零电压零电流开关PWMDC/DC全桥变换器的分析

合集下载

一种新型零电压零电流开关移相全桥变换器

一种新型零电压零电流开关移相全桥变换器

全 桥 变 换 器 拓 扑 是 目前 D / 变 换 器 中最 常 CDC
滞 后桥 臂轻 负 载时 的零 电压开 通 和重负 载 时的零 电流开 通 . 电感 和 电解 电容 C 、 2 。 C 是辅 助 电路 的主要 组成 部 分 .
用 的电路 拓扑 之一 , 是 应用 最广 泛 的全桥 移 相 也 变换器 . J目前采用的有限双极性控制方式的Z Z S V C
2 稳 态分析
图2 为新 型 Z Z S 相 全桥 变换 器 的工作 波 V C 移 形 .为 了分析 稳定 状态 时 变换 器 的工作 过程 ,假 设 : 所 有 开关管 , ① 二极 管均 为无 损 耗理 想器 件 ; ② 所 有 电感 、电 容 和 变 压 器 均 为 无 损 耗 理 想 元 件 ;③ C =G: :G, =C , 8= =C ;④ 2 = s C a 个变 压器 的转换 比、 磁 电感和 漏感 相 同 , : 励 即

要 : 了解 决传 统 零 电压 零 电流 开 关 (V C ) WM D / 为 Z Z SP CDC变换 器 滞后 桥 臂 零 压 范 围较 小 、 流 损 耗 环
大 的 问题 , 用 串联 双 变压 器 、 后 桥 臂 带辅 助 网络 和 倍 压 整 流 电路 , 出 了一 种新 型零 电压 零 电 流移 相 全 桥 采 滞 提 变换 器. 先 分析 了变换 器在 稳 态下 的各 种 工 作 状 态 , 出 了相 关计 算 公 式 , 制作 了一 台 实验 样 机 进 行 原 理 首 给 并 验证. 实验 结 果 表 明 : 变换 器 能 够在 较 宽 的 负载 范 围 内 实现 滞后 桥 臂 的 零 电压 开通 , 载 下 实现 零 电流 开通 , 该 重
从 而极 大地 降 低 高频 电路 初 级 开 关 损 耗 和 次 级 电磁 干 扰 .

DC-DC变换器讲解学习

DC-DC变换器讲解学习

输入输出关系:
图3-6 Sepic斩波电路和Zeta斩波电路
U otto ofnf ETt otn onE1 E (2-49)
3-25
2.1.5 Sepic斩波电路和Zeta斩波电路
Zeta斩波电路原理
V处于通态期间,电源E经开关
V向电感L1贮能。
V关断后,L1-VD-C1构成振
荡回路, L1的能量转移至C1,
电压源 电压源的变换
o
t
b)
图3-4 升降压斩波电路及其波形
a)电路图
b)波形
3-20
2.1.4升降压斩波电路和Cuk斩波电路
稳态时,一个周期T内电感L两端电压uL对时间的积分为零,即
数量关系
T
0 uL dt 0
(2-39)
V处于通态
V处于断态
uL = E
EtonUotoff
uL = - uo
(2-40)
能量全部转移至C1上之后,VD
b) Zeta斩波电路
关断,C1经L2向负载供电。
输入输出关系:
Uo
1
E
图3-6 Sepic斩波电路 和 Zeta斩波电路 (2-50)

相同的输入输出关系。Sepic电路的电源电流和负载电流均
连续,Zeta电路的输入、输出电流均是断续的。
两种电路输出电压为正极性的。
3-26
t1 E
I 20
t2
E
t
O
EM
t
c) 电流断续时的波形
图3-1 降压斩波电路得原理图及波形
3-4
2.1.1 降压斩波电路
数量关系
电流连续
负载电压平均值:
Uoton t otnof

PWMDCDC全桥变换器的软开关技术

PWMDCDC全桥变换器的软开关技术

ZVS PWM DC/DC全桥变换器
ZVS PWM DC/DC全桥变换器
ZVS PWM DC/DC全桥变换器
ZVS PWM DC/DC全桥变换器
移相控制ZVS PWM DC/DC全桥变换器的 工作原理
移相控制ZVS PWM DC/DC全桥变换器的 工作原理
移相控制ZVS PWM DC/DC全桥变换器的 工作原理
u t t
u i 0 P 0
u
i t t
u i 0 P 0
i
a)软开关的开通过程
b)软开关的关断过程
图6-2 软开关的开关过程
DC/DC全桥变换器
DC/DC全桥变换器由全桥逆变器和输出整流滤波 电路构成:
DC/DC全桥变换器--全桥逆变器及其控制
Q1~Q4,D1~D4 Tr K=N1/N2
控制方式: 双极性 有限双极性 移相控制方式
关断时间错开切换放式—滞后桥臂的软开关实现
PWM DC/DC全桥变换器软开关的实现原则
PWM DC/DC全桥变换器的两类软开关方式
小结
ZVS PWM DC/DC全桥变换器
• 前面讨论了滞后桥臂的零电压关断,即电容的存在可以实现零电 压关断,现在关心的是开关管开通的情况. • 下面先讨断切换方式
Q1,Q4关断,原边电流给C 1和C4充电,同时C2和C3 放电,限制Q1,Q4的电压 上升率,实现软关断。 当C1和C4电压上升到Vin 时,C2和C3电压下降到零 .此时D2,D3导通,为Q2, Q3提供零电压开通的条 件。 但是此时如果开通Q2和Q 3,在AB两点 出现的就 是占空比为1的交流方波 电压
PWM DC/DC全桥变换器的控制策略族
PWM DC/DC全桥变换器的控制策略族

一种新型零电压、零电流全桥PWM DCDC变换器的研制.

一种新型零电压、零电流全桥PWM DCDC变换器的研制.

江苏大学硕士学位论文一种新型零电压、零电流全桥PWM DC/DC变换器的研制姓名:凌俊杰申请学位级别:硕士专业:电力电子与电力传动指导教师:刘星桥20050611江苏大学硕士学位论文摘要移相全桥零电压、零电流(PS-FB.ZVZCSPWM)变换器在原边电压过零期间复位原边电流,实现超前桥臂零电压开关,滞后桥臂零电流开关,从而克服了移相全桥零电压(PS.FB—Zvs.PwM)变换器的明显不足。

国内外先后提出了多种不同的拓扑结构,但都尚存在诸如:损耗增加、控制困难、制造工艺复杂等问题。

本文提出的一种利用耦合输出电感的新型次级箝位ZVZCS—PWM变换器与目前各,中zvzcs.PWM电路拓扑相比较:采用了无损耗元件及有源开关的简单辅助电路;副边整流二极管的电压应力和传统的硬开关电路一样小;轻载时筘位电容的充、放电电流能根据负载情况自动调整,可保证在很宽的负载范围内变换器都有高效率;辅助回路二极管D可以实现软关断,因而反向恢复影响小。

论文分析了该新型变换器的工作原理,提出了参数设计依据,进而推导了变换器各种状态时的参数计算方程;运用Pspicc9.2电路专用仿真软件成功地对变换器工作特性进行了仿真,分析了各参数对变换器性能的影响,并得出了变换器的优化设计参数;最后研制出基于该新型拓扑的1千瓦移相控制零电压、零电流软开关电源,给出了其主电路、控制电路、保护电路及高频变压器等的设计过程,并在实验样机上测量出实际运行时的波形及变换器效率。

理论分析与实验结果证明:该变换器拓扑能在1/3负载以上范围内实现超前桥臂的零电压开关,在任意负载下实现滞后桥臂的零电流开关;在很宽的负载范围内都具有商效率:尤其适合以IGBT作为主功率开关管的高电压、大功率功率变换,具有广泛的应用前景和巨大的经济价值。

关键词:软开关零电压.零电流开关(ZVZCS)移相控制全桥变换器江苏大学硕士学位论文ABSTRACTFhase—shiftedfull—bridgezero・voltageandconverterzero-current—switching(ZVZCS)PWMtorealizetheZVSresetstheprimarycur/eatduringthefreewheelingperiodandtheZCSofofleading-legslagging・legs,whichovercomesSOmeobviousdisadvantagesofphase-shiftedfull-bridgezero-voltage・switching(ZVS)converter.Atpresent.theexistingmethodstoresetprimarycurrenthavesomelimitationssuch船lossincreasing,difficultcontrolandcomplicatedmanufacturingtechnnology,etc—AnovelZVZCSconverterisproposedwhichComparedwiththepreviouslyproposedconsistsofneitherlossycomponentsnorusesacoupledoutputinductor.auxiliarycircuitthatstresstopologies.asimpleactiveswitchingsisused.ThevoltageofthesecondaryrectifierdiodeiskeptaS.smallaS.thatofhard—switchingconverter.Thecurrenttochargeclampingcapacitanceisself-adjustedoverinaccordancewiththeloadatlightcondition,whichguaranteeshighefficiencywideloadrange.Diode现ofauxiliarycircuitissoftlycommutatedandit’Sofreverserecoveryisminimized.Theprincipleofthenovelconverterisanalyzed,andthefoundationsofparameter-designarepresented.Futhermore,parametercalculationformulasatperformedsuccessfullytodifferentmodesarededuced.AsimulatiOil.isanalyzeontheconverter’SworkmgcharacteristicsusingPspice9.2,differentparameters’effectsconverterareperformanceofanalyzedandtheoptimizedparametersonhavebeenobtained.OneIKWZVZCSsoft—switchingpowersupplybasedthistopologyisdeveloped,andthedesignprocessofmaincircuit,controlcircuit,protectioncircuittransformerarcpresented,lastly,workingmeasuredonandhi曲。

软开关PWM DCDC全桥变换器的实现策略

软开关PWM DCDC全桥变换器的实现策略

软开关PWM DC/DC全桥变换器的实现策略阮新波严仰光摘要系统地提出PWM DC/DC全桥变换器的两类软开关方式,ZVS方式和ZVZCS方式。

针对这两类方式,分别提出各自的实现策略。

关键词:全桥变换器脉宽调制控制策略软开关技术Realization Strategies for Soft-Switching PWM DC/DC Full-Bridge ConvertersRuan Xinbo Yan Yangguang(Nanjing University of Aeronautics & Astronautics210016China)AbstractThis paper proposes two kinds of soft-switching techniques for PWM DC/DC full-bridge converte rs:Zero-Voltage-Switching (ZVS)and Zero-Current-Switching(ZCS).The realization strategies for the two kinds of soft-switching techniques are proposed.Keywords:Full-bridge converter Pulse-width-modulation Control strategySoft-switching technique1引言在文献[1]中,我们知道,PWM DC/DC全桥变换器有9种控制方式。

根据斜对角的两只开关管的关断情况,这9种控制方式可分为两类,一类是斜对角的两只开关管同时关断,此时会出现+1/-1和-1/1的切换方式,不能实现软开关;一类是斜对角的两只开关管的关断时间相互错开,一只先关断,一只后关断,即引入超前桥臂和滞后桥臂的概念,可以实现软开关。

超前桥臂的开关方式是+1/0和-1/0切换方式,只能实现ZVS,而且容易实现ZVS;滞后桥臂根据0状态的工作模式不同存在两种软开关方式,0状态有两种工作模式,电流恒定模式和电流复位模式。

基于移相全桥软开关技术的应用

基于移相全桥软开关技术的应用

基于移相全桥软开关技术的应用引言随着科技的发展,电力电子设备不断更新,电源称为了现代工业、国防和科学研究中不可缺少的电气设备。

为了触发、驱动开关变换器的功率开关管,研制适应越来越高性能要求的开关电源,近年来出现了PWM(脉宽调制)型变换器。

PWM技术应用广泛,构成的变换器结构简单,它对常用的线性调节电源提出挑战,在减小体积的同时获取更大的功率密度和更高的系统效率[1,2]。

为了拓展开关电源的应用场合,电源工作频率逐渐提高,高频化成为其重要发展方向,同时也是减小开关电源尺寸的最有效手段。

然而高频PWM变换器在传统硬开关方式工作下,功率管损耗较为严重,系统效率不高,随着开关频率的逐步提高,损耗相继增大[3,4]。

为此,必须采取措施以提高高频开关变换器的效率,人们研究了软开关技术,除了减小开关损耗外,软开关技术应用还大大降低了开关噪声、减小了电磁干扰。

软开关技术概况及发展目前广泛应用的DC-DC PWM功率变换技术是一种硬开关技术。

所谓“硬开关”是指功率开关管的开通或者关断是在器件上的电压或者电流不等于零的状态下进行的,即强迫器件在其电压不为零时开通,或电流不为零时关断。

调高开关频率是开关变换技术的重要的发展方向之一。

其原因是高频化可以使开关变换器的体积、重量大为减小,从而提高变换器的功率密度。

为了使开关电源能够在高频下高效率的运行,高频软开关技术不断的发展,所谓“软开关”指的零电压开关(Zero Voltage Switching, ZVS)或零电流开关(Zero Current Switching, ZCS)[5]。

它是应用谐振原理,使开关变换器的开关器件中电流(或电压)按正弦或准正弦规律变化,当电流自然过零时,使器件关断;或者电压为零时,使器件开通,实现开关损耗为零。

再加入一些说明移相全桥DC-DC技术传统的全桥(full-bridge简称FB)PWM变换器适用于输出低电压、大功率的情况,以及电源电压和负载变流变换大的场合。

基于ARM控制的1KW零电压零电流全桥DC/DC变换器的设计

基于ARM控制的1KW零电压零电流全桥DC/DC变换器的设计

基于ARM控制的1KW零电压零电流全桥DC/DC变换器的设计【摘要】软开关技术是电力电子装置向高频化、高功率密度化发展的关键技术,已成为现代电力电子技术研究的热点之一。

本文设计了以ARM芯片LPC2210为核心的数字化反馈控制系统,通过软件设计实现了PWM移相控制信号的输出;运用Pspice9.2软件成功地对变换器进行了仿真,分析了各参数对变换器性能的影响,并得出了变换器的优化设计参数;最后研制出基于该新型拓扑和数字化控制策略的1千瓦移相控制零电压零电流软开关电源,给出了其主电路等的设计过程,并在实验样机上测量出了实际运行时的波形。

【关键词】软开关;零电压-零电流开关(ZVZCS);移相控制;ARM;LPC2210全桥变换器现代电源技术是应用电力电子半导体器件,综合自动控制、微处理器技术和电磁技术的多学科边缘交又技术。

在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。

功率变换器(Power Converters)是开关电源的核心部分,为了实现电源装置的高性能、高效率、高可靠性、减小体积和重量,必须实现开关管的软开关(Soft Swit-ching)。

软开关变换技术是近年来电力电子学领域中的热门话题,软开关技术的深入研究及广泛应用,使电力电子变换器的设计出现了革命性的变化。

随着DSP、ARM等电子芯片的小型化、高速化,开关电源的控制部分正在向着数字化方向发展。

数字化使开关电源控制部分的智能化、零件的共通化、电源动作状态的远距离监测成为可能。

一、新型次级箝位ZVZCS全桥变换器的拓扑结构本文介绍的新型次级箝位ZVZCS-PWM变换器如图1所示,其中变压器副边采用中央抽头结构,全波整流方式。

变换器采用移相控制,由于输出电感参与了超前桥臂的谐振,所以在原边串联电感很小的情况下也可以给超前臂开关管、并联电容、来实现零电压开关。

辅助电路是在输出滤波电感磁芯上增加一个绕组,当原边向副边传送能量时,由增加的绕组经辅助回路给箝位电容充电。

零电压_零电流PWM软开关技术研究

零电压_零电流PWM软开关技术研究
图 5 零电流2零电压全桥 PWM 变换器
图 6 图 5 电路的改进 (a) 上臂的简化; (b) 下臂的简化
图 7 优化的零电流2零电压全桥 PWM 变换器
3 状态与能量分析
在简化后的电路图 7 中, 谐振电感L r 为 S1~ S4 提供零电流开启的条件, C r1、C r2 分别为 S1、S2 和 S3、 S4 提供零电压关断的条件。C E 储存每个工作周期内 L r、C r 中的能量, 并通过 L E1或 L E2, D x 将这部分能量 无损地回授到 V in。
iL E1 ( t)
=
V CE (t L E1
t0)
(1)
注意到此时 C r1 上电压为- V CE, C r2 上电压为 V in, L r 中电流为 I 0。
假设 t1 时 T ON 时间结束, S1、S4 断开, 此时的电
流回路为 L E1→D 5 →D 2 →C r1 →L E1, 维持 iL E1 并对 C r1 充电; C r2→D 3→L r→C E →D 2→C r1→I 0→C r2, L r 中能 量向 C E 转移, 使 L r 中电流减小, 同时 C r2 放电, 其电 压转移到 C E 和 C r1上。又由于 C E µ C r1, 因此使 C r1电 压上升。 此时 S1 和 S4 上电压变化为
以下对软开关的工作过程和能量转换情况进行
分析。
假设 t0 时开关 S1、S4 导通, 则如前文所述, 在 S1 中不仅有工作电流 I 0, 还有部分 C E 能量将通过它进 入L E1。此时的两个电流回路为V in→L r→S1→I 0→S4 →V in, 提供输出电流 I 0: C E →S 1 →L E1 →D 5 →C E , 为 C E 能量转移回路, 电流大小为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档