zemax透镜像差优化

合集下载

ZEMAX的基本像差控制与优化

ZEMAX的基本像差控制与优化

ZEMAX的基本像差控制与优化光学设计论著中评价光学系统设计阶段的成像质量通常使用两套像差曲线体系。

一个是“独立几何像差”,分别描述了成像光束在像空间的结构和状态。

例如轴上点球差和轴向色差曲线,轴外点像散、场曲曲线,等等,其优点是很明显的,能够直观的了解该项像差的定性和定量数值。

对于特定的光学系统,设计人员容易从该系统可能存在的主要像差分析入手,快速了解和控制像差优化进程中变化趋势,很方便制定下一步校正方法。

其缺点就是系统性不强,只能反映影响像质的某些方面,不能反映全局的像差情况。

一个是“垂轴像差曲线”,定义为不同孔径子午、弧矢光线和主光线在理想像平面上的交点之间的距离来表示。

其直接给出了不同孔径的光线对在像平面上的弥散位置,反映了像点的大小和光束能量集中程度,全面显示了系统的成像质量。

单项几何像差和垂轴像差都是用来描述系统的成像质量的,两者从不同的方向对系统成像质量进行了描述。

如果说垂轴像差侧重于综合性、总体性,那么单项几何像差侧重于局部、某个形态。

两者之间的关系可以概括为“系统”和“局部”的关系。

也就是说,从垂轴像差曲线设计人员能够宏观的了解成像质量的情况,例如:像点弥散斑大小,能量集中程度,彗差大小,场曲大小,轴外球差情况,从而判定系统的整体好坏。

当然,如果要更为直观的、定量的了解垂轴像差曲线反映的像差情况,可以查看几何像差曲线。

ZEMAX中没有提到的像差曲线,例如:轴外球差,彗差等。

正确的设计思路归结如下:设计人员心中对系统的成像质量评价要综合使用目的、设计、加工制造等环节后建立的一套清晰的体系。

ZEMAX提供的工具很多,有些是侧重某个方面的像差,有的是仿真计算某种光学特性。

笔者认为,设计人员手下的作品都是有针对性的,有服务方向的,就拿光学镜头而言,摄像机镜头、数码相机镜头、照相镜头、安防镜头、工业检测镜头、电脑眼等等,更有偏重,各有自身的“最合适”评价和设计。

成熟的设计人员不是追求像差极致、为像差所累的家伙,成熟的工程师是权衡设计用途,综合考虑设计、使用和加工装配综合性能价格比,绝不是为了优化而优化。

zemax像差优化

zemax像差优化

1.轴上球差LONA和SPHALONA表示的是轴上物点指定波长,指定光束尺寸光线对的轴上成像交点到近轴焦平面之间轴向距离。

这个定义和我们定义的轴向球差相同。

光瞳尺寸(光束尺寸)在0~1之间,那么将追迹实际的光束汇交点计算轴向球差。

SPHA常用于指定面产生的像差数值。

若不指定特殊面取值为,则计算所有面产生球差总和。

注意这个总和不是像差计算公式中的经过各面逐个放大之后的加权和,而是代数和。

经验:当选择LONA控制不住球差时,同时加入操作数SPHA,设置合理的权重,可以将轴向球差进一步改善。

2.轴向色差AXCL定义为两个指定波长的近轴焦平面轴向距离。

若光瞳尺寸光束尺寸定义为0,那么使用近轴焦平面进行色差计算,定义不为0,则使用实际的光线与轴交点位置进行色差计算。

3.垂轴色差(倍率色差)在ZEMAX中没有直接定义垂轴色差的操作数,但是从垂轴色差的定义可以知道,它是指某视场、某指定光束尺寸的、两指定波长光束在像面上所成的理想像的垂向距离差。

在ZEMAX中有REAY(wav,Hy,Py)操作数。

其定义为指定波长、指定视场、指定光束尺寸光在理想象面上的实际高度。

那么在同一视场选择两个不同波长的光束,其操作数数值之差就表明了理想像面上的垂轴色差大小。

oprand #1 REAY(wav=1,Hy=a,Py=b);oprand #2 REAY(wav=2,Hy=a,Py=b);DIFF(oprand #1,oprand #2)DIFF操作数指两个操作数结果的差值。

4.彗差彗差描述的是某视场、某尺寸的光线对对主光线的偏离情况,即描述光束失对称的情况。

光线对彗差与视场和孔径均有关系,是两者的函数,因此全面描述系统的彗差情况需要选择若干个不同视场和不同孔径。

在ZEMAX中提供了一个操作数TRAY。

TRAY定义为在像平面上,光线与像面交点到主光线的垂轴距离。

首先定义一个光线对oprand #1 TRAY(wav=2,Hy=a,Py=b);oprand #2 TRAY(wav=2,Hy=a,Py=-b);SUMM(oprand #1,oprand #2)其中SUMM描述的是上述两个操作数的代数和,表征彗差的大小。

15.-4利用ZEMAX像质优化与设计举例

15.-4利用ZEMAX像质优化与设计举例

15. 4利用ZEMAX 像质优化与设计举例ZEMAX 提供了十分强大的像质优化功能,可以对合理的初始光学系统结构进行优化设计。

设计中光学结构参变量可以是曲率、厚度、玻璃材料参数、圆锥系数、参数数据、特殊数据和多重结构数值数据。

本节首先,通过消色差双胶合望远镜物镜设计和参数分析,介绍利用ZEMAX 默认评价函数的优化设计过程。

然后,通过光路中有棱镜的望远物镜、显微物镜和目镜设计举例能,介绍像差补偿、几何像差控制等在ZEMAX 中的实现以及锤形( Hammer)优化的简单应用。

最后通过变焦物镜设计介绍ZEMAX 中多重结构设计实现。

15.4.1消色差双胶合望远镜物镜设计消色差双胶合物镜设计要求见表15.131)初始结构参数确定初始结构参数确定通常有两种方法,本设计采用初级像差理论求解初始结构方法。

望远系统一般由物镜、目镜和棱镜式或透镜式转像系统构成。

望远物镜是望远系统的一个组成部分,其光学特性的特点是:相对孔径和视场都不大。

因此,望远物镜设计中,校正的像差较少,一般不校正与像高的二次方以上的各种单色像差(像散、场曲、畸变)和垂轴色差,只校正球差、彗差和轴向色差。

在这三种像差中通常首先校正色差,因为初级色差和透镜形状 无关,校正了色差以后,保持透镜的光焦度不变,再用弯曲透镜的方法校正球差和彗差,对已校正的色差影响很小。

由初级像差理论可知,双胶合透镜成为消色差双胶合透镜的条件是,双胶合透镜的正负光焦度分配应满足下式:12φφφ=+,1112V V V φφ=-,2212V V V φφ=- (15.22)式中:φ、1φ,和2φ分别双胶合物镜、正透镜和负透镜的光焦度(焦距值的倒数),1V 和2V 为正负透镜所选玻璃的阿贝数V 。

本示例中,正、负透镜的玻璃材料分别选用K9和ZF1,对应的n 1d =1.. 51637 , V 1=64. 07 , n 2d == 1. 64767 ,v 2=33. 87。

zemax主要优化函数

zemax主要优化函数
ANAR:在像面上测量的相对于主波长中主光线的角度差半径。这个数定义成 1-cosθ,这里θ是被追迹的光线与主光线之间的角度。参见TRAR
ZERN:泽尼克边缘系数。系数项 波长Int1,Int2,Hx 和Hy 数据值分别用来说明泽尼克系数项的编号(1-37),波长编号,采样密度(1=32*32,2=64*64,等等),和视场位置。注意如果你多个仅系数项编号不同的ZERN 操作数,则在编辑界面中它们应被放在相邻行中。否则将降低计算速度
GMTS:弧矢的几何传递函数响应曲线,详细内容参见操作数GMTA. i SDlS G
GMTT:子午的几何传递函数响应曲线,详细内容参见操作数GMTA.WbP Bp{
| Gy =< Y
3、基本光学特性 /X2 A u
#] ./ u(
EFFL:有效焦距,以镜头长度单位表示。它是针对近轴系统的,对于非近轴系统可能会不准确U:o`/4"xl
RWCH:环带 波长 Hx,Hy,相对于主光线的RMS 波前差。其单位为波长。由于已减去平均OPD,这个RMS 实际上是指标准的波前偏差。参见RWCE。详细内容可参见RSCHB
RWCE:环带 波长 Hx,Hy,相对于衍射质心的 RMS 波前差。这个操作数对于最小化波前偏差是有用的,这个波前偏差于斯特列尔比率和MTF 曲线下的面积成正比。 其单位为波长。参见RWCH。详细内容可参见RSCH
zemax主要优化函数表2008年07月28日 星期一 00:53优化函数
1、像差
SPHA(球差):surf表面编号/wave波长/target设定目标值/weight权重
指定表面产生的球差贡献值,以波长表示。如果表面编号值为零,则为整个系统的总和
COMA(彗差) :surf表面编号/wave波长/target设定目标值/weight权重

ZEMAX操作说明

ZEMAX操作说明

ZEMAX操作说明一、参数设置1、透镜基本参数设置①、Surf:Type这一选项表示输入面的类型,例如普通球面、柱面、镜面、渐变折射率面等。

②、Comment这一选项表示对输入面进行注解,填不填都可以。

③、Radius这一选项表示输入面的曲率半径,对于第一行输入光源来说如果是Infinity表示光源为平行光,如果输入数字a表示距离透镜第一个面距离为a的点光源。

④、Thickness这一选项表示输入相邻两个面的距离,对于一个透镜来说是透镜的中心厚度,对于两个透镜来说是两个透镜的间距。

⑤、Glass这一选项表示输入相邻两个面间的材质,可以输入玻璃、镜子、接收器,不输为空气。

⑥、Semi-Diameter这一选项表示输入光到达通光面的半径。

⑦、Conic这一选项表示输入面曲率半径的非球面系数。

2、光源基本参数设置①、GenEntrance Pupil Diameter表示入射光到达第一个面时的光斑大小,适用于光源为点光源或平行光。

Object Space NA表示入射光的数值孔径,适用于点光源。

②、Fie这一选项表示对输入光在入射面不同输入高度时的情况。

③、Wav这一选项表示对输入光的波长。

④、Lay和L3d这一选项表示输入透镜的平面图和3D图⑤、Spt这一选项表示输入光通过输入透镜后的弥散斑的大小,越小越好。

⑥、Mtf这一选项表示输入透镜的传递函数,与分辨率紧密相关。

⑦、Pre这一选项表示输入透镜的所有参数汇总表。

二、设计结果查看在Analysis一项中查看透镜像差。

初步学习在这一项中一般查看:Image Analysis,这一项中可以直观查看成像质量。

Miscellaneous,这一项中可以查看输入透镜的像差。

三、透镜优化1、双击你所需要优化的面,将其选择为Variable,须优化面后出现V2、在Editor中选择Merit Function后出现优化界面。

3、进入优化界面后,选择Tools中的第二项,出现对话框直接点OK。

Zemax光学设计:双片式透镜的Seidel像差及校正

Zemax光学设计:双片式透镜的Seidel像差及校正

Zemax光学设计:双片式透镜的Seidel像差及校正双片式物镜适用于很多小口径(最大为f/4)和小视场角的情况。

双片物镜的两个元件可以胶合在一起,也可以用空气间隔分开。

在大多数情况下,两片透镜是胶合在一起的,因为这样公差更容易满足而且更牢固。

双片镜可以单独使用,也可以用作准直镜或者望远镜的物镜。

许多透镜系统都含有若干个双片镜。

对单个双片式物镜探讨得到的大部分结果,也适用于复杂系统中的双片镜。

1.双片式物镜的Seidel分析1.1色差2.由在光阑处的薄透镜的轴向色差的Seidel方程:若要使双片式物镜的轴向色差得以校正,需要满足的条件为:同时,两个透镜的光焦度的和等于总光焦度:联立上面两式可以求出:在常规的光学设计中,常用玻璃库中,折射率范围在1.5至1.8之间,V值范围在90至20之间例如,取V1=60,V2=36,代入上式可得:1.2像散与场曲的横向光线像差三阶像散与场曲的横向光线像差为:注意,δη`表示y分量(即y-z平面或子午面内的光线,),δξ`表示x分量(即x-z平面或弧矢面内的光线)。

又因为薄透镜在光阑上,当n=1.5时,则上式可以简化为:例如,一个双片式透镜,焦距f`=100mm,即光焦度K=0.01mm-1,孔径为f/5,透镜的数值孔径(在空气中)u`=n`sinU`约为0.1,半视场角为1°,那么像高η`=f`tam(1°)≈1.74mm。

因此,可以计算得到:在ZEMAX中模拟上述这个例子。

在MFE中可以使用操作数查看透镜的数值孔径(在空气中)u`=n`sinU`约为0.1,和像高η`:再查看SeidelCoefficient:1.3同时校正 Petzval 和与轴向色差同时校正镜头的所有像差是不可能的。

对于可见光波段的双片式透镜,这点更为明显。

双片式透镜可以改变的设计参数非常少,而且很多可以产生更好结果的玻璃不能用。

例如,两个贴在一起的双片式透镜的场曲为:其轴向色差为:这两个方程非常类似,若我们可以找到一对玻璃满足以下条件:就可以同时校正S4和C1。

Zemax光学设计:ZEMAX中的初级像差描述

Zemax光学设计:ZEMAX中的初级像差描述引言:实际的光学系统都是不完美的,光线经过光学系统各个表面的传输都会形成多种像差。

光学设计的一个重要任务就是校正、优化与平衡这些像差,使成像质量达到技术要求。

常见的初级像差包括5种单色像差(球差、彗差、像散、场曲与畸变)和2种色差(轴向色差与倍率色差)。

1.ZEMAX中的球差描述以一个简单的单透镜为例。

首先输入系统特性参数,如下:在系统通用对话框中设置孔径。

在孔径类型中选择“Entrance Pupil Diameter”,并根据设计要求输入“50.0”;在视场设定对话框中设置1个视场,要选择“Angle”,如下图:在波长设定对话框中,设定0.55um一个波长,如下图:LDE的结构参数,如下图:查看2D Layout:查看Ray Fan:Ray Fan图中可以定量分析球差在不同孔径的大小,可以看出球差曲线具有旋转对称性;而且由于不存在离焦的情况,其在中央区域很平坦。

查看点列图:可以看出,不同环带(孔径)的光线会聚于光轴的不同点。

球差是和孔径相关的像差。

查看波前图:从光程差上分析,球差的产生其实是波前相位的移动,即出瞳参考球面与实际球面波前的差异。

当实际波前和参考波前分离时,光程差不再相等,这样物面同一束光经实际透镜和理想透镜后,相当于产生了牛顿干涉环。

查看Seidel Coefficients:也可以在MFE中使用操作数查看球差值。

Surf若不指定某一个面(取值为0),则计算所有面产生球差总和。

2.ZEMAX中的彗差描述使用一个带Binary 2面型的单透镜来模拟彗差。

首先输入系统特性参数,如下:在系统通用对话框中设置孔径。

在孔径类型中选择“Entrance Pupil Diameter”,并根据设计要求输入“20.0”;在视场设定对话框中设置1个视场,要选择“Angle”,如下图:在波长设定对话框中,设定0.55um一个波长,如下图:LDE的结构参数,如下图:查看2D Layout:查看Ray Fan:Ray Fan图显示彗差为主要像差,残余还有离焦和球差。

ZEMAX优化操作数汇总

ZEMAX优化操作数汇总1.各种变量优化:ZEMAX可以对各种变量进行优化,包括系统参数、元件参数和材料参数。

例如,可以对透镜曲面的半径、厚度和折射率进行优化,以获得最佳的成像性能。

2.像差优化:ZEMAX可以优化像差,以最小化系统的像差。

它可以优化球差、彗差、色差、畸变等各种像差,并生成最佳的光学系统。

3.波前优化:ZEMAX可以优化波前,以获得最佳的波前形状。

它可以用于修正各种波前畸变,例如球差、彗差和色差。

4.光斑优化:ZEMAX可以优化光斑,以获得最佳的光斑形状和尺寸。

它可以用于优化点光源的光斑,或者控制光源的光斑形状和尺寸。

5.聚焦优化:ZEMAX可以优化聚焦距离,以获得最佳的聚焦性能。

它可以用于优化透镜或镜片的形状和位置,以实现最佳的聚焦效果。

6.薄透镜优化:ZEMAX可以优化薄透镜的参数,以获得最佳的成像性能。

它可以优化透镜的半径、厚度和折射率,以实现最小的像差。

7.波导优化:ZEMAX可以优化波导的参数,以获得最佳的传输特性。

例如,它可以优化波导的宽度和高度,以实现最小的传输损耗。

8.激光优化:ZEMAX可以优化激光光束的参数,以获得最佳的激光束质量。

例如,它可以优化激光光束的直径和发散角,以实现最小的发散和最高的光束质量。

9.过滤器优化:ZEMAX可以优化过滤器的参数,以获得最佳的滤波特性。

它可以优化过滤器的传输曲线、中心波长和带宽,以实现最佳的滤波效果。

10.微透镜阵列优化:ZEMAX可以优化微透镜阵列的参数,以获得最佳的光学性能。

例如,它可以优化微透镜阵列的尺寸、间距和折射率,以实现最佳的成像和聚焦效果。

总之,ZEMAX提供了许多优化操作数,可以用于不同类型的光学系统的设计和分析。

这些优化操作数可以帮助用户获得最佳的成像性能、波前形状、光斑形状和尺寸、聚焦性能等。

zemax优化[资料]

(3).(4).(5).000双胶合透镜的初始结构参数为:000优化步骤:0001.在评价函数的操作数中输入有效焦距EFFL,目标值为43.33.权重为1.垂轴放大率PMAG,目标值为-0.5,权重为1.加入轴上点全孔径d光的纵向像差LONA,轴上点0.707孔径下F光和C光的轴向色差AXCL00和正弦差OSCD,目标值为0,权重为1.0002.把球差较大的2.3 面的曲率半径设为变量开始优化,然后再把1面的曲率半径也设为变量自动优化.000在评价函数的操作数中加上像距TOTR,目标值为65,权重为1. 自动优化,然后调整这个目标数,使优化达到最好,最后数为68.4.为了使初始结构的像距不至于改变太大,固定为64.由于厚度对优化不时很敏感,不把厚度作为变量,且由最小厚度选的值便于加工且成本最低.0 003.从pre中可以发现优化后的NA值只有0.098. 于是试着增大有效焦距的目标值,发现MTF曲线有所改善,最后在43.42处找到最好的优化点.004.为了更好的改善MTF的曲线,发现在频率126lp/mm处与衍射极限处相差最大.于是加入操作数子午的传递函数MTFT,目标值为0.5, 权重为1.最后优化得满足要求的曲线.000最后的评价函数操作数:000优化后的结构参数为:000优化后的MTF曲线(取主频率30 lp/mm):00优化后的二维结构图为: 共轭距为195.0000mm. 000优化后的点列图和各种像差曲线为:000优化后系统的像差(赛得和数)为:000双胶合透镜的二级光谱色差为:△l'= -f'(p1-p2)/(v1-v2)其中,p1,p2和v1,v2 分别为两种消色差材料的相对部分色散和阿贝数.000经查表可得:p1=0.01015. p2 =0.02431. v1=56.0. v2=29.5.000优化后的焦距为43.410513.000。

基于Zemax的部分补偿透镜的优化设计_孟晓辰

第31卷 第6期光 学 学 报V ol .31,N o .62011年6月ACTA OPTICA SINICAJune ,2011基于Zemax 的部分补偿透镜的优化设计孟晓辰 郝 群 朱秋东 胡 摇(北京理工大学光电学院,北京100081)摘要 用部分补偿法检测非球面时,部分补偿透镜的优化设计是关键技术之一。

针对这一难点,提出了一种以剩余波前斜率作为优化目标的基于Zemax 的部分补偿透镜设计方法,分析了剩余波前斜率与干涉条纹密度以及弥散圆之间的关系,得到了弥散圆可以定量表征剩余波前斜率的结论,并将弥散圆半径作为优化函数。

针对3种不同参数的非球面进行了部分补偿透镜的优化设计,设计结果表明,该方法可在保证干涉条纹可探测的前提下,简单、快速、全面直观地实现部分补偿透镜的优化设计,减小剩余波前斜率,降低干涉条纹密度,从而扩大干涉仪可测非球面面形误差的测量范围,提高可测的空间频率。

关键词 光学设计;部分补偿透镜;剩余波前斜率;弥散圆中图分类号 O435 文献标识码 A do i :10.3788/AO S 201131.0622002Optimization Design of Partially Compensating Le ns Base d on Ze maxMeng Xiaochen Hao Qun Zhu Qiudong Hu Yao(School of Opt oelectronics ,Beijing Institute of Technology ,Beijing ,100081,China )Abstract Optimization design of partially compensating lens is one of the key problems for aspheric surface testingusing partia lly compensating lens .A design method for the partially compensating lens based on Zemax ,which takes the slope of wave -front as the optimization objective ,is proposed .First the relation among residua l wave -front slope ,and interference fringe density and dispersive spot are analyzed ,leading to the conclusion that the dispersive spot can quantitatively characterize the residual wave -front slope and its radius is taken as the optimization target .Then the method is applied to the optimization design of partially compensating lenses corresponding to three kinds of aspheric surfaces .The results indic ate that ,on the prec ondition that the interference fringes are detectable ,the method can help complete the optimization design of partially compensating lens m ore simply ,faster and more visually ,resulting in dec rease of the residual wave -front slope and reduction in the interference fringes density .Therefore ,the mea surement range of the interferometer for testing aspheric surface is expanded ,and aspheric surfaces with higher spatial frequency can still be measured without increasing the resolution of interferogram detector .Key wo rds optical design ;partially compensating lens ;residual wave -front slope ;dispersive spot OCIS co des 220.1250;220.2740;220.1000;220.3620;220.4840 收稿日期:2010-12-31;收到修改稿日期:2011-02-22基金项目:国家自然科学基金(60578053)资助课题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设你需要设计一个F/4的镜片,焦距为100mm,在轴上可见光谱范围内,用BK7玻璃,你该怎样开始呢?首先,运行ZEMAX。

ZEMAX主屏幕会显示镜片数据编辑(LDE)。

你可以对LDE窗口进行移动或重新调整尺寸,以适合你自己的喜好。

LDE由多行和多列组成,类似于电子表格。

半径、厚度、玻璃和半口径等列是使用得最多的,其他的则只在某些特定类型的光学系统中才会用到。

LDE中的一小格会以“反白”方式高亮显示,即它会以与其他格子不同的背景颜色将字母显示在屏幕上。

如果没有一个格子是高亮的,则在任何一格上用鼠标点击,使之高亮。

这个反白条在本教程中指的就是光标。

你可以用鼠标在格子上点击来操纵LDE,使光标移动到你想要停留的地方,或者你也可以只使用光标键。

LDE的操作是简单的,只要稍加练习,你就可以掌握。

开始,我们先为我们的系统输入波长。

这不一定要先完成,我们只不过现在选中了这一步。

在主屏幕菜单条上,选择“系统(System)”菜单下的“波长(Wavelengths)”。

屏幕中间会弹出一个“波长数据(Wavelength Data)”对话框。

ZEMAX中有许多这样的对话框,用来输入数据和提供你选择。

用鼠标在第二和第三行的“使用(Use)”上单击一下,将会增加两个波长使总数成为三。

现在,在第一个“波长”行中输入486,这是氢(Hydrogen)F谱线的波长,单位为微米。

ZEMAX全部使用微米作为波长的单位。

现在,在第二行的波长列中输入587,最后在第三行输入656。

这就是ZEMAX中所有有关输入数据的操作,转到适当的区域,然后键入数据。

在屏幕的最右边,你可以看到一列主波长指示器。

这个指示器指出了主要的波长,当前为486微米。

在主波长指示器的第二行上单击,指示器下移到587的位置。

主波长用来计算近轴参数,如焦距,放大率等等。

ZEMAX一般使用微米作为波长的单位“权重(Weight)”这一列用在优化上,以及计算波长权重数据如RMS点尺寸和STREHL 率。

现在让所有的权为1.0,单击OK保存所做的改变,然后退出波长数据对话框。

现在我们需要为镜片定义一个孔径。

这可以使ZEMAX在处理其他的事情上,知道每一个镜片该被定为多大。

由于我们需要一个F/4镜头,我们需要一个25mm的孔径(100mm的焦距除F/4)。

设置这个孔径值,选择“系统”中的“通常(General)”菜单项,出现“通常数据(General Data)”对话框,单击“孔径值(Aper Value)”一格,输入一个值:25。

注意孔径类型缺省时为“入瞳直径(Entrance Pupil Diameter)”,也可选择其他类型的孔径设置。

除此之外,还要加入一些重要的表面数据。

ZEMAX模型光学系统使用一系列的表面,每一个面有一个曲率半径,厚度(到下一个面的轴上距离),和玻璃。

一些表面也可有其他的数据,我们以后将会讨论到。

注意在LDE中显示的有三个面。

物平面,在左边以OBJ表示;光阑面,以STO表示;还有像平面,以IMA表示。

对于我们的单透镜来说,我们共需要四个面:物平面,前镜面(同时也是光阑面),后镜面,和像平面。

要插入第四个面,只需移动光标到像平面(最后一个面)的“无穷(Infinity)”之上,按INSERT键。

这将会在那一行插入一个新的面,并将像平面往下移。

新的面被标为第2面。

注意物体所在面为第0面,然后才是第1(标上STO是因为它是光阑面),第2和第3面(标作IMA)。

现在我们将要输入所要使用的玻璃。

移动光标到第一面的“玻璃(Glass)”列,即在左边被标作STO的面。

输入“BK7”并敲回车键。

ZEMAX有一个非常广泛的玻璃目录可用。

所有我们需要做的仅仅是决定使用“BK7”,ZEMAX会去查找我们所定的玻璃并计算每一个波长的系数。

由于我们需要的孔径是25mm,合理的镜片厚度是4mm。

移动光标到第1面(我们刚才输入了BK7的地方)的厚度列并输入“4”。

注意缺省的单位是毫米。

其他的单位(分米,英寸,和米)也可以。

现在,我们需要为镜片输入每一面的曲率半径值。

让我们设想一下,前面和后面的半径分别是100和-100,在第1(STO)和2面中分别输入这些值。

符号约定为:如果曲率中心在镜片的右边为正,在左边为负。

这些符号(+100,-100)会产生一个等凸的镜片。

我们还需要在镜片焦点处设置像平面的位置,所以要输入一个100的值,作为第2面的厚度。

我们怎样才能知道这个镜片是否好呢?也许在镜片设计中,最有用的判断工具是光线特性曲线图。

要产生一幅光线特性曲线图,先选择“分析(Analysis)”菜单,然后选择“图(Fan)”菜单,再选择“光线像差(Ray Aberration)”。

你将会看到光线特性曲线图在一个小窗口显示出来(如果看到任何出错信息,退回并确认是否所有你所输入的数据与所描述的是一致的)。

光线特性曲线图如图E1-1所示。

图形以光瞳坐标的函数形式表示了横向的光线像差(指的是以主光线为基准)。

左边的图形中以“EY”代替εY。

这是Y方向的像差,有时也叫做子午的,或YZ面的。

右图以“EX”代替εX,有时也叫做弧矢的,或XZ面的。

此光学特性曲线表示出了一个明显的设计错误,光线特性曲线通过原点的倾斜表示有离焦现象存在。

为了纠正离焦,我们用在镜片的后面的Solve来进行。

SOLVES(参考“SOLVES”这一章)动态地调整特定的镜片数据。

为了将像平面设置在近轴焦点上,在第2面的厚度上双击,弹出SOLVE对话框,它只简单地显示“固定(Fixed)”。

在下拉框上单击,将SOLVE类型改变为“边缘光高(Marginal Ray Height)”,然后单击OK。

用这样的求解办法将会调整厚度使像面上的边缘光线高度为0 ,即是近轴焦点。

注意第2面的厚度会自动地调整到约96mm。

现在,我们需要更新光线特性曲线图看其变化。

从光线特性曲线窗口菜单,单击“更新(Update)”(在窗口任何地方双击也可更新),其光线特性曲线图如图E1-2所示。

现在,离焦已消失,主要的像差是球差。

注意图中比例的改变。

这是不是所能得到的最佳的设计呢?我们下面就要用优化来完成本设计的工作。

首先,我们将告诉ZEMAX,哪个参量在设计中是自由的(这些被称为变量),然后我们将告诉它设计的要求(这些被称为目标(Targets)或操作数(Operands))。

有三个变量可以供我们利用,它门是:镜片的前、后曲率,和第二面的厚度,这些变量可以用离焦来补偿球差。

将光标移到第1面的半径这一列,然后按Ctrl-Z(如果你喜欢用菜单界面,单击“半径”,然后选择SOLVES,再从LDE菜单中选变量“Variable toggle”;你也可以在“半径”上双击,得到一个下拉的选择列,其中包括了变量状态)。

注意,出现“V”表示一个可变的参量。

按Ctrl-Z与菜单的功能相同。

再在第2面半径以及第2面的厚度上设置变化的标志,。

第2面的厚度变化时,它的值会复盖(overrides)先前用求解定出的值。

现在我们需要为镜片定义一个“评价函数(Merit Function)”。

评价函数从数学理念上指出什么样的镜片是好的。

评价函数就象是高尔夫球赛的得分,分数越低越好。

一个理想的镜头(对于一个指定的应用)它的评价函数的值应为0。

为了定义评价函数,从主菜单中选择“编辑(Editors)”菜单下的“评价函数”。

出现一个与LDE类似的电子表格。

从这个新的窗口的菜单条上,选择“工具(Tools)”菜单下的“缺省评价函数”。

再在出现的对话框中,点击Reset,然后OK。

你最终将会明白这些操作的功能,但现在你只需接受缺省值。

ZEMAX很擅长于决定一个和合理的缺省评价函数。

ZEMAX已经为你构建了一个缺省的评价函数,它由一系列的可以使得RMS波前差最小的追迹光线组成。

但这并不够,因为除了使弥散斑尺寸最小外,我们还需要使镜头的焦距为100mm。

如不限定镜头的焦距,ZEMAX会很快地发现,设定焦距无穷大(镜片相当于一个窗玻璃)会得到很好的波前像差。

在第一行中的任何一处单击鼠标,使光标移动到评价函数编辑的第一行,按下INSERT键插入新的一行。

现在,在“TYPE”列下,输入“EFFL”然后按回车。

此操作数控制有效焦距。

移动光标到“T arget”列,输入“100”然后按回车。

其“权重(W eight)”输入一个值:1。

这样我们就完成了评价函数的定义,你可以在窗口的左上角双击,将评价函数编辑器从屏幕中移走,评价函数不会丢失,ZEMAX会自动将它保存。

现在从主菜单条中选择“工具”菜单下的“最佳化(Optimization)”,会显示最佳化工具对话框。

注意“自动更新(Auto Update)”复选框。

如果这个选项被选中,屏幕上当前所显示的窗口(如光学特性曲线图)会按最佳化过程中镜头的改变而被自动更新。

在该复选框中单击选择自动更新,然后单击“自动(Automatic)”,ZEMAX会很快地减少评价函数。

单击“退出(Exit)”关闭最佳化对话框。

最佳化的结果是使镜片弯曲。

结果所得出的镜片曲率使得焦距大致为100mm,并且使这个简单的系统具有了一个尽可能小的RMS波前差。

ZEMAX也许不会很确切地将焦距优化到100mm,因为EFFL限制是一个被看作与其他的像差一样的“权重”目标。

我们现在可以用光线特性曲线图来研究计算结果。

最佳化的设计结果的最大的像差约为200微米,如图E1-3所示。

衡量光学性能的另一个方法的是产生一个点列图。

为了得到点列图,选择“分析”菜单下的“点列图”选项,然后选其中的“标准(Standard)”。

点列图将会显示在另一个窗口中。

此点列图的弥散大小是400微米。

作为比较,艾利(Airy)衍射斑的大小粗略地约为 6微米。

另一个有用的判断工具是OPD图。

这是以光瞳坐标为函数的光程差(以主光线为基准)分布图,它的光瞳坐标与光学特性曲线图中相同。

为了看OPD图,选择“分析”菜单下的“图”,再选择“光程(Optical Path)”。

你可以参考图E1-4中的OPD图。

这个系统中有大约20个波长的波像差,大部分为焦面上的,球差,色球差和轴上色差。

我们现在可以用光线特性曲线图来研究计算结果。

最佳化的设计结果的最大的像差约为200微米,如图E1-3所示。

衡量光学性能的另一个方法的是产生一个点列图。

为了得到点列图,选择“分析”菜单下的“点列图”选项,然后选其中的“标准(Standard)”。

点列图将会显示在另一个窗口中。

此点列图的弥散大小是400微米。

作为比较,艾利(Airy)衍射斑的大小粗略地约为 6微米。

另一个有用的判断工具是OPD图。

这是以光瞳坐标为函数的光程差(以主光线为基准)分布图,它的光瞳坐标与光学特性曲线图中相同。

为了看OPD图,选择“分析”菜单下的“图”,再选择“光程(Optical Path)”。

相关文档
最新文档