之前,首先需要收集和整理大量的客户数据。
这包括客户的个人信息,如姓名、年龄、性别、教育程度等,以及客户的金融交易信息,如账户余额、交易金额、贷款金额等。
在收集和整理数据的过程中,银行应注意保护客户的隐私和数据安全,不得泄露客户的个人信息。
一旦获得了客户数据,银行就可以开始进行数据分析。
数据分析可以包括以下几个方面:1. 人口统计学分析:通过对客户的年龄、性别、教育程度等人口统计学特征的分析,银行可以了解到不同客户群体的需求和偏好。
例如,年轻人可能更倾向于使用移动支付和在线银行服务,而老年人更喜欢传统的银行服务。
2. 消费行为分析:通过对客户的交易记录和消费行为的分析,银行可以了解客户的消费习惯和喜好。
这可以帮助银行设计个性化的金融产品和服务,提高客户满意度和忠诚度。
3. 风险管理分析:通过对客户的信用评级、贷款记录等风险指标的分析,银行可以对客户的风险进行评估和管理。
这有助于银行避免不良贷款和提前预警风险。
4. 营销策略分析:通过对客户的消费行为和需求的分析,银行可以制定更有效的营销策略。
例如,银行可以通过短信、邮件等方式向客户推送相关的金融产品和优惠活动,提高产品的销售和推广效果。
值得注意的是,银行客户数据分析不仅限于单一的数据指标,而是需要综合考虑多个指标之间的关系。
例如,客户的年龄、性别和贷款金额之间可能存在一定的关联性,这需要进行相关性分析和模型建立。
银行理财客户分析报告

银行理财客户分析报告1. 引言本文将对银行的理财客户进行分析,通过对客户的数据进行挖掘和分析,以帮助银行更好地了解客户需求,优化产品和服务的推送,提高客户满意度和银行收益。
2. 数据收集和清洗首先,我们需要收集客户的相关数据,包括但不限于以下方面:•客户基本信息:年龄、性别、教育水平等。
•客户财务状况:收入、资产等。
•客户投资偏好:投资目标、风险偏好等。
•客户历史交易记录:购买产品的类型、频率等。
收集到数据后,需要进行数据清洗,包括处理缺失值、异常值和重复值等。
清洗后的数据将为后续分析提供准确的基础。
3. 客户分群基于客户的数据,我们可以使用聚类算法将客户进行分群。
聚类算法可以根据客户的相似性将他们分为不同的群体,每个群体有着相似的特征和需求。
通过分群,银行可以更好地了解客户的需求和特点,有针对性地推送相关产品和服务。
例如,对于风险偏好较低的客户,可以推送低风险的理财产品;对于风险偏好较高的客户,可以推送高收益高风险的产品。
4. 客户价值评估除了分群,银行还需要评估客户的价值,以确定对不同客户采取不同的策略。
客户价值可以通过多个指标来评估,包括但不限于:•客户生命周期价值(CLV):客户在其与银行的关系期限内所带来的收益。
•客户满意度:客户对银行产品和服务的满意程度。
•客户忠诚度:客户对银行的忠诚程度和长期合作意愿。
通过客户价值评估,银行可以将有限的资源更加聚焦在高价值的客户上,提供更优质的服务和更具吸引力的产品,以增强客户的忠诚度并提高银行的收益。
5. 风险管理在理财领域,风险管理至关重要。
银行需要根据客户的风险偏好和投资目标,为其提供合适的理财产品,并进行风险评估和控制。
在客户分析的基础上,银行可以根据客户的风险偏好进行产品推荐。
对于保守型客户,可以推荐低风险稳健型理财产品;对于激进型客户,可以推荐高风险高收益的产品。
同时,银行还需要对客户的投资组合进行风险管理。
通过分散投资、定期调整和风险监控等手段,银行可以控制客户投资组合的风险,保障客户的资金安全。
商业银行如何通过数据分析提高客户留存率

商业银行如何通过数据分析提高客户留存率近年来,随着数据技术的飞速发展,商业银行也开始逐渐意识到数据分析在提高客户留存率中的重要作用。
客户留存率是衡量银行业务稳定性和持续发展的重要指标之一。
因此,商业银行积极运用数据分析技术,挖掘和应用大数据,以提高客户留存率,增强企业竞争力。
本文将讨论商业银行如何通过数据分析提高客户留存率。
一、基于历史数据的客户分析商业银行可以通过对历史数据的分析,深入了解客户的需求和行为模式,从而有针对性地提供更好的服务和产品。
通过分析客户的交易记录、消费行为、投资偏好等数据,银行可以绘制客户画像,为不同客户群体制定个性化的服务计划。
例如,银行可以针对高流动性客户采取增加活期存款利率等方式,提高他们的留存率。
二、购买行为数据分析商业银行可以通过购买行为数据分析客户的购买行为和倾向,以预测和满足客户的需求。
通过分析客户在不同渠道的购买行为,银行可以得知客户的购买喜好和消费习惯。
例如,客户经常在手机银行购买基金产品,那么银行可以通过推送相关基金产品的消息或提供专属服务,增强客户的黏性和留存率。
三、风险评估模型构建商业银行通过构建风险评估模型,对客户进行风险评估,以识别高风险客户并采取相应措施。
借助数据分析技术和大数据平台,银行可以对客户的信用评分进行综合评估,预测客户的逾期和违约风险。
通过快速定位高风险客户,并进行个性化的风险防控措施,银行可以有效控制风险,并提高客户的留存率。
四、客户生命周期管理商业银行可以通过数据分析技术进行客户生命周期管理,建立客户关系的长期稳定性。
通过分析客户在不同阶段的行为特征和需求变化,银行可以制定相应的营销策略和服务计划。
例如,银行可以通过数据分析预测客户可能的生活事件,如结婚、买房、购车等,提前推送相应的金融产品和服务,增加客户的粘性和留存率。
五、定制化产品设计商业银行通过数据分析技术还可以根据客户需求,设计和推出定制化的金融产品。
通过分析客户的投资偏好、风险承受能力、收入水平等数据,银行可以了解客户对不同类型产品的需求,并针对性地开发产品。
《银行客户数据分析》课件

来自其他金融机构、征信机构等 的客户信用评分、消费行为等信 息,有助于评估客户的信用风险 和消费潜力。
80%
社交媒体数据
通过分析社交媒体上的客户评论 、反馈等信息,了解客户对银行 的评价和需求,有助于改进服务 质量。
数据质量与清洗
数据完整性
确保数据的完整性和准确性, 避免缺失值和异常值对分析结 果的影响。
银行客户数据分析
目
CONTENCT
录
• 引言 • 数据分析方法 • 客户数据来源 • 客户画像构建 • 客户分群与细分 • 客户价值评估与客户获取策略 • 数据可视化与报告
01
引言
目的和背景
目的
通过数据分析,深入了解银行客户的消费行为、偏好和需求,为 银行提供更有针对性的产品和服务。
背景
随着科技的发展和市场竞争的加剧,银行客户数据分析已成为银 行业务发展的重要支撑。通过对客户数据的分析,银行可以更好 地满足客户需求,提高客户满意度,增加业务收入。
提高运营效率
通过对业务流程数据的分析, 银行可以发现潜在的优化点, 提高运营效率。
02
数据分析方法
描述性分析
总结:描述性分析是对数据进行简单的描述和整理,以揭示数据 的基本特征和规律。
通过统计指标如均值、中位数、众数、方差等,对客户数据进行 汇总和展示,帮助银行了解客户的基本情况,如年龄、性别、职 业等。
通过对比行业标准和最佳实践,分析银行客户数据的优劣势,提出针对性的优化建议,例如优化产品设计、提升服务质量等 。
03
客户数据来源
银行内部数据
存款数据
包括各类存款的金额、期限、利率等信息,反映 客户的资金状况和投资偏好。
交易数据
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据集(属性)
• Count of Debit this Month(这个月取款的次数) • Count of OD(透支的次数) • Amount of Deposit this Month(本月存款的账目) • Amount of Withdraw this Month(本月取款的账目) • Last Transaction Date(上一次交易的日期) • Country Code(客户所属的国家) • Birthday(生日) • Sex(性别)
大聚类可以再继续细分 (作为一个数据集再继续进行 聚类操作, 或直接提高聚类个数)
10
对各聚类结果的处理
• 聚类后的各聚类结果的数据是规格化处理后的数据的结果, 我们要直观地分析各聚类的特点,必须把规格化的数据还 原为原始数据。例如,最小值为-10,000,最大值为 1,000,000的当前账户余额规格化为[0,1]后就难以理解各 账户间存在的巨大差距,只有把它还原为原始的[-10000, 1000000]才能使人直观地理解其存在的差距。
• 方法
• k-means算法
• 选取的特征
• 从31个原始属性值中选取23个属性用作聚类(都是数值型或标称型的)
• 聚类参数
• 在经过规格化处理后的数据集中,用k-means算法在选定的23个属性 上进行聚类,设定聚类数为10.
8
各聚类大小
• 各聚类所包含的客户数量如下表
表1
聚类
客户数量
聚类1
145
2
数据集
• 客户数据集包含10,000条客户数据 • 包含有31个特征(属性), 分别为:
• Bank No(银行代码,其值有:004,024,077等) • Account num(账户代码) • Short Name(客户名字) • First Contact Date(第一次接触日期) • account open date(账户开户日期) • account balance(账户当前余额) • account low balance(账户曾经最低余额) • account high balance(账户曾经最高余额) • balance category(余额类型) • Statement Low Balance(最低交易账目,有正有负)
6
数据预处理(规格化)
• 数值型特征: 采用如下公式规格化到[0, 1]区间
x ' x xmin xmax xmin
• 标称型特征、日期型特征和字符串型特征保持不变
7
聚类分析
• 目标
• 我们的目的是对客户进行分群,从而使银行可以对不同群体的客户提 供不同的服务。因此聚类分析是对客户进行自动分群的有效方法。
3
数据集(属性)
• Statement High Balance(最高交易账目) • Statement Aggregate Debit Balance(聚集透支账目) • Statement Aggregate Debit Day(透支账目的天数) • Statement Aggregate Credit Balance(聚集存款账目) • Statement Aggregate Credit Day(存款账目的开数) • Return Check Count(退回支票的次数) • Status(客户状态) • Audit Granding(授权级别,越高则风险越低) • Salary Before Last Month(上一个月之前自动付款的账目) • Salary last Month(上一个月自动付款的账目) • Salary this Month(这一个月自动付款的账目) • Count of Credit this Month(这个月存款的次数)
聚类2
69
聚类3
133
聚类4
6183
聚类5
1985
聚类6
213
聚类7
46
聚类8
446
聚类9
413
聚类10
368
9
对聚类大小的分析
由表1可知,各聚类有大有小,且大小悬殊,但也合乎 客户关系处理的目的。客户关系管理的往往是找出一小部 分的特殊客户(占20%左右)来进行特别地对待。在上表 所示的10个聚类中,除去最大的聚类4后其余9个聚类的 客户数达3818人,占总客户量的38.18%;除去最大的两 个聚类(聚类4和聚类5)后其余8个聚类的客户数达1833 人,占总客户量的18.33%.
• 把各聚类的数据集还原为原始数据后,再计算各特征的均 值和标准差(数值型的特征);或者各标称量的数量(标 称型的特征)。
11
聚类结果分析(账户当前余额 )
• 下表所示为10个聚类中各聚类的账户当前余额的正负及账户当 前余额的均值和标准差
聚类
聚类1 聚类2 聚类3
聚类4 聚类5 聚类6 聚类7 聚类8 聚类9 聚类10
• • •
5
数据预处理
• 我们选用Weka数据挖掘工具来对客户的账户数据进 行分析,因此所有的原始数据都必须转换成能被 Weka处理的数据集格式。
• 原始数据集的特征主要有四种类型的,分别是:数 值型(numeric)、标称型(nominal)、日期型(date)和 字符串型(string)。
• 对于缺失的属性值,因为Weka中的算法能自动处理 属性值缺失的情况,所以按Weka数据集的格式要求 用“?”表示。
当前余额正负
+
–
145
0
69
0
133
0
6182
1
1985
0
119
94
46
0
380
66
0
413
368
0
当前余额值
均值标Βιβλιοθήκη 差24445.5073408.73
29164.41
78077.97
152882.48 604633.58
5571.17
23957.76
银行客户数据分析
2007-09-01
1
背景
数据客户群服务盈利 • 商业银行拥有大量的个人客户交易数据、个人客户
服务数据和个人客户基本资料数据。在这些海量数 据中,隐藏着大量的有价值的客户信息。运用数据 挖掘中的聚类分析技术可以从这些数据集中提取客 户的分类知识。聚类分析技术可以将性质、特征近 似的数据对象归属在相同的群集中。商业银行可以 利用此技术分辨出能有效为之服务的最有价值的客 户,为他们提供更为个性化的服务,从而影响相关 的客户行为并最终达到提高盈利的目的。